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Abstract

One-hidden-layer feedforward neural networks are described as functions having many real-valued parameters. The larger the

number of parameters is, neural networks can approximate various functions (universal approximation property). The essential

optimal order of approximation bounds is already derived in 1996. We focused on the numerical experiment that indicates the

neural networks whose parameters have stochastic perturbations gain better performance than ordinary neural networks, and

explored the approimation property of neural networks with stochastic perturbations. In this paper, we derived the quantitative

order of variance of stochastic perturbations to achieve the essential approximation order.
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1 Introduction and Results

Neural networks are mathematical models inspired by the neurons in a bi-
ological brain [1], which include many computational units. Each unit has
input weights, output weights, biases, and an activation function. Weights
are the linear coefficients in units, and an activation function is nonlinear.
One-hidden-layer feedforward neural networks, the simplest models, can be
described as input-output functions of the form as follows :

fN(x) =
N∑

k2=1

w
(3)
1,k2

ψ

(
d∑

k1=1

w
(2)
k2,k1

xk1 − θ
(2)
k2

)
, x = (xk1)

d
k1=1 ∈ Rd, (1)

where N ∈ N is the number of hidden units, w
(2)
k2,k1

∈ R are input weights,

w
(3)
1,k2

∈ R, are output weights, and θ
(2)
k2

∈ R are biases, for k1 = 1, · · · , d,
k2 = 1, · · · , N , ψ : R → R indicates an activation function. The most com-
mon activation functions are sigmoidals, that is, ψ : R → R is measurable,
bounded, and satisfies limz→∞ ψ(z) = 1 and limz→−∞ ψ(z) = 0.

If N is sufficiently large, it is possible to adjust parameters so that fN
approximates various multivariable functions, referred to as the universal
approximation property. Various proofs of the property exist. For example,
Cybenko [2, Theorem 1] showed by using the Hahn–Banach theorem that the
space of neural networks (1) is dense in the space of continuous functions.
Hornik–Stinchcombe–White [3, Theorem 2.4] showed the existence of neural
networks approximating a continuous function by the Stone–Wierstrass the-
orem, while Funahashi [4, Theorem 1] applied the Fourier transform and the
piecewise quadrature method.

Maurey(Pisier [5]), Jones [6], and Barron [7, Theorem 1] derived approx-
imation bounds for neural networks, showing that for every H1 function, a
neural network archives approximation error of order O(N− 1

2 ). This order
is called Maurey–Jones–Barron(MJB) estimation, which does not depend on
the input dimension d. Makovoz [8, Theorem 4] proposed that the lower

bound of approximation error of order is N− 1
2
− 1
d , depending on d. The index

−1
2
− 1

d
converges to −1

2
as d→ ∞, that is, MJB estimation O(N− 1

2 ) cannot
be essentially improved.

In recent years, glial cells have been revealed in the human brain; these
cells are affected to neurons with signal transduction. Ikuta–Uwate–Nishio [9]
numerically experimanted with neural networks whose parameters have
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stochastic perturbations (as glial cells affecting neurons) gain better per-
formance than ordinary neural networks. Various neural networks contain
stochastic perturbations, and Bayesian neural networks(BNNs) are one [10].
Fonng-Burt-Li-Turner [11, Theorem 6] proved the universal approximation
property for BNNs whose parameters are distributed by a statistical method,
provided the variance is small enough.

This paper derived the quantitative order of variance to achieve an essen-
tial approximation order O(N− 1

2 ). Let f̃N be

f̃N(x) :=
N∑

k2=1

w̃
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
− θ̃

(3)
1 , x = (xk1)

d
k1=1 ∈ Rd,

where w̃
(2)
k2,k1

, w̃
(3)
1,k2

, θ̃
(2)
k2
, θ̃

(3)
1 are random variables with variance σ2, and

possible values are finite. The following theorem is this paper’s main result.

Theorem 1. Let K0 ⊂ Rd be an open bounded set that contains 0, and
activation function ψ : R → R be a ReLU, i.e., ψ(x) = max{x, 0}. Then,
for all f ∈ H1(K0) and N ∈ N, C0 > 0 exists, such that for all σ2 with
0 < σ2 ≤ C0N

−4, the estimate

∥E[f̃N ]− f∥L2(K0) ≤ CN− 1
2 .

holds for some C > 0.

Several basic tools which are required for the proof in Section 2. The
proof of the main theorem is given in Section 3.

2 Preliminaries

We give two definitions for activation functions.

Definition (sigmoidal function). A measurable and bounded function ψ :
R → R is called sigmoidal, if ψ satisfies limz→∞ ψ(z) = 1 and limz→−∞ ψ(z) =
0.

Definition (ReLU function). A function ψ : R → R defined by ψ(x) =
max{x, 0} is called ReLU.

3



Let K be an open set in Rd. We denote by L2(K) = L2(K,µ) as the
space of square-integrable functions on K, where µ is the Lebesgue measure.
A function f defined on K is said to be in Sobolev space H1(K), if f ∈ L2(K)
and if its distributional gradient, ∇f , is a function that is in L2(K).

We introduce Barron’s approximation rates by deterministic neural net-
works. Denote by convNG the set of all convex combinations of N elements
from the set G.

Theorem 2 (Barron [7, Theorem 1]). Let K0 ⊂ Rd be an open bounded
set that contains 0. Denote by Gψ,2B(K0) the set of a sigmoidal function
composed with an affine function, i.e.,

Gψ,2B(K0) :=

{
g : K0 → R :

g(x) = w(3)ψ(w(2) · x− θ(2)),

w(2) ∈ Rd, w(3), θ(2) ∈ R, |w(3)| ≤ 2B

}
.

for a sigmoidal function ψ. Then, for all f ∈ H1(K0) and N ∈ N,

∥f − convNGψ,2B(K0)∥L2(K0) ≤
√
s2Gψ,2B(K0)

− ∥f∥2L2(K0)
·N− 1

2 . (2)

The element of convNGψ,2B(K0) is a linear combination of ψ; therefore,
(2) indicates that a neural network exists that approximates f of the order
O(N−1/2). In case the activation function ψ is ReLU, a similar approximation
rate holds since ψ(·)− ψ(· − 1) is sigmoidal.

We denote by (Ω,F , P ) the probability space; that is, (Ω,F) is a measur-
able space and a measure P : F → [0, 1] satisfies P (∅) = 0 and P (Ω) = 1. For
a random variableX on (Ω,F , P ) and Borel measurable function f : Rd → R,
E[f(X)] indicates the expectation of f(X) concerning P , and V [f(X)] indi-
cates the variance.

We prove the following two lemmas which are used in the proof of the
main theorem’s proof.

Lemma 3 (Foong-Burt-Li-Turner [11, Lemma 5]). Let X be a real-valued
random variable, and ψ : R → R be ReLU. Then,

V [ψ(X)] ≤ V [X].

Proof. In the proof, we use the fact that ψ is a contraction mapping. We
denoteX ′ by independently and identically distributed random valiables with
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X. Then,

V [X] = E[X2]− E[X]2

=
1

2
(E[X2]− E[X]2 + E[X ′2]− E[X ′]2)

=
1

2
(E[X2] + E[X ′2]− 2E[X]E[X ′])

=
1

2
E[(X −X ′)2]

≥ 1

2
E[(ψ(X)− ψ(X ′))2]

= V [ψ(X)].

Lemma 4. Let f̃N be the function defined by

f̃N(x) :=
N∑

k2=1

w̃
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
− θ̃

(3)
1 , x = (xk1)

d
k1=1 ∈ Rd,

where w̃
(2)
k2,k1

, w̃
(3)
1,k2

, θ̃
(2)
k2
, θ̃

(3)
1 are independently and identically distributed

random variables with variance σ2, and ψ is ReLU. Assume that L,M > 0
exists, such that |w̃(2)

k2,k1
|, |w̃(3)

1,k2
|, |θ̃(2)k2 |, |θ̃

(3)
1 | ≤ L, and |x| ≤M . Then,

V
[
f̃N(x)

]
≤ {L(M2d+ 1) + (dLM + L)2 + 1}σ2 + (M2d+ 1)σ4.

Proof. In the proof, we calculate V
[
f̃N(x)

]
using the independence of the

random variable. It follows from the independence of random variables that

V
[
f̃N(x)

]
= V

[
N∑

k2=1

w̃
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
− θ̃

(3)
1

]

= V

[
w̃

(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]
+ V

[
θ̃
(3)
1

]
.

Furthermore, since the equality
V [XY ] = E[X]2V [Y ]+V [X]E[Y ]2+V [X]V [Y ] holds for independent random

5



variables, X and Y , there holds

V
[
f̃N(x)

]
= E

[
w̃

(3)
1,k2

]2
V

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]

+ V
[
w̃

(3)
1,k2

]
E

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]2

+ V
[
w̃

(3)
1,k2

]
V

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]
+ V

[
θ̃
(3)
1

]
= w

(3)
1,k2

V

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]

+ σ2E

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]2

+ σ2V

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]
+ σ2.

Using the bounds of possible values of w̃
(2)
k2,k1

and θ̃
(2)
k2
, we obtain

E

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]2
≤ E

ψ( d∑
k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)2


≤ E

∣∣∣∣∣
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

∣∣∣∣∣
2


≤ E

( d∑
k1=1

|w̃(2)
k2,k1

||xk1 |+ |θ̃(2)k2 |

)2


≤ (dLM + L)2.

6



By Lemma 3,

V

[
ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)]
≤ V

[
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

]

≤
d∑

k1=1

V
[
w̃

(2)
k2,k1

]
x2k1 + V

[
θ̃
(2)
k2

]
= (M2d+ 1)σ2.

Therefore, we have the following inequality

V
[
f̃N(x)

]
≤ L(M2d+ 1)σ2 + σ2(dLM + L)2 + σ2(M2d+ 1)σ2 + σ2

= {L(M2d+ 1) + (dLM + L)2 + 1}σ2 + (M2d+ 1)σ4.

3 Proof of Theorem 1

Our proof is completed by revisiting the argument established in Foong–
Burt–Li–Turner [11, Theorem 6] to reveal the dependence concerning N of
all constants.

We construct f̃N using the deterministic optimal neural network. By
Theorem 2, for all N ∈ N and nonnegative f ∈ H1(K0), there exists C ′ > 0
and a neural network

fN(x) =
N∑

k2=1

w
(3)
1,k2

ψ

(
d∑

k1=1

w
(2)
k2,k1

xk1 − θ
(2)
k2

)
,

such that

∥fN − f∥L2(K0) ≤ C ′N− 1
2 . (3)

For k1 = 1, · · · , d and k2 = 1, · · · , N , let ξ
(2)
k2,k1

, ξ
(3)
1,k2

, ξ
(2)
k2
, ξ

(3)
1 be random

variables on probability space (Ω,F , P ), which are independently and iden-

tically distributed. Assume that the expectation of ξ
(2)
k2,k1

, ξ
(3)
1,k2

, ξ
(2)
k2
, ξ

(3)
1 is

7



zero, the variance is σ2 > 0, and possible values are finite. We define the
random variables w̃

(2)
k2,k1

, w̃
(3)
1,k2

, θ̃
(2)
k2
, θ̃

(3)
1 by

w̃
(2)
k2,k1

:= w
(2)
k2,k1

+ ξ
(2)
k2,k1

, w̃
(3)
1,k2

:= w
(3)
1,k2

+ ξ
(3)
1,k2

,

θ̃
(2)
k2

:= θ
(2)
k2

+ ξ
(2)
k2
, θ̃

(3)
1 := ξ

(3)
1 .

We remark that there exists L > 0 such that |w̃(2)
k2,k1

|, |w̃(3)
1,k2

|, |θ̃(2)k2 |, |θ̃
(3)
1 | ≤ L

since possible values of ξ
(2)
k2,k1

, ξ
(3)
1,k2

, ξ
(2)
k2
, ξ

(3)
1 are finite. Then, we define f̃N by

f̃N(x) :=
N∑

k2=1

w̃
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
− θ̃

(3)
1 .

We prove the probability P
(∣∣∣E[(f̃N(x))]− fN(x)

∣∣∣ ≥ N− 1
2

)
vanishes if σ2

satisfies an appropriate bound. By applying the triangle inequality, we obtain

P
(∣∣∣E[(f̃N(x))]− fN(x)

∣∣∣ ≥ N− 1
2

)
≤ P

(∣∣∣E[(f̃N(x))]− fN(ω, x)
∣∣∣ ≥ N− 1

2

2

)

+ P

(
|fN(ω, x)− fN(x)| ≥

N− 1
2

2

)
,

for a.e. x ∈ K0 and fixed ω ∈ Ω. We denote the first and second term as I1
and I2, respectively.

Let M > 0 satisfy |x| ≤ M for all x ∈ K0. It follows from Chebyshev’s
inequality and Lemma 4, such that

I1 ≤ 4NV
[
f̃N(x)

]
= C1Nσ

2 + C2Nσ
4, (4)

where C1 := 4 {L(M2d+ 1) + (dLM + L)2 + 1}, C2 := 4(M2d+ 1).

We use the explicit representation of fN and f̃N to estimate the second

8



term I2. Applying the triangle inequality, we obtain

I2 = P

(∣∣∣∣∣
{

N∑
k2=1

w̃
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
− θ̃

(3)
1

}

−

{
N∑

k2=1

w
(3)
1,k2

ψ

(
d∑

k1=1

w
(2)
k2,k1

xk1 − θ
(2)
k2

)}∣∣∣∣∣ ≥ N− 1
2

2

)

= P

(∣∣∣∣∣
{

N∑
k2=1

w̃
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
− θ̃

(3)
1

}

−

{
N∑

k2=1

w
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)}∣∣∣∣∣ ≥ N− 1
2

4

)

+ P

(∣∣∣∣∣
{

N∑
k2=1

w
(3)
1,k2

ψ

(
d∑

k1=1

w̃
(2)
k2,k1

xk1 − θ
(2)
k2

)
− θ̃

(3)
1

}

−

{
N∑

k2=1

w
(3)
1,k2

ψ

(
d∑

k1=1

w
(2)
k2,k1

xk1 − θ
(2)
k2

)}∣∣∣∣∣ ≥ N− 1
2

4

)
,

for all w ∈ Ω and a.e. x ∈ K0. Again, we denote the first and second term
as I2,1 and I2,2, respectively.

It is easy to see that

I2,1 ≤ P

(
N∑

k2=1

∣∣∣w̃(3)
1,k2

− w
(3)
1,k2

∣∣∣ ∣∣∣∣∣ψ
(

d∑
k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)∣∣∣∣∣+ ∣∣∣θ̃(3)1

∣∣∣ ≥ N− 1
2

4

)

≤
N∑

k2=1

P

(∣∣∣w̃(3)
1,k2

− w
(3)
1,k2

∣∣∣ ∣∣∣∣∣ψ
(

d∑
k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)∣∣∣∣∣ ≥ N− 1
2

4(N + 1)

)

+ P

(∣∣∣θ̃(3)1

∣∣∣ ≥ N− 1
2

4(N + 1)

)
.

9



Since ψ is a contraction mapping, by Chebyshev’s inequality, there holds

I2,1 ≤
N∑

k2=1

P

(∣∣∣w̃(3)
1,k2

− w
(3)
1,k2

∣∣∣ (dLM + L) ≥ N− 1
2

4(N + 1)

)

+ P

(∣∣∣θ̃(3)1

∣∣∣ ≥ N− 1
2

4(N + 1)

)

≤
N∑

k2=1

16(N + 1)2(dLM + L)2

N−1
σ2 +

16(N + 1)2

N−1
σ2

=
16(N + 1)2

N−1

{
1 + (dLM + L)2

}
σ2

≤ 64N3
{
1 + (dLM + L)2

}
σ2. (5)

Similarly, we have

I2,2

≤ P

(
N∑

k2=1

∣∣∣w(3)
1,k2

∣∣∣ ∣∣∣∣∣ψ
(

d∑
k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)

−ψ

(
d∑

k1=1

w
(2)
k2,k1

xk1 − θ
(2)
k2

)∣∣∣∣∣ ≥ N− 1
2

4

)

≤ P

(
N∑

k2=1

L

∣∣∣∣∣
(

d∑
k1=1

w̃
(2)
k2,k1

xk1 − θ̃
(2)
k2

)
−

(
d∑

k1=1

w
(2)
k2,k1

xk1 − θ
(2)
k2

)∣∣∣∣∣ ≥ N− 1
2

4

)
,

by the contraction property of ψ. Applying the triangle inequality and

10



Chebyshev’s inequality, we obtain

I2,2 ≤
N∑

k2=1

P

(∣∣∣∣∣
d∑

k1=1

(
w̃

(2)
k2,k1

− w
(2)
k2,k1

)
xk1 −

(
θ̃
(2)
k2

− θ
(2)
k2

)∣∣∣∣∣ ≥ N− 1
2

4NL

)

≤
N∑

k2=1

P

(
d∑

k1=1

∣∣∣w̃(2)
k2,k1

− w
(2)
k2,k1

∣∣∣ |xk1 |+ ∣∣∣θ̃(2)k2 − θ
(2)
k2

∣∣∣ ≥ N− 1
2

4NL

)

≤
N∑

k2=1

d∑
k1=1

{
P

(∣∣∣w̃(2)
k2,k1

− w
(2)
k2,k1

∣∣∣M ≥ N− 1
2

4N(d+ 1)L

)

+ P

(∣∣∣θ̃(2)k2 − θ
(2)
k2

∣∣∣ ≥ N− 1
2

4N(d+ 1)L

)}

≤
N∑

k2=1

(
d∑

k1=1

16N2(d+ 1)2L2M2

N−1
σ2 +

16N2(d+ 1)2L2

N−1
σ2

)
= 16N4(dM2 + 1)(d+ 1)2L2σ2. (6)

By (5) and (6), we obtain the estimate

I2 ≤ C3N
3σ2 + C4N

4σ2, (7)

where C3 := 64 {1 + (dLM + L)2}, C4 := 16(dM2 + 1)(d+ 1)2L2.
Combining (4) and (7), we get

P
(∣∣∣E[(f̃N(x))]− fN(x)

∣∣∣ ≥ N− 1
2

)
≤ C1Nσ

2 + C2Nσ
4 + C3N

3σ2 + C4N
4σ2

≤ C5

(
Nσ2 +Nσ4 +N3σ2 +N4σ2

)
,

where C5 := max{C1, C2, C3, C4}. Setting C0 = (2C5)
−2, if 0 < σ2 ≤ C0N

−4,

P
(∣∣∣E[(f̃N(x))]− fN(x)

∣∣∣ ≥ N− 1
2

)
≤ 1

4N3
+

1

16N7
+

1

4N
+

1

4

≤ 13

16
.
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Since the above estimate indicates that the event{∣∣∣E[(f̃N(x))]− fN(x)
∣∣∣ ≥ N− 1

2

}
does not occur, we have the following:

P
(∣∣∣E[(f̃N(x))]− fN(x)

∣∣∣ ≥ N− 1
2

)
= 0.

This implies that ∣∣∣E[(f̃N(x))]− fN(x)
∣∣∣ ≤ N− 1

2 . (8)

Finally, combining the inequality (3) and (8), we obtain

∥E[f̃N ]− f∥L2(K0) ≤
(∫

K0

∣∣∣E[(f̃N(x))]− fN(x)
∣∣∣2 dµ(x)) 1

2

+ ∥fN − f∥L2(K0)

≤ µ(K0)
1
2N− 1

2 + C ′N− 1
2

= CN− 1
2 ,

where C := µ(K0)
1
2 + C ′. This completes the proof of Theorem 1.
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