
P
os
te
d
on

14
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
20
36
11
.1
42
82
57
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Localization of the discrete one-dimensional quasi-periodic

Schrödinger operators

Walid REFAI1

1Jazan University College of Science

August 14, 2023

Abstract

In this paper we study the spectral properties of a family of discrete one-dimensional quasi-periodic Schrödinger operators

(depending on a phase theta). In large disorder, under some suitable conditions on v and a diophantine rotation number, we
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1 Introduction and statements

The discrete one-dimensional Schrodinger operator with quasi-periodic po-
tential is the selfadjoint bounded operator Hθ on ℓ2(Z) de�ned by,

(Hθu)n =: −ε(un+1 + un−1) + v(θ + nω)un, n ∈ Z, (1.1)

where ω is a real number and v is o smooth function on [0, 2π).
We may assume the following on the data:
-Diophantine condition on the frequency ω: That is:

||nω|| := inf
m∈Z

|nω − 2πm| ⩾ κ

|n|τ
∀n ∈ Z \ {0}, (1.2)
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for some constants κ > 0 and τ > 1.
- v is a function of class C1, satis�es:

0 < α ⩽ |∂θv(θ)| ⩽ c < ∞, ∀θ. (1.3)

Under these two assumptions, we prove the following theorem:

Theorem 1. Assume that ω and v are as above, then there exists a constant
ε0 = ε0(α, κ, τ) such that:
If |ε| < ε0 then Hθ is pure point with a set of exponential decaying eigenfunc-
tions which form an orthonormal basis of ℓ2(Z) for all θ.

Remark 1.

• In 1997, L.H. Eliasson considered (see [1]) the operator Hθ given by (1.1)
with frequency ω satisfying a Diophantine condition and the function v sat-
isfying a Gevrey-class regularity and a transversality condition. Under these
assumptions, he proved using KAM methods that for |ε| < ε0 where ε0 de-
pends on the function v and on the Diophantine condition on ω the operator
Hθ has pure point spectrum for a.e. θ ∈ T. Moreover, this implies, using
Kotani's theory (see [11]) that the Lyapunov exponent is nonzero for a.e.
energy E. The author has also suggested that the argument could be modi�ed
to obtain exponential decay of the eigenfunctions, but he has not provided a
proof of it.
• In 2000, J. Bourgain and M. Goldstein considered (see [3]) the operator Hθ

given by (1.1) where ω satis�es a Diophantine condition and v is a noncon-
stant analytic function. Assuming also that the Lyapunov exponent is positive
for a.e. ω and for all E .The authors prove that the operator Hθ satis�es
Anderson localization -with exponential decay of the eigenfunctions at almost
Lyapunov rate for every θ and for a.e. ω. Their result is nonperturbative -the
constant ε0 depends only on the potential v. In this paper we use the K.A.M
approach which is a perturbative method -the constant ε0 depends on v and
ω- with di�erent conditions on v, also we prove the Dynamical localization
which is stronger than Anderson localization.
• For the quasi-periodic model, and unlike Anderson's case, there were less
results that were found for this kind of localization. However, several results
on the (D.L.) were published for the random model, for more references see
[5, 7].
In the case of quasi-periodic models, this localization phenomenon (D.L) im-
plies Anderson localization, and which also implies by the RAGE theorem
that the spectrum is purely punctual (see [4]). In view of this, these models
are natural candidates for (D.L). In this context, F. Germinet and S. Jito-
mirskaya (see [9]), have improved the results of [6] and [8], by proving the
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strong (D.L) of the operator −∆+ λ cos(2π(θ + nω)), for all λ > 2 and dio-
phantine ω. Later, in 2004, J. Bourgain and S. Jitomirskaya have announced
(without demonstration) this result for the quasi-periodic Schrödinger opera-
tors, see [10] for more details.

Idea of proof: The method of proof is a re�nement of an already re�ned
K.A.M method developed by Eliasson in a series of fundamental papers in the
theory of quasi-periodic Schrodinger operators (especially[1]). The method
consists of an in�nite sequence of transformations aiming at conjugating the
in�nite dimensional matrix de�ned by the operator on ℓ2(Z):

D(θ) + εF (θ) =


. . . 0

v(θ − ω) −ε
−ε v(θ) −ε

−ε v(θ + ω)

0
. . .


to a diagonal matrix D∞(θ, ε), by an orthogonal matrix made up of a com-
plete set of eigenvectors. An iterative procedure that permits us to construct
a such matrix,

U∗
j · · ·U∗

1 (D + εF )U1 · · ·Uj = Dj+1 + Fj+1

that conjugateD+εF closer and closer to a diagonal matrixDj = diag(vj(θ+
kω).

2 Iterative study

This section is organized in the following way:
- A �rst part devoted to the study of the �rst step of the iteration described
in the previous paragraph. Under some conditions on v and ω we construct
the matrices U1, F2 and D1 which satisfy the estimates of the lemma 1.
- In the second part and after a suitable choice of parameters, an inductive
proposition 1 is introduced in order to prove the theorem 1, which is a simple
consequence of the lemma 2.
Consider now the symmetric in�nite-dimensional matrix that depends on the
parameter θ, D(θ) + F (θ) with,

D(θ) =


. . . 0

v(θ − ω)
v(θ)

v(θ + ω)

0
. . .
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For the formulation of the �rst step of iteration we shall assume the follow-
ing:
- The rotation number ω and the potential v satisfy (1.2) and (1.3).

−

{
|F j

i | ⩽ εe−|i−j|ϱ with ϱ > 0

|∂θF j
i | ⩽

√
ε.

-Consider the equation

e−X(D + F )eX = D′ + F ′ (2.1)

where the matrices X, D′ and F ′ are de�ned in the following way:
Let N := 1

εaϱ
for 0 < a < 1

4τ
.

1. The matrix X is de�ned by

{
Xj

i = 0 if i = j or |i− j| > N

Xj
i = − F j

i

vi−vj
otherwise

and sat-

is�es the equation
[D,X] = FN −D′ +D (2.2)

where (FN)ji =

{
F j
i if |i− j| ⩽ N

0 otherwise

2. (D′ −D)ii = F i
i

3. F ′(θ) = e−X(θ)(D(θ) + F (θ))eX(θ) −D′(θ).

Lemma 1. Let 0 < aτ + b <
1

4
and σ = εb.

If ε ⩽ (
κ

26
αϱτ+1)

1
1−(aτ+b) then

1. (a) |Xj
i | ⩽ ε

N τ

ακ
e−|i−j|ϱ := Ae−|i−j|ϱ

(b) ||X|| ⩽ ε
N τ

ακ

2

1− e−ϱ

(c) |(e±X − I)ji | ⩽
27A

σϱ
e−|i−j|ϱ′ where ϱ′ = ϱ− σ

2
ϱ

2. (a) |F ′j
i | ⩽ 16(

25A

σϱ
)2e−|i−j|ϱ′

(b) ||F ′|| ⩽ 16(
25A

σϱ
)2

2

1− e−ϱ′
:= ε′

2

1− e−ϱ′
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3. (a) |∂θv′(θ)| ⩾ α−
√
ε := α′ where D′(θ) =diag(v′(θ + nω))

(b) |∂θF ′j
i (θ)| ⩽

√
ε′

(c) |∂θv′(θ)| < c+
√
ε := c′

4. |(D′ −D)ii| ⩽ ε.

Proof.

1.(a): Let i ̸= j and |i− j| ⩽ N , we have:

Xj
i = − F j

i

vi − vj
therefore |Xj

i | ⩽
ε

|vi − vj|
e−|i−j|ϱ

since |vi − vj| = |v(θ + iω)− v(θ + jω)| ⩾ inf |∂θv||(i− j)ω| ⩾ ακ
|i−j|τ , then it

follows that

|Xj
i | ⩽ ε

N τ

ακ
e−|i−j|ϱ.

1.(b): Using 1.(a) we obtain∑
i∈Z

|Xj
i | ⩽ A

∑
i∈Z

e−|i−j|ϱ ⩽ A
∑
i∈Z

e−|i|ϱ ⩽
2A

1− e−ϱ

thus applying Young theorem the result follows.
1.(c): By lemma A8(Eliasson [2]) and for all n ∈ N we deduce that:

|(X · · ·X︸ ︷︷ ︸
n times

)ji | ⩽ (
25A

σϱ
)ne−|i−j|ϱ′ ,

hence |(e±X − I)ji | ⩽
27A

σϱ
e−|i−j|ϱ′ .

2.(a): Let F̃N := F − FN then we have

F ′ = e−X(D + F )eX −D′

= e−X(D + FN)eX + e−XF̃Ne
X −D′

= [X,FN ]−XDX −XFNX +
∑

m+ n ⩾ 2

(m,n) ̸= (1, 1)

(−X)n

n!
(D + FN)

Xm

m!

+
∑

m+n⩾0

(−X)n

n!
F̃N

Xm

m!
.
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Now we have to estimate the elements of all matrices which constitute the
matrix F ′.
(∗)1

|([X,FN ])ji | ⩽ 2
∑
k∈I

|Xk
i ||(FN)jk|

⩽ 2εA
∑
k∈I

e−(|k−i|+|k−j|)ϱ

⩽ 2εA
∑
k∈I

e−(|k−i|+|k−j|)ϱ′e−(|k−i|+|k−j|)σϱ
2

⩽ ε
25A

σϱ
e−|i−j|ϱ′

where I = {k ∈ Z; |k − i| ⩽ N and |k − j| ⩽ N}.
In the same way we get:
(∗)2

|(XDX)ji | ⩽
∑
k∈I

|Xk
i |(DX)jk| ⩽ (

25A

σϱ
)2e−|i−j|ϱ′

(∗)3
|(XFX)ji | ⩽ (

25A

σϱ
)2e−|i−j|ϱ′

(∗)4

|(
∑

m+ n ⩾ 2

(m,n) ̸= (1, 1)

(−X)n

n!
(D + FN)

Xm

m!
)ji | ⩽ 3(

25A

σϱ
)2(1 + ε)e−|i−j|ϱ′

(∗)5

|(
∑

m+n⩾0

(−X)n

n!
F̃N

Xm

m!
)ji | ⩽

∑
m+n⩾0

1

n!m!

∑
k∈Z

|(Xn)ki ||(F̃NX
m)jk|

⩽
∑

m+n⩾0

1

n!m!

∑
k∈Z

|(Xn)ki |
∑

|k−ℓ|>N

|(F̃N)
ℓ
k||(Xm)jℓ|

⩽ εe−
1
εa

∑
m+n⩾0

1

n!m!

∑
k∈Z

|(Xn)ki |
∑

|k−ℓ|>N

|(Xm)jℓ|

⩽
3εe−

1
εa

(σϱ)2
e−|i−j|ϱ′ .
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This gives

|F ′j
i | ⩽ 16(

25A

σϱ
)2e−|i−j|ϱ′ .

2.(b): ∑
i∈Z

|F ′j
i | ⩽ 16(

25A

σϱ
)2
∑
i∈Z

e−|i−j|ϱ′

⩽ 16(
25A

σϱ
)2
∑
i∈Z

e−|i|ϱ′

⩽ 16(
25A

σϱ
)2

2

1− e−ϱ′

and we obtain the estimate from Young theorem.
3.(a): Since (D′ − D)ii = F i

i then v′i = vi + F i
i therefore ∂θv

′
i = ∂θvi + ∂θF

i
i

thus
|∂θv′i| ⩾ |∂θvi| − |∂θF i

i |
⩾ α−

√
ε := α′.

3.(b): In order to estimate |∂θF ′j
i |, we have to �nd an upper bound of |∂θXj

i |.

We have ∂θX
j
i = − ∂θF

j
i

vi − vj
+ F j

i

∂θvi − ∂θvj
(vi − vj)2

then

|∂θXj
i | ⩽

√
ε
N τ

ακ
+ ε(

N τ

ακ
)2|∂θvi − ∂θvj|

⩽
√
εC1.

which implies
(∗)1

|∂θ([X,FN ])ji | =

∣∣∣∣∣∂θ(∑
k∈Z

Xk
i (F

N)jk − (FN)kiX
j
k)

∣∣∣∣∣
⩽

∑
k∈Z

|∂θXk
i ||(FN)jk|+ |Xk

i ||∂θ(FN)jk|+ |∂θ(FN)ki ||X
j
k|+ |(FN)ki ||∂θX

j
k|

⩽
∑
k∈Z

√
εC1|(FN)jk|+

√
ε|Xk

i |+
√
ε|Xj

k|+
√
εC1|(FN)ki |

⩽ ε3/2M1.

In the same way we get
(∗)2

|∂θ(XDX)ji | ⩽ ε3/2M2.
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(∗)3
|∂θ(XFX)ji | ⩽ ε3/2M3.

(∗)4
(Xn)ji =

∑
ℓn−1∈Z

∑
ℓn−2∈Z

· · ·
∑
ℓ1∈Z

Xℓ1
i Xℓ2

ℓ1
· · ·Xj

ℓn−1

Since |(Xk)ji | is bounded for all k < n then |∂θ(Xn)ji | ⩽ ε3/2C2 therefore

|∂θ(
∑

m+ n ⩾ 2

(m,n) ̸= (1, 1)

(−X)n

n!
(D + FN)

Xm

m!
)ji | ⩽ ε3/2M4

and

|∂θ(
∑

m+n⩾0

(−X)n

n!
F̃N

Xm

m!
)ji | ⩽ ε3/2M5

where all constants Mi and Ci depend on N, α, κ and τ . It follows that

|∂θ(F ′j
i )| ⩽ 4ε3/2 max (M1, · · · ,M5) ⩽

√
ε′.

3.(c):
|∂θv′| ⩽ |∂θv|+

√
ε ⩽ c+

√
ε.

4. By construction of D′ the result follows immediately. 2

3 Induction

Let a, b such that 0 < aτ +b <
1

4
and consider ε1 = ε, ϱ1 = ϱ, α1 = α, A1 =

A, D1 = D, F 1 = F and for all n ⩾ 1 we de�ne the sequences

An+1 =
(Nn+1)τ

καn+1
εn+1 Nn = 1

(εn)aϱn

εn+1 = 16(2
5An

σnϱn
)2 σn = (εn)

b

ϱn+1 = ϱn − σnϱn
2

αn+1 = αn −
√
εn

These parameters are de�ned in an iterative way and it is with which we will
be able to de�ne the matrices Xn, F

n+1 and Dn+1 satisfying

e−Xn(Dn + F n)eXn = Dn+1 + F n+1 (3.1)

where the matrices Xn, D
n+1 and F n+1 are de�ned in the following way:
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1. The matrix Xn is de�ned by

{
(Xn)

j
i = 0 if i = j or |i− j| > Nn

(Xn)
j
i = − (Fn)

j
i

vni −vnj
otherwise

and

satis�es the equation

[Dn, Xn] = (F n)Nn −Dn+1 +Dn (3.2)

where ((F n)Nn)ji =

{
(F n)ji if |i− j| ⩽ Nn

0 otherwise

2. (Dn+1 −Dn)ii = (F n)ii

3. F n+1(θ) = e−Xn(θ)(Dn(θ) + F n(θ))eXn(θ) −Dn+1(θ).

and satisfy the property Pn described in the following proposition

Proposition 1. Let n ∈ N. If ∀m ⩽ n,

εm ⩽ (
καmϱ

1+τ
m

26
)

1
1−(aτ+b)

then the following property Pn is holds.

Pn



1. |(Xn)
j
i | ⩽ Ane

−|i−j|ϱn

2. ||Xn|| ⩽ 2An

1−e−ϱn

3. |(e±Xn − I)ji | ⩽ 27An

σnϱn
e−|i−j|ϱn+1

4. |(F n+1)ji | ⩽ εn+1e
−|i−j|ϱn+1

5. ||F n+1|| ⩽ 2εn+1

1−e−ϱn+1

6. |∂θvn+1| ⩾ αn+1

7. |∂θ(F n+1)ji | ⩽
√
εn+1

8. |∂θvn+1| < cn+1 = cn +
√
εn

9. |(Dn+1 −Dn)ii| ⩽ εn.

Proof.A direct application of the lemma1 allows us to obtain the desired
result for each n. 2

4 Study of convergence

Now we will deal with the study of the convergence of our iteration. We will
therefore look the conditions and the size of ε with which we will have the
convergence, this will be the goal of the next lemma. Finally, we conclude
with the proof of the theorem1 which is a simple deduction of the proposition1
and the lemma2.
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Lemma 2. Suppose that

(
1

29α3
)1−(aτ+b) < ακϱτ+1 < 2τ+73

(26α2)b ⩾ 2; 0 < aτ + b <
1

4
.

Then for ε <
1

237
(
κϱτ+1

2τ3
)4α we have for all n

1. εn ⩽ (
1

26α2
)(3/2)

n ∀α ⩾
11

24
In particular limn→∞ εn = 0

2. εn ⩽ (
καnϱ

τ+1
n

26
)

1
1−(aτ+b) .

Proof: 1.) The result is holds for n = 1. Suppose that the result remain

holds for 1, 2, · · · , n thus α1 > α2 > · · · > 2

3
α. Now we shall prove that the

result is also true for n+ 1.
Let

M =
+∞∑
j=1

(
1

2(1− (aτ + b))
)j

we have

εn+1 = 16(
25An

σnϱn
)2 = 214(

1

καnϱτ+1
n

)2ε2(1−(aτ+b))
n = · · · =

=
[
214

∑n
k=1

(
2(1−(aτ+b))

)−k n∏
k=1

(
1

καkϱ
τ+1
k

)2
(
2(1−(aτ+b))

)−k

ε
](2(1−(aτ+b))

)n

.

Since

n∏
k=1

(
1

καkϱ
τ+1
k

)2
(
2(1−(aτ+b))

)−k

⩽
( 1

καnϱτ+1
n

)2
∑n

k=1

(
2(1−(aτ+b))

)−k

hence

εn+1 ⩽
[
214M(

1

καnϱτ+1
n

)2M

ε
](2(1−(aτ+b))

)n

⩽
[
228(

2τ3

καϱτ+1
)4ε

](3/2)n
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which proves that lim
n→+∞

εn = 0.

2.) By 1.) we have ∀n, εn ⩽ 1 then εn+1 = 22
(26ε1−(aτ+b)

n

καnϱτ+1
n

)2

⩽ 1, thus

26ε
1−(aτ+b)
n

καnϱτ+1
n

⩽ 1 hence εn ⩽
(καnϱ

τ+1
n

26

) 1
1−(aτ+b)

. 2

Remark 2. 1.One can assume without loss of generality that α = 1 and we
have the same result, in fact the operators Hθ and αHθ have the same spectral
properties.
2.The real b exists and satisfying all conditions.

Proof of theorem 1. the operator Hθ is identi�ed to matrix D + F with

|F j
i | ⩽ (eε)e−|i−j|ϱ. Then for ϱ = 1 and ε <

καϱτ+1

3e2τ+37
we have the existence of

matrices Xn and Dn+1 for all n ∈ N such that for all θ(
eX1(θ) · · · eXn(θ)

)∗(
D(θ) + F (θ)

)
eX1(θ) · · · eXn(θ) = Dn+1(θ) + F n+1(θ)

where Dn+1(θ) is a diagonal matrix, ||F n+1|| ⩽ εn+1
1

1− e−ϱn+1
,

|(e±Xn − I)ji | ⩽
27An

σnϱn
e−|i−j|ϱn+1 and |(Dn+1 −Dn)ii| ⩽ εn.

Therefore F n(θ) → 0 and Dn(θ) → D∞(θ) with D∞(θ) is a diagonal matrix.
All convergence are ful�lled for all θ.
On the other hand eX1(θ) · · · eXn(θ) → U(θ) in norm and for all θ with U(θ) is

an orthogonal matrix. In fact: Let Uj(θ) = eXj(θ) we have
∏
j⩾1

Uj(θ) converges

i�
∑
j⩾1

||Uj(θ)−I|| converges, now since ||Uj(θ)−I|| ⩽
2
√
εj

1− e−ϱj+1
then we have

the existence of U for all θ. Moreover from lemma 2 and for ε0 =
1

e237
(
κ

2τ
3)4α

the matrix D∞(θ) is is pure point with �nite-dimensional eigenvectors for all
θ and the measure of σ(D)\σ(D + F ) goes to 0 as ε → 0. The eigenvectors
of D + F are formed by the columns of U . 2
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