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Introduction

In 1823, Abel used fractional calculation rules to solve the following integral equation:∫ x

a

y(t)

(x− t)α
dt = f(x),

presenting the current definition of fractional integration, known as Riemann - Liouville:

Iαf(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α dt, x > 0.

This was an introduction to the concept of a Riemann-Liouville fractional-order deriva-
tive, which was followed by Hadamard in 1892 [5], who presented another definition using
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the logarithmic function and the related Stieltjes integral:

Iαf(x) =
1

Γ(α)

∫ x

a

f(t).
(

ln
x

t

)α−1

d ln t =
1

Γ(α)

∫ x

a

f(t).
(

ln
x

t

)α−1 dt

t
, x > 0.

The Riemann-Liouville type fractional calculus theory has recently been developed. Many
authors introduced various properties and established new definitions that generalize
those approaches (see for instance [1, 4, 6, 9, 12, 13, 15, 16, 17, 18]).
The concept of distribution, on the other hand, is considered relatively new in the his-
tory of derivative. First, Heaviside (1893, 1894) and Dirac (1926) introduced generalized
functions, with derivative and integration operations isolates of the mathematical rules
that must be available (this problem solved by Schwarts in the early 1950s [19]). The
concept of ”quasi-derivative” is then introduced in Lery’s work on the motion of a liquid
in R3 (1934) [11]. Sobolev introduced the concept of a generalized solution of the wave
equation using compactly supported auxiliary functions in 1934 and 1935, paving the
way for a new concept, the weak derivative, and laying the groundwork for what were
later known as Sobolev spaces [2]. Schwartz developed the theory of distribution. He be-
gins with articles published between 1945 and 1950 and concludes with his famous book,
in which he lays the theoretical foundations of the concept of distributions, specifically
derivatives and various operations [19].
It is natural to seek a fractional notion of derivative in the sense of distribution. To this,
Samko et al. introduced preliminary ideas to present the notion of fractional derivative of
generalized functions, as well as fractional derivatives of multivariable functions defined
on rectangular sets [a1, b1] × . . . [an, bn], where (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Rn (see
[9, 18]). Next, Mincheva-Kaminska [14] established the notions of fractional integrals and
derivatives of functions and distributions in the cone R+

n
. According to these concepts,

we generalized the notion of fractional derivative from classical to general form in our
work, and we also defined fractional derivatives for functions with multiple variables. We
performed demonstrations based on distribution theory.
Our work is divided into five sections: In the first section, we introduced the fundamental
concepts of fractional calculus that will be used throughout the article. We presented the
weak fractional derivative in the second section, which generalizes what are presented
in [7]. We tried to present the integral and fractional derivative of distributions with
compact support in the third section. We used the convolution product in the fourth
section to established the derivatives and fractional integrates of the distributions defined
on the entire R. We extended everything presented above to the dimension superior in
the fifth section. Finally, we provided a conclusion and some definitions concerning usual
differential operators (gradient, divergence, Laplacian).

1 Preliminaries

In this section, we will discuss some derivative and fractional integration concepts and
properties with respect to a sufficiently regular function.
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Let (a, b) (−∞ ≤ a < b ≤ +∞) be an interval of the real axis R and p such that
1 ≤ p < +∞. All functions in this paper considered real- valued functions. From now on,
let α be positive real number and η = [α] + 1. We denote by σ a function in C1(a, b) at
least such that σ′ > 0. Therefore, σ is one by one function from (a, b) to (σa, σb) where,
σa = lim

x
>−→a

σ(x), σb = lim
x
<−→b

σ(x).

Definition 1.1. [10] We denote by Xp
σ(a, b) the space of measurable functions f on (a, b)

such that ‖f‖Xpσ <∞, where

‖f‖Xpσ(a,b) =

(∫ b

a

|f(t)|pσ′(t)dt

) 1
p

. (1.1)

Note that

‖f‖Xpσ(a,b) =

(∫ σb

σa

|f ◦ σ−1(y)|pdy
) 1
p

= ‖f ◦ σ−1‖Lp(σa,σb), (1.2)

so, f ∈ Xp
σ(a, b) if and only if f ◦ σ−1 ∈ Lp(σa, σb).

If 0 < inf
x∈(a,b)

σ′(x) < sup
x∈(a,b)

σ′(x) < +∞, then, Xp
σ(a, b) is the same as Lp(a, b), the usual

Lebesgue space on (a, b).

Definition 1.2. [9] Let f ∈ Lpσ(a, b).

i) The generalized (left and right) fractional integral operators of the function f with
respect to the function σ are given by

Iα,σa+ f(x) =
1

Γ(α)

∫ x

a

(σ(x)− σ(t))α−1f(t)σ′(t)dt, (1.3)

Iα,σb− f(x) =
1

Γ(α)

∫ b

x

(σ(t)− σ(x))α−1f(t)σ′(t)dt, (1.4)

where Γ (α) =

∫ +∞

0

e−ttα−1dt, is the Euler gamma function.

ii) The generalized (left and right) fractional derivative of the function f with respect to
the function σ ∈ Cη(a, b) are introduced by

Dα,σa+ f(x) = (γσ)η(Iη−α,σa+ f)(x)

=
1

Γ (η − α)
(γσ)η

∫ x

a

(σ(x)− σ(t))η−α−1f(t)σ′(t)dt,
(1.5)

Dα,σb− f(x) = (−γσ)η(Iη−α,σb− f)(x)

=
1

Γ (η − α)
(−γσ)η

∫ b

x

(σ(t)− σ(x))η−α−1f(t)σ′(t)dt,
(1.6)

where γσ(x) =
1

σ′(x)

d

dx
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Notation: For a = −∞, we denote respectively Iα,σa+ ,Dα,σa+ , by Iα,σ+ ,Dα,σ+ . For b = +∞,
we denote respectively Iα,σb− ,Dα,σb− , by Iα,σ− ,Dα,σ− .

Remark 1.1. For σ(x) = x, the notions of Definition 1.2 coincide with the notions of
Riemann-Liouville integrals and derivatives Iαa+ , I

α
b− ,D

α
a+ ,D

α
b− (see for example [9]). So,

by using the change of variable s = σ(t), we get

Iα,σa+ f(x) = Iα
σ+
a

(f ◦ σ−1)(σ(x)), Iα,σb− f(x) = Iα
σ−b

(f ◦ σ−1)(σ(x)). (1.7)

Hence, for σa = −∞ or σb = +∞ we need 1 ≤ p <
1

α
( for the definition of Iα,σa+ , Iα,σb−

we need 0 < α < 1. For more details, we refer to [9](Lemma 2.11).

Now, we will present some properties of fractional operators of functions of infinitely
differentiable functions, with compact support. In what remains, we consider that σ ∈
C∞([a, b]).

Theorem 1.1. For all ϕ ∈ C∞c (a, b) we have

Iα,σa+ ϕ ∈ C∞(a, b), Iα,σb− ϕ ∈ C∞(a, b),

where C∞c (a, b) is the space of infinitely differentiable functions, with compact support in
(a, b). Moreover, if suppϕ ⊂ [a0, b0] ⊂ (a, b) then, Iα,σa+ ϕ vanishes in the interval (a, a0)
and Iα,σb− ϕ vanishes in the interval (b0, b).

Proof. Let ϕ ∈ C∞c (a, b). Then,

Iα,σa+ ϕ(x) =
1

Γ(α)

∫ x

a

(σ(x)− σ(t))α−1ϕ(t)σ′(t)dt =
1

αΓ(α)

∫ x

a

(σ(x)− σ(t))αϕ′(t)dt.

Since (σ(x)− σ(t))αϕ′(t) ∈ C(a, b), then,

d

dx
Iα,σa+ ϕ(x) =

σ′(x)

Γ(α)

∫ x

a

(σ(x)− σ(t))α−1ϕ(t)dt = σ′(x)Iα,σa+ (γσϕ)(x).

Since σ′.ϕ ∈ C([a, b]) then σ′(x)Iα,σa+ (γσϕ) ∈ C(a, b). Hence Iα,σa+ ϕ ∈ C1(a, b).

We will proceed in the same manner for
dk

dxk
Iα,σa+ ϕ (k ∈ N), keeping in mind that

dk

dxk
Iα,σa+ ϕ =

k∑
i=0

Pi(σ
′, σ′′, . . . σ(i)).Iα,σa+ γiσϕ, (1.8)

where Pi is a polynomial of degree i.
Now, let x ∈ (a, a0), then ϕ(t) = 0 for all t ∈ (x, b). Hence, Iα,σa+ ϕ(x) = 0.
We follow the same steps for Iα,σb− ϕ.
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Remark 1.2. It is not always true that Iα,σa+ ϕ, Iα,σb− ϕ ∈ C∞c (a, b) for ϕ ∈ C∞c (a, b). For
example, let ϕ ∈ C∞c (a, b) such that ϕ′ > 0 on (a, b) and suppϕ ⊂ [a0, b0] ⊂ (a, b). Then,
for x ∈ (b0, b) we have

Iα,σa+ ϕ(x) =
1

Γ(α+ 1)

∫ b0

a0

(σ(x)− σ(t))αϕ′(t)dt > 0.

Remark 1.3. We only introduce the proofs for the fractional operators Iα,σa+ and Dα,σa+
in the sections that follow. The operator Iα,σb− and operator Dα,σb− proofs follow suit.

The following theorem ensures the continuity of the operators Iα,σa+ and Iα,σb− .

Theorem 1.2. For all σ ∈ C∞(a, b), the operators Iα,σa+ and Iα,σb− are continuous from
C∞c (a, b) to C∞(a, b).

Proof. Let σ ∈ C∞(a, b),K be a compact in (a, b) (we can always choose K = [a0, b0]),
k ∈ N ∪ {0} and 1 ≤ i ≤ k. Then, for ϕ ∈ C∞c (a, b) such that suppϕ ⊂ [a1, b1] ⊂ (a, b),
we have

(γσ)iϕ(x) =

i∑
j,l=0

aj,l

(
1

σ′

)(l)

(x).ϕ(j)(x).

Hence, (γσ)iϕ is bounded on all compact in (a, b). So, there exists Mi > 0 such that

sup
a0≤x≤b0

|(γσ)iϕ(x)| ≤Mi sup
a0≤x≤b0,0≤j≤i

|ϕ(j)(x)|

Then,

sup
a0≤x≤b0

|Iα,σa+ (γσ)iϕ(x)(x)| ≤ Mi
(σ(b0)− σ(a0))α

Γ(α+ 1)
sup

a0≤x≤b0,0≤j≤i
|ϕ(j)(x)|,

= M ′i sup
a0≤x≤b0,0≤j≤i

|ϕ(j)(x)|,

which leads to

sup
a0≤x≤b0

∣∣∣∣ dkdxk Iα,σa+ ϕ(x)

∣∣∣∣ ≤ k∑
i=0

M ′i sup
a0≤x≤b0

Pi(σ
′, σ′′, . . . σ(i)). sup

a0≤x≤b0,0≤j≤i
|ϕ(j)(x)|,

≤ M sup
a0≤x≤b0,0≤i≤k

|ϕ(i)(x)|.

Since suppϕ ⊂ [a1, b1], we get

sup
a0≤x≤b01,0≤i≤k

|ϕ(i)(x)| ≤ sup
a1≤x≤b1,0≤i≤k

|ϕ(i)(x)|

Then,

sup
a0≤x≤b0,0≤i≤k

∣∣∣∣ dkdxk Iα,σa+ ϕ(x)

∣∣∣∣ ≤M. sup
a1≤x≤b1,0≤i≤k

|ϕ(i)(x)|.

So, the continuity of Iα,σa+ .
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2 The weak derivative

In this section, we present a first version of distributional fractional derivative, which is
the weak derivative of functions. For this we consider α > 0, η = [α]+1 and u ∈ Lpσ(a, b).
If Dα,σa+ u,Dα,σb− u exist in the sense of Definition 1.2 and verify properties of Lemma 2.7
in [9] then, for all ϕ ∈ C∞c (a, b) we have [10]

〈Dα,σa+ u, ϕ〉 =

∫ b

a

Dα,σa+ u(x).ϕ(x)σ′(x)dx =

∫ b

a

u(x).Dα,σb− ϕ(x)σ′(x)dx

〈Dα,σb− u, ϕ〉 =

∫ b

a

Dα,σb− u(x).ϕ(x)σ′(x)dx =

∫ b

a

u(x).Dα,σa+ ϕ(x)σ′(x)dx

Using this characteristic, we extend definition 1.2 in the manner described below.

Definition 2.1. let u ∈ Lpσ(a, b). The weak derivatives wDα,σa+ u and wDα,σb− u of the func-
tion u are given as follows

i) If Iα,σa+ |u| exists then,

〈wDα,σa+ u, ϕ〉 =

∫ b

a

u(x).Dα,σb− ϕ(x)σ′(x)dx (2.1)

ii) If Iα,σb− |u| exists then,

〈wDα,σb− u, ϕ〉 =

∫ b

a

u(x).Dα,σa+ ϕ(x)σ′(x)dx (2.2)

Theorem 2.1. wDα,σa+ u,w Dα,σb− u above define distributions on (a, b).

Proof. Let [a0, b0] ⊂ (a, b) and ϕ ∈ C∞c (a, b) such that suppϕ ⊂ [a0, b0]. Then, we have

|Dα,σa+ ϕ(x)| =
1

Γ(η − α)

∣∣∣∣∣
∫ b

x

(σ(t)− σ(x))η−α−1(−γσ)ηϕ(t)σ′(t)dt

∣∣∣∣∣
=

1

Γ(η − α)

∣∣∣∣∣
∫ b0

x

(σ(t)− σ(x))η−α−1(−γσ)ηϕ(t)σ′(t)dt

∣∣∣∣∣
≤ 1

Γ(η − α)

∫ b0

x

(σ(t)− σ(x))η−α−1|(−γσ)ηϕ(t)|σ′(t)dt

≤ 1

Γ(η − α)
sup

x≤t≤b0
|(−γσ)ηϕ(t)|

∫ b0

x

(σ(t)− σ(x))η−α−1σ′(t)dt

=
η − α

Γ(η − α)
sup

x≤t≤b0
|(−γσ)ηϕ(t)|(σ(b0)− σ(x))η−α

=
(η − α)(σ(b0)− σ(x))

Γ(η − α)
sup

x≤t≤b0
|(−γσ)ηϕ(t)|(σ(b0)− σ(x))η−α−1.

6



So,

|Dα,σa+ ϕ(x)| ≤ (η − α)(σ(b0)− σ(a0))

Γ(η − α)
sup

a0≤x≤b0
|(−γσ)ηϕ(x)|(σ(b0)− σ(x))η−α−1.

=
A

Γ(η − α)
sup

a0≤x≤b0
|(−γσ)ηϕ(x)|(σ(b0)− σ(x))η−α−1.

Hence,

|〈wDα,σa+ u, ϕ〉| =

∣∣∣∣∣
∫ b

a

u(x).Dα,σa+ ϕ(x)σ′(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b0

a

u(x).Dα,σa+ ϕ(x)σ′(x)dx

∣∣∣∣∣
≤

A sup
a0≤x≤b0

|(−γσ)ηϕ(x)|

Γ(η − α)

∫ b0

a

|u(x)|.(σ(b0)− σ(x))η−α−1σ′(x)dx

=
[
(η − α)(σ(b0)− σ(a0))Iη−α,σa+ |u|(b0)

]
. sup
a0≤x≤b0

|(−γσ)ηϕ(x)|.

Note that (−γσ)ηϕ(x) =

η∑
i,j=0

ai,j

(
1

σ′

)(i)

(x).ϕ(j)(x).

Since

(
1

σ′

)(i)

, ϕ(j) are bounded in [a0, b0] there exists Mσ′,η > 0 such that

sup
a0≤x≤b0

|(−γσ)ηϕ(x)| = sup
a0≤x≤b0

|
η∑

i,j=0

ai,j

(
1

σ′

)(i)

(x).ϕ(j)(x)| ≤Mσ′,η sup
a0≤x≤b0; k≤η

|ϕ(k)(x)|.

Hence, ∣∣∣∣∣
∫ b

a

u(x).Dα,σa+ ϕ(x)σ′(x)dx

∣∣∣∣∣ ≤Mu,σ′,η sup
a0≤x≤b0; k≤η

|ϕ(k)(x)|,

where = Mu,σ′,η = (η − α)((σ(b0)− σ(a0))Iη−α,σa+ |u|(b0).Mσ′,η,
which is required.

Theorem 2.2. If wDα,σa+ u (wDα,σb− u) exists, it is unique.

Proof. Let w,1Dα,σa+ u,w,2Dα,σa+ u be two weak derivatives of u, then,

〈w,1Dα,σa+ u−w,2 Dα,σa+ u, ϕ〉 = 0, for allϕ ∈ C∞c (a, b).

Hence, w,1Dα,σa+ u =w,2 Dα,σa+ u in the distributional sense.

Corollary 2.1. If Dα,σa+ u exists in the ordinary sense then, wDα,σa+ u = Dα,σa+ u.
Similarly, we put wDα,σb− u = Dα,σb− u.

7



From now on, we will use the symbol Dα,σa+ u,Dα,σb− u for either an ordinary derivative or a
derivative in the concept of distributions.

Example 2.1. Let (a, b) = (−∞,+∞) and 0 < α < 1. We will calculate the fractional
derivative of the Heaviside function, defined by

H(x) =

{
0 : x ≤ 0
1 : x > 0

.

Let ϕ ∈ C∞c (R). Then,

〈Dα,σ+ H,ϕ〉 =

∫ +∞

−∞
H(x)Dα,σ− ϕ(x)σ′(x)dx

=

∫ +∞

0

− d

dx
I1−α,σ
− ϕ(x)dx

= lim
A→+∞

∫ A

0

− d

dx
I1−α,σ
− ϕ(x)dx

= I1−α,σ
− ϕ(0)− lim

A→+∞
I1−α,σ
− ϕ(A)

= I1−α,σ
− ϕ(0).

〈Dα,σ− H,ϕ〉 =

∫ +∞

−∞
H(x)Dα,σ+ ϕ(x)dx

=

∫ +∞

0

d

dx
I1−α,σ

+ ϕ(x)dx

= lim
A→+∞

∫ A

0

d

dx
I1−α,σ

+ ϕ(x)dx

= lim
A→+∞

[I1−α,σ
+ ϕ(A)]− I1−α,σ

+ ϕ(0).

If lim
A→+∞

σ(A) = +∞ then, lim
A→+∞

I1−α,σ
+ ϕ(A) = +∞. Hence, Dα,σ− H does not exist.

Considering now that lim
A→+∞

σ(A) = σ+ < +∞. Then,

lim
A→+∞

I1−α,σ
− ϕ(A) =

1

Γ(1− α)

∫ B

0

(σ+ − σ(t))−αϕ(t)σ′(t)dt = I1−α,σ
+ ϕ(σ+),

where B is chosen in a way that suppϕ ∈ [−B,B].
So, 〈Dα,σ− H,ϕ〉 = I1−α,σ

+ ϕ(σ+)− I1−α,σ
+ ϕ(0).

3 Fractional derivative of distributions with compact
support

Let T be a distribution with compact support on (a, b), denoted by suppT . First, we
will define Iα,σa+ and Iα,σb− . Next, we introduce the notions Dα,σa+ and Dα,σb− . It is known
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that the space ξ(a, b) of distributions with compact support is the dual of the space
C∞(a, b). According to Urysohn’s Lemma, there exists χ ∈ C∞c (a, b) such that χ = 1 in
the neighbourhood of suppT . Using this important property to give the following notions

Definition 3.1. The integrals Iα,σa+ T, Iα,σb− T are given by the following formulas

〈Iα,σa+ T, ϕ〉 = 〈T, χ.Iα,σb− ϕ〉, (3.1)

〈Iα,σb− T, ϕ〉 = 〈T, χ.Iα,σa+ ϕ〉. (3.2)

Note that the choice of χ has no impact on the above formulas.

Theorem 3.1. Iα,σa+ T and Iα,σb− T define distributions on (a, b).

Proof. Assume that suppT ⊂ [a0, b0] ⊂ (a, b) and let χ ∈ C∞c (a, b) such that χ = 1
on (a0 − ε, b0 + ε), where ε > 0 is small enough. Let ϕ ∈ C∞c (a, b) such that suppϕ ⊂
[a1, b1] ⊂ (a, b). Then, there exists k ∈ N ∪ {0} and M,M ′ > 0 such that

|〈Iα,σa+ T, ϕ〉| = |〈T, χIα,σb− ϕ〉|,

≤ M sup
a0≤x≤b0,0≤m≤k

∣∣∣∣ dmdxm (χIα,σb− ϕ)

∣∣∣∣ ,
= M sup

a0≤x≤b0,0≤m≤k

∣∣∣∣ dmdxm (Iα,σb− ϕ)

∣∣∣∣ ,
≤ M ′. sup

a0≤x≤b0,0≤m≤k
|ϕ(m)(x)|,

≤ M ′. sup
a1≤x≤b1,0≤m≤k

|ϕ(m)(x)|.

Example 3.1. Let (a, b) = (−∞,+∞). We will calculate the Dirac mass’ fractional
integral. Let ϕ ∈ C∞c (R). Then,

〈Iα,σ+ δ, ϕ〉 = 〈δ, χIα,σ− ϕ〉 = χ(0)Iα,σ− ϕ(0) = Iα,σ− ϕ(0).

Hence, Iα,σ+ δ = D1−α,σ
+ H.

〈Iα,σ− δ, ϕ〉 = 〈δ, χIα,σ+ ϕ〉 = χ(0).Iα,σ+ ϕ(0) = Iα,σ+ ϕ(0).

Definition 3.2. The derivatives Dα,σa+ T,Dα,σb− T are given by the following formulas

〈Dα,σa+ T, ϕ〉 = 〈T, χ.Dα,σb− ϕ〉, (3.3)

〈Dα,σb− T, ϕ〉 = 〈T, χ.Dα,σa+ ϕ〉. (3.4)

Theorem 3.2. Dα,σa+ T and Dα,σb− T define distributions on (a, b).
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Proof. Considering that suppT ⊂ [a0, b0] and let χ ∈ C∞c (a, b) such that χ = 1 on
(a0 − ε, b0 + ε), include in (a, b). Let ϕ ∈ C∞c (a, b) such that suppϕ ⊂ [a1, b1] ⊂ (a, b).
Then, there exists k ∈ N ∪ {0} and M,M ′ > 0 such that

|〈Dα,σa+ T, ϕ〉| = |〈T, χDα,σb− ϕ〉|,

≤ M sup
a0≤x≤b0,0≤m≤k

∣∣∣∣ dmdxm (χDα,σb− ϕ)

∣∣∣∣ ,
= M sup

a0≤x≤b0,0≤m≤k

∣∣∣∣ dmdxm (Dα,σb− ϕ)

∣∣∣∣ ,
= M sup

a0≤x≤b0,0≤m≤k

∣∣∣∣ dmdxm (Iη−α,σb− (−γσ)ηϕ)

∣∣∣∣ ,
Using the same reasoning as before, it can be demonstrated that

|〈Dα,σa+ T, ϕ〉| ≤ M ′. sup
a0≤x≤b0,0≤m≤k+η

|ϕ(m)(x)|,

≤ M ′. sup
a1≤x≤b1,0≤m≤k+η

|ϕ(m)(x)|.

Example 3.2. Let (a, b) = (−∞,+∞). We will calculate the Dirac mass’ fractional
derivative. Let ϕ ∈ C∞c (R). Then,

〈Dα,σ+ δ, ϕ〉 = 〈δ, χDα,σ− ϕ〉 = χ(0)Dα,σ− ϕ(0) = Dα,σ− ϕ(0).

〈Dα,σ− δ, ϕ〉 = 〈δ, χDα,σ+ ϕ〉 = χ(0).Dα,σ+ ϕ(0) = Dα,σ+ ϕ(0).

Remark 3.1. If T ◦ σ−1 has a compact support in (σ(a), σ(b)), we can extend the Defi-
nitions 3.1, 3.2 as fellows:

〈Iα,σa+ T, ϕ〉 = 〈T ◦ σ−1, χ.Iαb−(ϕ ◦ σ−1)〉, (3.5)

〈Iα,σb− T, ϕ〉 = 〈T ◦ σ−1, χ.Iαa+(ϕ ◦ σ−1)〉. (3.6)

〈Dα,σa+ T, ϕ〉 = 〈T ◦ σ−1, χ.Dαb−(ϕ ◦ σ−1)〉, (3.7)

〈Dα,σb− T, ϕ〉 = 〈T ◦ σ−1, χ.Dαa+(ϕ ◦ σ−1)〉. (3.8)

where, χ ∈ C∞c (σ(a), σ(b)) such that χ = 1 in a neighbourhood of supp(T ◦ σ−1) and
Iαa+ , I

α
b− ,D

α
a+ ,D

α
b− are the integrals and derivatives in the sense of Riemann - Liouville.
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4 Fractional calculus using the convolution product

In this section, using the convolution product of distributions, we present a conception
of fractional integrals and derivatives of distributions on the entire line R. Considering
that a = −∞, b = +∞, σ ∈ C∞(R), lim

x→−∞
σ(x) = −∞ and lim

x→+∞
σ(x) = +∞. Let

f ∈ Lpσ(R). Then, for all ϕ ∈ C∞c (R) [10]∫ +∞

−∞
Iα,σ+ f(x)ϕ(x)σ′(x)dx =

∫ +∞

−∞
f(x)Iα,σ− ϕ(x)σ′(x)dx

=

∫ +∞

−∞
f(x)σ′(x)dx

∫ +∞

x

(σ(t)− σ(x))α−1

Γ(α)
ϕ(t)σ′(t)dt.

Using the change of variable y = σ(t)− σ(x), we get∫ +∞

−∞
Iα,σ+ f(x)ϕ(x)σ′(x)dx =

∫ +∞

−∞
f(x)σ′(x)dx

∫ +∞

0

yα−1

Γ(α)
(ϕ ◦ σ−1)(y + σ(x))dy.

Using the change of variable z = σ(x), we obtain∫ +∞

−∞
Iα,σ+ f(x)ϕ(x)σ′(x)dx =

∫ +∞

−∞

∫ +∞

0

yα−1

Γ(α)
(f ◦ σ−1)(z)(ϕ ◦ σ−1)(y + z)dydz.

which lead to ∫ +∞

−∞
Iα,σ+ f(x)ϕ(x)σ′(x)dx = 〈(f ◦ σ−1) ∗ Yα, ψ〉, (4.1)

where Yα(x) =


0 : x ≤ 0

xα−1

Γ(α)
: x > 0

, ψ = ϕ ◦ σ−1 ∈ C∞c (R) and ∗ denotes the convolu-

tion product of distributions on R.
In a similar argument, we can write∫ +∞

−∞
Iα,σ− f(x)ϕ(x)σ′(x)dx = 〈(f ◦ σ−1) ∗ Y̌α, ψ〉, (4.2)

where Y̌α(x) =


(−x)α−1

Γ(α)
: x < 0

0 : x ≥ 0
, ψ = ϕ ◦ σ−1 ∈ C∞c (R).

We know that in order for the convolution product to be well defined, supp f and suppYα
(respectively supp f and supp Y̌α) must be permitted convolution at the following sense

Definition 4.1. [8] The closed sets A1, . . . , Ak ⊂ Rn (n ∈ N) are called permitted convo-

lution if for all compact K ⊂ Rn the set E = {(x1, . . . , xk) ∈
k∏
i=1

Ai : x1 + · · ·+ xk ∈ K}

is compact in Rnk.
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Remark 4.1. The following requirements must be fulfilled for the set E to be compact:

For all r > 0, there exists ρ > 0 such that for all xi ∈ Ai: if |x1 + · · ·+ xk| ≤ r then,
max

1≤i≤k
|xi| ≤ ρ.

Taking into account that suppYα = [0,+∞), supp Y̌α = (−∞, 0], we obtain the following
result

Proposition 4.1. Let T be a distribution on R. Then,

i) suppT and suppYα are permitted convolution if and only if suppT ⊂ [A,+∞) where
A ∈ R,

ii) suppT and supp Y̌α are permitted convolution if and only if suppT ⊂ (−∞, B] where
B ∈ R.

Proof. i) Assume that suppT ⊂ [A,+∞) and let R > 0. Then, for x ∈ suppT and
y ∈ suppYα such that |x + y| ≤ R we obtain A ≤ x ≤ R and 0 ≤ y ≤ R − A. So,
|x| ≤ R + |A| and |y| = y ≤ R + |A|. Hence, suppT and suppYα are permitted
convolution.
Otherwise, there exists C ∈ R such that (−∞, B] ⊂ suppT . Then, for m ∈ N large
enough we have −m ∈ suppT and m ∈ suppYα. But we have |(−m) +m| < R for
some R and lim

m→+∞
| − m| = +∞. Hence, suppT and suppYα are not permitted

convolution.

ii) The same argument is made for both suppT and supp Y̌α.

So, we will give the definition of left and right fractional integral and derivative of a
distribution of the type of proposition 4.1:

Definition 4.2. Let T be a distribution on R. Then,

i) If suppT ⊂ [A,+∞) with A ∈ R then, we put

Iα,σ+ T (x) = ((T ◦ σ−1) ∗ Yα) ◦ σ, Dα,σ
+ T (γσ)ηIα,σ+ T.

ii) If suppT ⊂ (−∞, B] with B ∈ R then, we put

Iα,σ− T (x) = ((T ◦ σ−1) ∗ Y̌α) ◦ σ, Dα,σ
− T = (−γσ)ηIα,σ− T.

5 Extension to multidimensional case

Let n ∈ N \ {1}. We use the notations of [9, 18] and [14] which

a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) (−∞ ≤ ai < bi ≤ +∞), (a, b) =

n∏
i=1

(ai, bi),
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x = (x1, x2, . . . , xn) ∈ Rn, α = (α1, α2, . . . , αN ), αi > 0,η = (η1, η2, . . . , ηn),

ηi = [αi] + 1, Γ(α) =

n∏
i=1

Γ(αi), x
α =

n∏
i=1

xαii ,
∂

∂x
=

∂

∂x1

∂

∂x2
. . .

∂

∂xn
.

Let σ(x) = (σ1(x1), σ2(x2), . . . , σn(xn)), where σi are increasing functions in C∞(ai, bi).
Finally, let p = (p1, p2, . . . , pn) (1 ≤ pi < +∞).
Following the definitions of Riemann-Liouville integrals and derivatives in [9, 18], we
present some definitions of fractional integrals and derivatives.
First, as well as [3], we give the definition of anisotropic space Xpσ(a, b).

Definition 5.1. We denote by Xpσ(a, b) the space of measurable functions f on (a, b)
such that ‖f‖Xpσ(a,b) <∞, where

‖f‖Xpσ(a,b) =

∫ bn

an

∫ bn−1

an−1

. . .

(∫ b1

a1

|f(x)|p1σ′1dx1

) p2
p1

. . . σ′n−1dxn−1


pn
pn−1

σ′ndxn


1
pn

,

which is a Banach space, with respect to the norm ‖.‖Xpσ(a,b).

Remark 5.1. Let Ω be a domain of Rn. Then, there exists (a, b) =

n∏
i=1

(ai, bi) (−∞ ≤

ai < bi ≤ +∞) such that Ω ⊂ (a, b). Hence, we can define the space Xpσ (Ω) by extending
a function f by 0 from Ω, always denoting by f . So, we set ‖f‖Xpσ(Ω) = ‖f‖Xpσ(a,b).

Let f ∈ Xpσ(Ω), where Ω ⊂ (a, b) =

n∏
i=1

(ai, bi). Following the definitions of paragraph

(§2.9) in [9], we present those definitions

Definition 5.2. The generalized (left and right) fractional partial integral and derivative
operators with respect to the function σi are given by

Iαi,σii+ f(x) =
1

Γ(αi)

∫ xi

ai

(σi(xi)− σi(ti))αi−1f(t)σ′i(ti)dti, (5.1)

Iαi,σii− f(x) =
1

Γ(αi)

∫ bi

xi

(σi(ti)− σi(xi))αi−1f(t)σ′i(ti)dt. (5.2)

Dαi,σii+ f(x) = (γσi)
ηi(Iηi−αi,σii+ f)(x)

=
1

Γ (ηi − αi)
(γσi)

ηi

∫ xi

ai

(σi(xi)− σi(ti))ηi−αi−1f(t)σ′i(ti)dti,
(5.3)

Dαi,σii− f(x) = (−γσ)ηi(Iηi−αi,σii− f)(x)

=
1

Γ (ηi − αi)
(−γσi)ηi

∫ bi

xi

(σi(ti)− σi(xi))ηi−αi−1f(t)σ′i(ti)dti,
(5.4)
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where γσi(xi) =
1

σ′i(x)

∂

∂xi
.

Definition 5.3. The generalized (left and right) fractional integral and derivative oper-
ators with respect to the function σ are represented by

Iα,σ+ f(x) =
1

Γ(α)

∫ x1

a1

· · ·
∫ xn

an

(σ(x) − σ(t))α−1f(t)(σ′1dt1) . . . (σ′ndtn), (5.5)

Iα,σ− f(x) =
1

Γ(α)

∫ b1

x1

· · ·
∫ bn

xn

(σ(t) − σ(x))α−1f(t)(σ′1dt1) . . . (σ′ndtn). (5.6)

Dα,σ+ f(x) = (γσ)η(Iη−α,σ+ f)(x)

=
1

Γ (η−α)
(γσ)η

∫ x1

a1

· · ·
∫ xn

an

(σ(x)− σ(t))η−α−1f(t)(σ′1dt1) . . . (σ′ndtn),

(5.7)

Dα,σ− f(x) = (−γσ)η(Iη−α,σ− f)(x)

=
1

Γ (η−α)
(−γσ)η

∫ b1

x1

· · ·
∫ bn

xn

(σ(t) − σ(x))η−α−1f(t)(σ′1dt1) . . . (σ′ndtn),

(5.8)

where γησ(x) =

(
1

σ′1(x1)

∂

∂x1

)η1
. . .

(
1

σ′n(xn)

∂

∂xn

)ηn
,1 = (1, 1, . . . , 1)

n times

.

We introduce also the weak (left or right) derivative of a function u : Rn → R (if there
exists) as follow

Definition 5.4. For all ϕ ∈ C∞c (a, b)

〈Dαi,σii+ u, ϕ〉 =

∫ bi

ai

u(x).Dαi,σii− ϕ(x)σ′i(xi)dxi, (5.9)

〈Dαi,σii− u, ϕ〉 =

∫ bi

ai

u(x).Dαi,σii+ ϕ(x)σ′i(xi)dxi, (5.10)

〈Dα,σ+ u, ϕ〉 =

∫ b1

a1

· · ·
∫ bn

an

u(x).Dα,σ− ϕ(x)(σ′1(x1)dx1) . . . (σ′n(xn)dxn), (5.11)

〈Dα,σ− u, ϕ〉 =

∫ b1

a1

· · ·
∫ bn

an

u(x).Dα,σ+ ϕ(x)(σ′1(x1)dx1) . . . (σ′n(xn)dxn). (5.12)
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It follows that the definition of fractional operators for a distribution with compact
support should be included.

Definition 5.5. Let T be a distribution with compact support in Ω. Then, for all ϕ ∈
C∞c (Ω) we put

〈Iαi,σii+ T, ϕ〉 = 〈T, χ.Iαi,σii− ϕ〉, Dαi,σii+ T = (γσi)
ηiIηi−αi,σii+ T (5.13)

〈Iαi,σii− T, ϕ〉 = 〈T, χ.Iαi,σii+ ϕ〉, Dαi,σii− T = (−γσi)ηiI
ηi−αi,σi
i− T (5.14)

〈Iα,σ+ T, ϕ〉 = 〈T, χ.Iα,σ− ϕ〉, Dα,σ+ T = (γσ)ηIη−α,σ+ T (5.15)

〈Iα,σ− T, ϕ〉 = 〈T, χ.Iα,σ+ ϕ〉, Dα,σ− T = (−γσ)ηIη−α,σ− T (5.16)

where χ ∈ C∞c (a, b) such that χ = 1 in a neighbourhood of suppT .

Remark 5.2. Setting σ−1 = (σ−1
1 . . . σ−1

i ). Then, with respect to distributions T where
supp(T ◦ σ−1) is compact, remark 3.1 is always true.

Finally, we introduce the definitions of left and right fractional integral and derivative of
a distribution T using the convolution product. We denote by πi(E) (E ⊂ Rn) the ith
projection map of E, Hαi , Ȟαi the following functions defined in πi(Rn) as following

Hαi(xi) =

{
0 : xi < 0

xα−1
i : xi ≥ 0

Ȟαi(xi) =

{
(−xi)α−1 : xi < 0

0 : xi ≥ 0

So, we have the follows definition

Definition 5.6. Let T be a distribution on Rn. Then,

i) If πi(suppT ) ⊂ [Ai,+∞)(Ai ∈ R) then, we put

Iαi,σii+ T (x) =
1

Γ(αi)
(T (x1, . . . , σ

−1(xi), . . . xN ))∗Hαi , Dαi,σi
i+ T = (γσi)

ηiIαi,σii+ T

ii) If πi(suppT ) ⊂ (−∞, Bi](Bi ∈ R) then, we put

Iαi,σii− T (x) =
1

Γ(αi)
(T (x1, . . . , σ

−1(xi), . . . xN ))∗Ȟαi , Dαi,σi
i− T = (γσi)

ηiIαi,σii− T

iii) If suppT and ([0,+∞))n are permitted convolution then, we put

Iα,σ+ T (x) =
1

Γ(α)
(T ◦ σ−1) ∗Hα1

∗ · · · ∗Hαn , Dα,σ+ T = (γσ)ηIα,σ+ T

iv) If suppT and ((−∞, 0])n are permitted convolution then, we put

Iα,σ− T (x) =
1

Γ(α)
(T ◦ σ−1) ∗ Ȟα1

∗ · · · ∗ Ȟαn , Dα,σ− T = (γσ)ηIα,σ− T
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6 Conclusion

In this work, we defined fractional integrals and derivatives in terms of distributions that
are compatible with those in terms of functions. We then extended all of this to the
multidimensional case, allowing us to provide a fractional version of the usual differential
operators (gradient, divergence, Laplace). Let Ω ⊂ Rn be an open. Taking into account
Remark 5.1, definitions and notations og the above section, we introduce the follows
definitions

Definition 6.1. Let f ∈ Xpσ(Ω). Then, the α− gradient of f is given by

∇α+F = (Dα1
+ f,Dα2

+ f, . . . ,Dαn
+ f).

∇α−F = (Dα1
− f,D

α2
− f, . . . ,D

αn
− f).

Definition 6.2. Let F ∈ (Xpσ(Ω))n. Then, the α− divergence of F is given as follow

divα+f = Dα1
+ F1 +Dα2

+ F2 + · · ·+Dαn
+ Fn.

divα−f = Dα1
− F1 +Dα2

− F2 + · · ·+Dαn
− Fn.

Definition 6.3. Let f ∈ Xpσ(Ω). Then, the α− Laplacian of f is defined by

∆α
−f = divα−(∇α+f) = Dα1

− D
α1
+ f +Dα2

− D
α2
+ f + · · ·+Dαn

− Dαn
+ f.

∆α
+f = divα+(∇α−f) = Dα1

+ Dα1
− f +Dα2

+ Dα2
− f + · · ·+Dαn

+ Dαn
− f.
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[12] A. M. Mathai and H. J. Haubold, Erdélyi-Kober Fractional Calculus, Springer Na-
ture, Singapore Pte Ltd (2018).

[13] K. Miller and B. Ross, An introduction to the fractional calculus and fractional
differential equations, Jhon Wiley and suns, New York (1993).

[14] S. Mincheva-Kaminska, Convolutional approach to fractional calculus for distribu-
tions of several variables, Fractional Calculus and Applied Analysis, 19 (2) (2016) ,
441–462.

[15] Juan J. Nieto, M. Alghanmi, B. Ahmad, A. Alsaedi and B. Alharbi, On Fractional
Integrals and Derivatives of a Function with Respect to an other function, fractals,
Accepted Manuscript , (2023), 13 pages.

[16] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engi-
neering. Academic Press, New York (1999).

[17] B. Ross, The development of Fractional calculus, Historia mathematica, 4 (1977),
75-89.

[18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivatives
Theory and Applications, Gordon and Breach, Switzerland (1993).

[19] L. Schwartz, Théorie des distributions, Hermann, Paris (1966).

17


	Preliminaries
	The weak derivative
	Fractional derivative of distributions with compact support
	Fractional calculus using the convolution product
	Extension to multidimensional case
	Conclusion

