
P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Human Intention Space - Natural Language Phrase Driven

Approach to Place Social Computing Interaction in A Designed

Space .

Pronab Pal1

1university of melbourne

August 13, 2023

DOI 10.13140/RG.2.2.30192.23042

August 2023, Melbourne Australia

Abstract: Publishing and sharing content through software has become a regular part of Social Computing
today[the term Social Computing is used in the sense defined in Wikipedia (Social computing - Wikipedia,
n.d.)]. This paper shows how we can achieve social cohesion despite varied software pieces working in their
unique way and providing their specialized content. It defines a software methodology to design better
socially responsive software by representing Intentions in code and using that as an open inter-component
communication mechanism with more ownership and responsibility for both publisher and receiver.

Coding is a ‘Design with Intent’. Let’s treat it that way.

There is no doubt in anybody’s mind today that AI (Artificial Intelligence) is rising. The possibilities and
trepidation are enormous. There are some missing pieces in this puzzle of perceived AI domination; how
can human beings with the brilliance and mind-powers of engineers and extraordinary visionaries end up
creating so much mistrust, doubt, and possible harm to a society where we face an existential crisis? What
are these missing pieces? How the future of Social Computing look like?

Whenever someone writes any software code related to any social activity or a social gadget like a smartphone
today, they are inherently engaged in some form of design. Even if the code has been copied and pasted
from elsewhere, it carries a built-in intention and specific actions, much like a designed artifact such as a
knife or spoon.

Traditionally Intents Are Not Represented In Code or Design.

In the traditional programming model of ‘ input-process-output ’, intentions stay in the coder’s mind; it
is absent in the code, which means the software code is devoid of intent. As it remains outside of general
attention, the significance and implications of intention in software development still need to be considered
and accounted for, especially when the software becomes a designed tool in society.

The absence of explicit intent in design, in general, and code in particular, is primarily due to the lack of any
formal approach that can expose, analyze and persist intentions, let alone provide a mechanism to ensure
that such intentions align seamlessly within a target scenario. Although in the realm of artifact design in

1

http://dx.doi.org/10.13140/RG.2.2.30192.23042


P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

society, the ambiguity of intent is taken as an acceptable or even unavoidable part of the design, we shall see
that having a software methodology where intent can be explicitly shared brings an unprecedented advantage
in knowledge sharing, education and a reliable and safe social computing network.

Intention Space -Shared Intentions, Objects and Design Chunks

This article introduces the concept of Intention Space, a modern approach to modular software development.
It allows its operation within a design space where Intentions become part of the functioning software as
an unavoidable inter-component addressing mechanism. The Intention Space framework recognizes the
fundamental role of intention in software development. It aims to provide a structured methodology to
capture, analyze, persist, and validate the intentions embedded in code. It exposes a new way to represent
the understanding of a design and execution time computation progression in a system, typically an ‘App’.
The article outlines ways Intention Space can take today’s software practices to more socially transparent
norms.

Intention Space is also a software architectural experiment in progress at enterprise software builders Keybyte
Systems Australia to address the missed opportunities of being unable to represent Intent as part of the
software code.

Design Chunks: Holds Software Code & Proprietary Content

In the context of Intention Space, software components are items in specific “Design Chunks” (DC) -
carefully designed and structured units that embody particular Intentions. These DCs interact within a field
of phrase pairs or question-answers (QnA Domain), emitting Intentions to Objects which reflect Intentions to
other DCs. Any coded instruction in the systems of Intention Space must reside only in the Design Chunks.
Intention Space doesn’t bring any additional syntax or execution framework within a Design Chunk. Thus,
Design Chunk acts as a scoping mechanism where any traditional piece of software can operate as usual but
can be configured to be triggered by particular Intentions or emitting specific intentions at operation time.
A Design Chunk can hold a series of functions with particular names recognizable within the Design Chunk.
The Design Chunk in Intention Space concept exhibits a versatile scalability that accommodates both macro
and micro levels of software code representation. It can encompass the entirety of an App, encapsulating
complex functionalities and interactions while facilitating the containment of specific and granular logic,
such as the control of a few transistors.

Intentions: Software Component Communication Mechanism Through Human
Read-able Statements

The Intention Space unravels Intentions as some new kind of communication between codes and objects in
people’s minds. Design Chunks emit Intentions to coordinate or communicate with another Design Chunk.
Design Chunks receives or consumes Intention from Objects representing things, real or virtual, in people’s
mind. Design Chunks can receive Intentions reflected by Objects. Intentions can carry a payload, but
Intentions exist only by their description. This restriction is necessary to maintain the philosophy or design
thought that any code in the systems of Intention Space must reside only in the Design Chunks. Intentions
can be seen as a communication mechanism with other Design Chunks using Objects as intermediaries which
can carry payloads.

2



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Objects in Intention Space: Reflector of Intentions Into Design Chunks

Objects give direction to Intentions emitted by Design Chunks, to be received by other Design Chunks.
Objects represent things, real or virtual, in people’s minds; compared to the traditional approach of putting
code inside an object or class, Intention Space puts the code outside of the object but is invokable through
Intentions defined in Intention Space. In intention space, Objects , conceptually, don’t contain the software
code but can be configured to direct Intentions coming from certain Design Chunks to be reflected into
another Intention reaching another Object or Design Chunk. Objects can also split an Intention into several
intentions. Objects participate with Intentions in the communication and coordination mechanism between
Design Chunks by carrying the payload initiated by Intentions.

Instruction Execution Path Leading through intentions and Objects (CPUX)

We shall see that the Intention Space model as an operation space of Design Chunks allows identification of
the execution path for every interaction in Intention Space, thereby bringing transparency without losing pri-
vacy. This is possible by co-mingling natural language phrases in the open with domain-specific terminology
and concepts in a controlled manner. [Fig 1]. This execution path will be referred to as the Common Path
Of Understanding and Execution (CPUX), emphasizing that Intentions in the path aid in understanding the
system behaviour. Each CPUX represents a locus of a use-case as the design chunks are put to use.

Figure 1: Intentions and Objects in natural language facilitate component interactionns

3



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Intention Space For Broader Society and Design Profession

Design chunks can hold any content in a specific context and, thus, can have any media, text, document, or
software code or components. In a way, the discipline of Intention Space is beneficial not only for software
development but also in any other field where a design is used in a society, including education, effectively
including any field of science, arts, humanities, and architecture. The primary reason that Intention Space
can bring this substantive openness and the following benefits of having Intentions as shareable between
people is, it expresses the intentions and objects as some standard natural language phrases without bringing
any other specialised syntax or attributes. Fig 1 illustrates this point. The arrangement also implies that
the components need not be tied up with specific intentions and can be configured at the operation time.

In this broader sense, Intention Space can be considered a ‘Design Space’, although specific tools are required
to make Intention Space useful in specific disciplines and real-world scenarios.

By giving a unique address for design chunks sequence for design operation by just providing the intentions
that help in ‘understanding’ a design, Intention Space helps manage the gap between any design and its
operation. Managing this gap is a well-known issue in any design field like Architecture and Construction.

It can have much other use in the realm of unique address and identity of creative works, even if it is rendered
through media technologies, defining a safe execution scope for software code operation independent of
underlying OS etc. Intention Space offers a unique advantage in the software maintenance space because every
execution of software is backed by persistent address progression captured at operation time, as described
below.

Intention Space For Software Operation

A Design Chunk in Intention Space embodies a computational process small enough to be understood and
managed by a small group of people between 1-3 from its inception to its full embodiment or deployment in
a social context. A Design Chunk can be just a small part of a full App, or a Design Chunk can be a full
App, Design Chunks interact with their environment through question-answer pairs which act as a field of
operation by Design Chunks with the help of the two other operators :Intention and Objects.

JSON Statement Pair Set (QnAs) as Computation Field

Every design chunk in Intention Space can be associated with a set of phrase pairs, represented as JSON
objects, which are generally referred to as QnA Statement Pair in Intention Space, where the pair can
include placeholders and regular expressions, e.g. {’question’:, “Simon Is Served, ‘answer’:’Fish Fry’} is a
question-answer pair, {’question’:,”Simon Is Served, ‘answer’:’ ’} is a question-answer pair with the place
holder ‘ ’. Similarly, {’question’:’* is Served’, ‘answer’:[’priya’, ‘john’,’ Richard]} is a question-answer pair
with a regular expression ‘*’.

We can look at the execution of the design chunk to include either reading or writing the JSON statement
pair set(QnAs) associated with the design chunk. In that sense, a Design Chunk can be looked upon as
an operator that works on a field of QnAs. A design chunk with no QnA ,however, do also take part in
performing computation steps of Intention Space as defined in the computation progression model , described
below. In the model we shall refer to aJSON statement pair as simply as QnA. We shall see this set of QnAs
provide us the domain on which the Intention Space operators operates.

4



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Design Chunks as Software Components

A system may have several design chunks; as a system is developed ,a design chunk constantly morphs within
its boundary and interacts with the outside world through well-defined intents. In the Intention space, a
Design Chunk can have content in any form that makes sense to the human user. In the coding world, a single
function or a collection of functions can be in a design chunk; it may have some UI/UX elements related to
those functions, and there can be a prototype component to join UI/UX with functions etc. Thus the domain
of operation of Design Chunks are not the numbers and strings, but they are the JSON QnA’s s that make
sense to a human,but is interpret-able by the machine.Intention Space takes computation progression as an
act of taking a set of QnA’s and producing another set of QnA’s.

Instead of the traditional notion that a computation step has an input, generating an output, a Design Chunk
as a software component, acts on a set of QnA’s and passes QnA’s to another Design Chunk as computation
proceeds. The concept of ‘function parameters,’ a foundational element in traditional definitions of functions
in computation, is looked upon as a JSON statement pairs received or produced by the Design Chunks; e.g.,
instead of just declaring a parameter variable called ‘apple’ and assigning a value, say $5 ,as the price of apple,
e.g., var apple = 5 in the traditional way, Intention space equivalent will be a JSON QnA pair, represented as
a JSON object: {’question’:’ price of apple’,’answer’:’$5’ }. Any operation in Intention Space operates over
a set of JSON statement pairs or QnAs; as an operator,a Design Chunk passes QnAs to another operator
Design Chunk through some rules of operation in Intention Space using two more operators. A particular
set of QnAs are associated with a Design Chunk at design time.

Operators in Intention Space over QnAs Domain.

Intention Space’s provides the set of operators that operate on the QnA s and sets up the rules . Three
kinds of operators given by the Intention Space are : Design Chunk, Objects and Intentions ; Each Design
Chunk has a name; we can refer to it as a Design Chunk Phrase; similarly an Object Phrase is an Instance
of Object, and Intention Phrase is an instance of Intention . Intention Space maintains three dictionaries of
phrases corresponding to each phrase category or operator type in Intention Space as defined below.

Categories Of Phrases in Intention Space

i. Design Chunk Phrases

ii. Intention Phrases

iii. Object Phrases

The word Object has special significance in Intention Space. An Object has a name, and its only be-
haviour/capability is to receive and reflect ‘intentions’. Objects in Intention Space don’t hold any custom
code; they are named entities that receive Intentions from Design Chunks and reflect Intention to another
Design Chunk. A received Intention can be mapped to a different reflected Intention.

As the Design Chunk names, Intents and Objects are just human-readable entities in an Intention Space, the
special method of the ‘ Intentions and Object’ based software execution model maintains an operation time-
defined structural integrity that defines the run-time address space. We shall see, from a software execution
perspective, these Design Chunks provide a uniquely identifiable execution boundary for any future possible
use of the software App.

5



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Model Of Computation Progression: An Intention starts a compu-
tation in a Design Chunk.

Computation in a Design Chunk

In Intention Space, a computation triggered by an intention instance (i.e. a particular intention phrase) is
captured by a Design Chunk, which consumes a QnA set and the design chunk either produces a question-
answer set as a result or continues the computation by emitting an intention phrase from a set of enumerable
intentions, aka dictionary in the Intention Space. However, this emitted intention does not reach another
design chunk directly, instead, it has to be directed or reflected by an object. This rule brings the decoupling
effect of two Design Chunks; their code is never hard bound with each other at execution time.

Computation continues by reflecting an Intention from an Object.

Intentions emitted from a Design chunk, in turn, are reflected by an object instance (i.e. a particular Object
phrase) , chosen from an enumerable set of object phrases (aka dictionary of objects) and is subsequently
consumed by another Design Chunk. The process continues, as shown in Fig 2. As mentioned, Design Chunk
names come from an enumerable set of Design Chunk names, aka Design Chunk dictionary in Intention Space.

The special benefit,from the perspective of software engineering in large are :

The sequence of steps can identify any use case of the system.

A Design Chunk is not forced to implement specific intentions but can achieve desired result by using its
intentions in the Intention Space

The intentions from one design chunk can be joined with any other design chunk by joining open intentions
and objects chain.

Intention Space Computation Vector: from one Design Chunk to another

A step in Intention Space computation is transitioning from a Design Chunk with a QnA to another Design
Chunk with QnA, with the Intentions and Objects reflecting them working as a control transfer mechanism
between Design Chunks. As such Intentions and Objects sequence offers a protocol of transfer of control
independent of the underlying mechanism (e.g., event-driven or a traditional function invocation or a call
module mechanism etc)

In Intention Space, a Design Chunk can be associated with a maximum of one set of question-answer. Be-
cause the transition Of Design Chunk can only happen through intention-object-reflected intention sequence,
we have a five-element vector that facilitates the transition from DC to another, represented by the starting
and ending element in the vector => {dc, in, ob, in, dc} . It is also possible that the starting and ending
design chunk are the same .

The word vector implies a specific direction. In Intention Space, this direction is the progression of com-
putation starting from the initial design chunk leading to the final design chunk in the vector through the
intermediate intention->object->intention trio while transforming a set of question-answer to a resulting
question-answer sets in the model of computation described below.

6



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

In Intention Space Design Chunks hold the traditional software codes. It is only the interaction of the soft-
ware code in a design chunk with the software code in another design chunk that Intention Space facilitates.
Intention Space brings about this interaction through the vectors defining the sequence of the three types
of entities :Design Chunk, Intentions, Objects.

Figure 2: 5 element vector [design chunk - intention - object -intention - design chunk] in Intention Space

Execution Steps and Progression with multiple Vectors.

In Intention Space, a step and progression means the transition from a QnA set to another QnA set, and this
is referred to as a software progression; thus while a single vector can bring the transition from one Design
Chunk to another, which may not have a QnA associated, but may emit an intention to carry the progression
of computation until it reaches a Design chunk that has an associated QnA. The step in Intention Space
will be the sequence of vectors that took from a Design Chunk with an associated QnA to another Design
Chunk with its associated QnA.

Looping and Conditionals in Intention Space can be brought into the Design Chunks through the payload in
the Intentions, which may indicate to reflect to the originating Objects where the intentions were reflected
from.

Design Chunks themselves can hold an Intention Space and have several sub-Design Chunks. Thereby
creating the necessity to have a registry of Intention Spaces. This article will not get into those aspects
with multiple Intention Space,however, work at Keybyte Systems is in progress to bring a frame work called
Context Flow which shall address those possibilities.

Illustration of Intention Space computation progress actions.

The computation model of Intention Space is illustrated through the accompanying NodeJS (JavaScript)
code in the file attached, which makes the relation between design chunks and code more explicit. The code
implements a demo scenario where a guest wants dinner and is served according to the guest’s choice. Notice
that Intention Space, compared to the traditional approach , promotes an inside-out design of the Objects

7



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

where Objects only have a name, and all the relevant design details about the behaviour or data structure in
the code only come out as intentions reflected by the object into a design chunk. As the system is executed,
a flow is created for each execution instance that carries the question -answers in each Design chunk.

Let us imagine a scenario where a customer asks for dinner and gets served the kind of dinner he/she wants.
Firstly ,let us capture the primary Object, Intention, and Design chunks to start designing a functional
system that caters to this scenario in a JSON data structure holding the objects ,intentions and design
chunks.

:

/* Objects,Intentions and Design Chunks Example */

const jsonData = {

objects: [

{id:"ob1", name: "Dining Space", reflectors: [{ receives: "I want dinner", reflects: "Schedule a dinner plate" }] },

{id:"ob2", name: "Weekly schedule", reflectors: [{ receives: "Schedule a dinner plate", reflects: "Prepare a dinner plate" }] },

{id:"ob3", name: "Dinner Plate", reflectors: [{ receives: "Prepare a dinner plate", reflects: "Present a dinner plate" }] },

],

intentions: [

{ id:"in1",name: "I want dinner", QnA: [] },

{ id:"in2",name: "Schedule a dinner plate", QnA: [] },

{ id:"in3",name: "Prepare a dinner plate", QnA: [] },

{ id:"in4", name: "Present a dinner plate", QnA: [] },

],

dcs: [

{id:"dc1", name: "Requesting dinner ", emits: [{ intention: "I want dinner", Object: ’Dining Space’ }], receives:[ { intention: "I want dinner", Object: "none" }] ,

QnA:[{ question: "what is your name", answer: "_" },{ question: "do you have veg or non veg", answer: "_" }],

invoke:’dc1_invoke(flow,dc.QnA)’},

{id:"dc5", name: "Requesting a drink ", emits: [{ intention: "I want a drink", Object: ’Dining Space’ }], receives: null },

{id:"dc4", name: "Scheduling a dinner", emits: [{ intention: "Schedule a dinner plate", Object: ’Weekly schedule’ }], receives: [{ intention: "Schedule a dinner plate", Object: ’Dining Space’ }],

invoke:’dc4_invoke(flow,"do you have veg or non veg")’,

QnA:[{ question: "dinner for", answer: "_" },{ question: "dish selected", answer: "_" }], },

{id:"dc2", name: "Preparing a dinner", emits: [{ intention: "Prepare a dinner plate", Object: ’Dinner Plate’ }], receives: [{ intention: "Prepare a dinner plate", Object: ’Weekly schedule’ }],

QnA:[{ question: "dish made", answer: "_" }],

invoke:’dc2_invoke(flow,"dish selected")’,},

{id:"dc3", name: "Presenting a dinner", emits: null, receives: [{ intention: "Present a dinner plate", Object: ’Dinner Plate’ }],

QnA:[{ question: "dish presented", answer: "_" }],

invoke:’dc3_invoke(flow,"dish made")’}

],

};

The above Json structure holds enough information for full-filling the intention ‘I want dinner’ by a nodeJS
script. In the realm of Intention Space the design chunks will hold the particular UI/UX components for the
corresponding functionality and will have the means of executing the relevant functions within its own scope.
For the illustration here we are just printing a console log with any function in a design chunk conveniently
coded in the same file. The Json structure also shows the Design Chunk having executable codes which are
independently invoked by the Intention received by the Design Chunk and it shows the intention emitted by a
design chunk. As the system is executed a flow is created for each execution instance that carry the question
-answers in each Design chunk . The full code for the example is attached. When we run the code ,the code
registers the type and name of entities as it encounters starting with the invocation of Invoke intention(’I
want dinner’).

8



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

/* illistration of unique sequence of the intention-object-intention joining two Design Chunks */

operation Sequence: [

’ci:I want dinner’,

’dc:Requesting dinner ’,

’ei:I want dinner’,

’ob:Dining Space’,

’ri:Schedule a dinner plate’,

’ci:Schedule a dinner plate’,

’dc:Scheduling a dinner’,

’ei:Schedule a dinner plate’,

’ob:Weekly schedule’,

’ri:Prepare a dinner plate’,

’ci:Prepare a dinner plate’,

’dc:Preparing a dinner’,

’ei:Prepare a dinner plate’,

’ob:Dinner Plate’,

’ri:Present a dinner plate’,

’ci:Present a dinner plate’,

’dc:Presenting a dinner’

]

notation:

(ci:consumed intention,dc:design chunk,ei:emited intention,ob:object,ri:reflected intention)

The flow above illustrates the Intention Space model of computation . Treating each participating entity
of the model as a node , we can represent the code in a graph diagram as below which also shows the
relationship between the entities formed through intentions, which form the essential glue between objects
and design chunks.

9



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 3: The Graph Diagram of Intention Space with DCA :dc1.in1.ob1.in2.dc4.in2.ob2.in3.dc2.in3.ob3.in4.dc3

Although it is a contrived example, the code used captures the essence of Intention Space. The App in
the Intention Space progresses through Design Chunks, and the execution code, in turn, is represented
by the sequence of three 5-element vectors, which is determined at operation configuration time through
the sequence => dc1.in1.ob1.in2.dc4.in2.ob2.in3.dc2.in3.ob3.in4.dc3, referred to as Design Chain Address
[DCA]. As the execution proceeds, the DCA sequence carries a ‘flow’ object which picks up any new QnA
elements from the Design Chunk as it is poised for execution, and then the DC member function can access
the flow object to update QnA.

Value Proposition Of Intention Space In Software Development

Looking at every run time execution piece in Design Chunks through a static
address formed at Operation Time

Intention Space, meant for creating a manageable and understandable software execution environment,
has the built-in characteristics of being able to break up the design chunks into smaller and manageable
development chunks too.

Intention Space tackles the hard problem of managing re-usability, modularity, and context maintenance
over time in the software development process by bringing together the understand-ability of software code
through intention progression along with the unique vector addresses of the executable components (design
chunks) while also persisting the sequence of the vectors as the computation progress(i.e., in the context
of the actual usage of the design chunk at execution time) as the locus point for the particular usecase.

10



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

An Intention Space addresses the Design Chunk code pieces through a shared pool of Intentions and Objects
phrases. The fact that there is only one intention instance of a given phrase that joins an object and a code
piece which, in turn, is open to receive any intention and reflect it to another intention, opens up the
possibility of having a unique sequence (1 or more) of the five element vectors joining two Design Chunks
corresponding to every possible execution instance of software codes generating the design chain address
[Common Path for Understanding and Execution or CPUX].

Composing, Testing, Prototyping, Maintenance, and Security manage-
ment through CPUX

With the CPUX defined at operation configuration time, we get a unique advantage over the traditional
software architecture where at execution time instance of a traditional binary chunk of code can not be
tagged with anything defined at operation time[e.g., a reactJS component can not be uniquely addressed
every time it is rendered on the browser in the application lifecycle component rendering chain]. Intention
Space is not bound by the inability of binary code to reveal intentions allocated to it at design time. By
design, every Design Chunk execution instance in Intention Space gets a design time boundary address in
the form of the Design Chain Address for the execution. This opens up the possibility of using CPUX for
prototyping and use case verification.

In Intention Space, composing software pieces, testing them, prototyping and maintaining them can be
controlled and managed through operation time-defined definitions of objects and intentions and design
chunks.

This allows Intention Space to have a real advantage in not only software maintenance but also in software
security handling. Because the intents of any software code can be exposed without revealing the software
code, it allows us to develop a security protocol based on the agreement of intentions before the use of any
code. The detail of these implementations is in progress.

Managing Intentions, Objects, and Design Chunks

The advantage of Intention Space solely relies on our ability to manage Objects and Intentions at operation
time while easing the cognitive burden on the designers and coders while making the software. A typical App
can have hundreds of Intentions and Objects with QnA sets and subsets adopted by the design chunks. As
Intention, Objects, and Design Chunks are identified by human-readable phrases in natural language, man-
aging them well so that designers can choose the right Intentions, Objects, and Design Chunks and reuse
them or map QnAs between different design chunks is a good challenge to be solved by the present day
Large Language Models of AI. Suppose we can accurately identify intentions and objects that cross subject
matter boundaries. In that case, it opens up possibilities for creating new language models to bridge different
domains and facilitate more advanced and specialized natural language processing tasks.

When Objects Are Only Intention Reflectors To Behaviors - Absence of Hier-
archy

Intention Space also makes room for multiple Objects with different intentions or the same object with
different intentions to point to the same design chunk or code piece at execution time, making the reuse of
code in multiple design chunks through different question-answer sets. While this particular positioning of

11



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Object drastically differs from traditional Objects in Software, which is supposed to hold some behaviour,
Intention Space opens up computing in an algebraic space with much richer possibilities regarding managing
software’s Security, Performance, Maintainability, and Reusability.

The inherent characteristic of Design Chunks in Intention Space, where they don’t depend on each other
during development but can be integrated at operation time, aligns well with the principles of software
development. This characteristic of oose coupling, which is a key design principle in software engineering.

Loose coupling promotes independence and modularity, allowing different components (or Design Chunks)
to be developed and maintained independently of each other. This brings several benefits to software
development, including:

1. Reusability: Design Chunks can be reused in different contexts, reducing redundancy and promoting
efficient development.

2. Maintainability: Independent development and modularity make it easier to update or modify indi-
vidual Design Chunks without affecting the entire system.

3. Scalability: New Design Chunks can be added without disrupting the existing system, enabling scala-
bility and flexibility.

4. Collaboration: Different teams can work on different Design Chunks concurrently, fostering collabora-
tion and speeding up development.

The ability of Intention Space to support loose coupling and independent development of Design Chunks while
ensuring smooth integration at operation time makes it well-suited for complex software systems and social
integration scenarios. It enhances flexibility, adaptability, and maintainability, which are crucial factors for
successful software development and social integration in today’s dynamic and ever-changing environments.

Rationality and Benefit Of Intention Space In Society

Psychology Of Computing through three emotions.

The rationality of bringing the object phrases and intention phrases as coordinates of software codes in Design
Chunk occurrence in a design space comes from the observation that we,as humans, have the tendency to
be driven by a visceral perception of things around us mentally - either in reality or in a virtual world -
expressed as ’What‘ or the ’Object phrase‘ , which triggers a motivational or utility question of ’Why‘ or
the ’Intention Phrase‘, which in turn, is followed up with a more reflective analysis of the situation, leading
to, the ’How‘ of a design around that object of ’What’, which the Design Chunk holds together.

12



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 4: Basis Of Intention Space

This observation, the basis of our work on Intention Space as in Fig 4, aligns with observations made by the
famous UI/EX expert Dr Don Norman in his book on Emotional Design (Emotional Design - Wikipedia,
n.d.). While Dr Norman takes his view on the UI/UX of what is designed, Intentional Space allows one to
take it to the micro units of software development. It opens up a means of human communication between
the designer and the user of an artifact.

Use Of Designed Artifact and Software Execution Analogy: Re-
engineering Affordance

The whole approach of Intention Space to software development is hinged on our view of any software
artifact as a design piece, similar to any design artifact like a spoon, a door, or a staircase, where the
execution of the software piece is akin to the usage of the design artifact in real life. As the software
developed in Intention Space carries the extra dimension of its behaviour and specification being narrowly
defined within the boundary of a design chunk at execution time with some specific intentions, we believe
Intention Space opens up new possibilities in the Design world where affordance can be re-engineered based
on human-readable Intentions embedded with design, giving pointers to the ‘why’ of any design artifact.

By considering software as a design piece, Intention Space emphasizes the importance of defining clear
intentions and behaviours for each design chunk, similar to how a physical artifact is designed with a specific

13



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

purpose and function in mind. The execution of the software, driven by these intentions, aligns with the
usage of a physical artifact based on its design and intended purpose.

Open Pool of Shared Intents in a Society that Transacts Artifacts

An App in an Intention Space will typically have hundreds of Intentions. As intention work as pointers to
code, sharing Intentions will be a common practice when developing multiple Apps in an Intention Space.

Sharing Intentions across multiple artifacts in social settings has a similar benefit in cooperative design.
People design and construct things in components because there is a cognitive load boundary of how much
an individual or group can handle and manage. Many times components build a hierarchy by putting one
component within another.

Intention Space provides a linear representation of Intents, which allows for easy access to shared Intentions
from multiple components while an Artifact is in use. This accessibility of Intentions at execution time
enhances the design-time decisions and enables a more coherent and flexible user experience.

For example, in a car’s context, having contextual questions like “where is the temperature control” accessible
while driving (associated with the “Cool my Car” intention) allows users to interact with specific design
chunks without being burdened by the complexity of the entire car’s design. Similarly, users can access
other Intents that point to different design chunks like “Radio in Car” as needed, further enhancing the user
experience.

So in effect, Intention Space makes the design time decisions readily accessible at execution time.

Exposing question-answers for any design artifact also allows the prototyping of design artifacts in an em-
bedded environment, as we can work with the question-answer pairs from other design chunks already in
place.

CPUX: Removing Unaccountability, Uphoding Privacy.

In Intention Space, there are always at least two design chunks whenever a social interaction happens.
A CPUX is formed, which holds a unique identity connecting a provider of Intention and a Consumer of
Intention. Any use of software happens only by a two way interaction between aprovider and the consumer,by
mutual consent. A two-way interaction will have two unique CPUX. This makes it possible to make every
user action within Intention Space identifiable without breaking the privacy of the design chunk.

Figure 5: Interaction is always identifiable through unique CPUX

14



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Social Computing & Education Through Apps Governed By In-
tention Space

Collaborative Apps Development

By looking at software code as an artifact or a Design Chunk, and deriving question-answer pairs from other
sets of question-answer pairs, we can introduce a more human-centric approach to software development.
This approach allows for a deeper understanding of human intentions and behaviours, enabling the creation
of more intuitive and user-friendly applications.

The use of ordinary phrases in human interaction as Intentions and Objects in Intention Space simplifies
the language used in software development, making it more accessible to a wider range of people. This
can lead to increased participation and collaboration in software development, as individuals from diverse
backgrounds can contribute to the design of applications.

Furthermore, with a good collection of artifacts (Apps) built in Intention Space, AI technologies can leverage
common Intentions and Objects to build newer systems and generate question-answer sets. This can lead
to the development of AI-driven applications that are better suited to user needs and preferences, as AI can
adapt and customize applications based on user interactions and feedback. The traditional input-process-
output or request-response model of information server does not reveal the true nature of social computing in
a way where Applications communicate with each other, making the internet a fairer place for any application
to be judged by its content and ability to cooperate with other Apps on the same device.

Secured Inter-personal and Social Communication

The concept of “operator-approved intentions” and the use of design chunk CPUX can enhance the security
and privacy of interpersonal communication in social computing. By defining and approving specific inten-
tions for communication, users can have more control over their data and interactions, making the Internet
a fairer and safer place for users.

The availability of Intentions upfront and the possibility of having a proof of concept before using a registered
Intent in Intention Space can significantly impact the legal and regulatory aspects of software development
and usage. By having a clear and transparent record of the Intentions used in the development of applications,
there is a level of accountability and traceability that can be established.

Software Development Ethics

This approach can help address legal and ethical concerns related to software development, as it provides a
verifiable trail of the intentions behind the design of an application. Traditional laws that emphasize intent
can be easily applied and enforced in Intention Space, as the intent is explicitly stated and recorded, allowing
for easier identification of any malicious or fraudulent activities.

Moreover, clear Intentions documentation can aid in protecting intellectual property rights and copyright.
Software developers can register their Intentions and design chunks, ensuring their innovative work is recog-
nized and protected from unauthorized use or duplication.

Smarter Education Systems

Intention Space can play a transformative role in the education system by providing a common path of
understanding and execution (CPUX). By structuring educational content as design chunks, each can offer
a contextual and focused learning experience around specific Intentions and Objects.

15



P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

The flexibility and adaptability of Intention Space allow educators to create dynamic and interactive educa-
tional material that aligns with hands-on experiences and real-world problem-solving. Instead of presenting
information in a linear and rigid format, Intention Space enables the development of educational content
that adapts to the learner’s progress and understanding.

For instance, in geometry theorem proving, each theorem and axiom could be represented as a design chunk
with its own set of Intentions and Objects. Learners can engage with the material by exploring Intentions
and Objects that guide them through the logical progression of the theorems. They can interact with the
content, ask questions, and receive relevant answers that lead them towards a deeper understanding of the
subject.

Furthermore, Intention Space facilitates collaboration and sharing of educational content among educators,
enabling the development of a rich ecosystem of educational resources that can be adapted and customized
for different learners and learning environments.

Overall, Intention Space can revolutionize education by providing a platform for contextual and interactive
learning experiences, where learners can actively engage with the subject matter and develop a deeper
understanding of the concepts through hands-on exploration and discovery.

The Risk Of Not Having An Intention Space

Today, our communities often extend globally via the internet. This has expanded our circles of empathy,
allowing us to connect with diverse people, causes and the reality worldwide. It also has the potential to
dilute personal responsibility, as our actions can feel removed from their impacts. Our time is marked by
the coexistence of two seemingly contradictory trends: the globalization and homogenization of culture and
the resurgence and appreciation of local, indigenous cultures. It’s a delicate balance between appreciating,
preserving, and reviving indigenous cultures’ richness while integrating the advantageous aspects of modern,
global cultures. The art and science of Computing are inherently cultural, but the lack of representation
of human intentions as first-class citizens in the design of social computing systems can create a significant
cultural gap between AI developers and those who do not engage with the technology. Elevating intentions to
a first-class status allows for their direct presence with human users, eliminating the need for an intermediary
agent and fostering a more seamless interaction between users and technology.

The impact of technology like Artificial Intelligence without building a space where the primary currency of
human interaction is ignored will have unwanted and avoidable outcomes that push human progress back-
wards or have unimaginable repercussions like the act of the explosion of a nuclear bomb over human dwellings
that occurred in a culture and time where there was no way to exchange or build upon intentions of ordinary
people humanely. Intention Space offers only one small step in making Intentions expressable, shareable
and understandable by people from different cultures and different ways of living using technology; however,
currently, it is the only platform that promises that for any software construction.

Hosted file

dinnerspace.js available at https://authorea.com/users/631977/articles/651208-human-

intention-space-natural-language-phrase-driven-approach-to-place-social-computing-

interaction-in-a-designed-space

16

https://authorea.com/users/631977/articles/651208-human-intention-space-natural-language-phrase-driven-approach-to-place-social-computing-interaction-in-a-designed-space
https://authorea.com/users/631977/articles/651208-human-intention-space-natural-language-phrase-driven-approach-to-place-social-computing-interaction-in-a-designed-space
https://authorea.com/users/631977/articles/651208-human-intention-space-natural-language-phrase-driven-approach-to-place-social-computing-interaction-in-a-designed-space


P
os

te
d

on
13

A
u
g

20
23

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

19
20

94
.4

18
59

18
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

References

https://en.wikipedia.org/wiki/Social_computing. https://en.wikipedia.org/wiki/Social_

computing

https://en.wikipedia.org/wiki/Emotional_Design. https://en.wikipedia.org/wiki/Emotional_

Design

17

https://en.wikipedia.org/wiki/Social_computing.
https://en.wikipedia.org/wiki/Social_computing
https://en.wikipedia.org/wiki/Social_computing
https://en.wikipedia.org/wiki/Emotional_Design.
https://en.wikipedia.org/wiki/Emotional_Design
https://en.wikipedia.org/wiki/Emotional_Design

