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Abstract

For the nonlinear parameter-varying (NPV) model of unmanned surface vehicle (USV) with the consideration of the velocities

on yaw and surge as well as wave disturbances, a robust H [?] control method is proposed based on extended homogeneous

polynomial Lyapunov function (EHPLF) to regulate heading for the superior performance on the rapidity, accuracy and robust-

ness. Firstly, a NPV model of heading error is established to design a general form of a state feedback controller with a robust

H [?] performance. Secondly, a Lyapunov matrix with full states and varying parameter is constructed to derive the robust H

[?] global exponential stability conditions by Euler’s homogeneity relation for the NPV system, known as the EHPLF stability

conditions. Thirdly, since the EHPLF stability conditions consist of a set of nonlinear coupled inequalities that cannot be

directly solved by sum of squares (SOS) toolboxes, they are decoupled with matrix transformations to obtain the EHPLF-SOS

stability conditions, which is solved for the parameters of the state feedback controller. Finally, the simulation results indicate

that EHPLF method exhibits a superior performance on dynamic, steady-state and robustness.
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Summary

For the nonlinear parameter-varying (NPV) model of unmanned surface vehicle
(USV) with the consideration of the velocities on yaw and surge as well as wave
disturbances, a robust 𝐻∞ control method is proposed based on extended homoge-
neous polynomial Lyapunov function (EHPLF) to regulate heading for the superior
performance on the rapidity, accuracy and robustness. Firstly, a NPV model of head-
ing error is established to design a general form of a state feedback controller with a
robust 𝐻∞ performance. Secondly, a Lyapunov matrix with full states and varying
parameter is constructed to derive the robust 𝐻∞ global exponential stability con-
ditions by Euler’s homogeneity relation for the NPV system, known as the EHPLF
stability conditions. Thirdly, since the EHPLF stability conditions consist of a set of
nonlinear coupled inequalities that cannot be directly solved by sum of squares (SOS)
toolboxes, they are decoupled with matrix transformations to obtain the EHPLF-SOS
stability conditions, which is solved for the parameters of the state feedback con-
troller. Finally, the simulation results indicate that EHPLF method exhibits a superior
performance on dynamic, steady-state and robustness.

KEYWORDS:
heading control, nonlinear parameter-varying (NPV) model, robust 𝐻∞ control, extended homogeneous
polynomial Lyapunov function (EHPLF), sum of squares (SOS)

1 INTRODUCTION

Unmanned Surface Vehicle (USV) has complex dynamics and is susceptible to parameter uncertainties and external disturbances
such as waves, currents, and so on. These prominent nonlinear and time-varying characteristics deteriorate the performance of
heading control for USV.1,2 Therefore, it is of great significance to study a heading control method for an advanced model of
USV to improve the rapidity and accuracy of heading regulation and ensure the system robustness.3,4

Heading control technology has always been a research hotspot in USV academic fields. A 𝜇-Synthesis robust controller is de-
signed to suppress the uncertainties of Nomoto model and the disturbances caused by waves.5 To solve the mass-varying problem
of USV during navigation, a heading linear parameter-varying (LPV) model with mass-varying parameters is controlled by a
dynamic output feedback 𝐻∞ method based on improved bounded real lemma.6 Considering the influence of varying surge ve-
locity on heading control, a LPV model with surge velocity is established and controlled by a state feedback𝐻∞ heading control
method to suppress the adverse effects of surge velocity changes and external disturbances on heading regulation.7 However, it
is difficult for LPV model to accurately describe the hydrodynamic nonlinear characteristics of USV. For the nonlinear Norrbin
model with uncertain parameters, a robust𝐻∞ heading control method based on convex hull is proposed to effectively suppress
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the adverse effect of system uncertainty.8 For the Fossen model with asymmetric inertia matrix and damping coefficient matrix,
a nonlinear heading error model is established to propose a static output feedback 𝐻∞ heading control method based on ex-
tended bounded real lemma.9 Nonlinear parameter-varying (NPV) systems retain the advantages of both nonlinear and varying
parameter, including the nonlinear problem of yaw motion and varying parameter of surge velocity10,11,12. The nonlinear ma-
trix inequality (NLMI) solution conditions are derived for NPV 𝐻∞ heading controller by constructing a parameter-dependent
quadratic Lyapunov function (QLF).13 However, the parameter-dependent QLF matrix is only introduced with varying param-
eter and without state variables, which to some extent restricts the performance on dynamic, steady-state and robustness.14

Therefore, it is challenging to explore a Lyapunov matrix with full states and varying parameter to design a robust 𝐻∞ control
method for NPV system.

Compared to QLF, a polynomial Lyapunov function (PLF) is used to control nonlinear system to improve system performance
by the solution of the non-convex problem for the stability conditions.15,16,17 Non-convexity can be avoided by assuming that
the PLF matrix depends only on the state variables corresponding to the zero rows in the input matrix.18 The robust stability
conditions for a NPV system are derived by constructing a PLF matrix which introduces a varying parameter and partial state
variables.10 However, this method is limited to a class of systems with the zero rows in input matrix, and the degree of dependence
of state variables depends on the number of the zero rows in the input matrix, which generally means that Lyapunov matrix
cannot be introduced with full state variables. To some extent, this limits the freedom degree of the construction of parameter-
dependent Lyapunov function for the controller design which will affect the system performance. A homogeneous polynomial
Lyapunov function (HPLF) is introduced to improve the performance of nonlinear system.19,20,21 HPLF not only overcomes by
the Euler’s homogeneity relation the non-convex problem which caused by the derivation of the high-order PLF matrix, but also
solves the problem that PLF is limited by the zero rows of input matrix. However, HPLF matrix does not consider the problem
of varying parameter. Therefore, it is a key technology for HPLF to be constructed with full states and varying parameter in
designing robust controllers for NPV system.

Aiming at NPV model with the nonlinear varying characteristics, a robust 𝐻∞ heading control method based on extended
HPLF (EHPLF) is proposed to improve the rapidity, the accuracy and the robustness of heading regulation. Firstly, a NPV
model of heading error is established with yawing and varying surge velocity. Under the conditions of robust 𝐻∞ stability, a
general controller form of NPV closed-loop system is designed by the principle of state feedback control. Secondly, a Lyapunov
matrix with full state variables and varying parameter is constructed to obtain the robust 𝐻∞ EHPLF exponential stability
conditions. Thirdly, the EHPLF stability conditions with nonlinear coupling terms cannot be directly solved by sum of squares
(SOS) toolboxes. The matrix transformation is used to decouple the EHPLF stability conditions for the EHPLF-SOS stability
conditions, which can be directly solved by SOS toolboxes for the controller parameters. Finally, the simulation results indicate
that the proposed control method exhibits superior dynamic, steady-state and robustness performance through the comparison.

The matter of this paper is organized as follows. In Section 2, a NPV model of heading error is given. In Section 3, the
robust𝐻∞ global exponential stability conditions known as EHPLF stability conditions are presented to transform into EHPLF-
SOS stability conditions to design NPV heading controller. The numerical simulations are presented in Section 4, exhibiting a
superior advantages of EHPLF method. Concluding remarks are made in Section 5.

2 NPV MODEL OF HEADING ERROR

In the horizontal plane, USV is assumed as a three-degree-of-freedom motion of surge, sway and yaw. USV dynamics model is22

𝑀𝜈̇ + 𝐶(𝜈)𝜈 +𝐷(𝜈)𝜈 = 𝜏 + 𝜏𝑤, (1)

where 𝜈 =
[

𝑢 𝑣 𝑟
]𝑇 is the velocity vector, 𝑢,𝑣 and 𝑟 are surge, sway and yaw velocity,

[

𝑢 𝑣 𝑟
]𝑇 is the transpose matrix of

[

𝑢 𝑣 𝑟
]

,
𝜏 =

[

𝜏𝑢 0 𝜏𝑟
]𝑇 is the vector of the longitudinal thrust 𝜏𝑢 and the yaw moment 𝜏𝑟, 𝜏𝑤 =

[

𝜏𝑢𝑤 𝜏𝑣𝑤 𝜏𝑟𝑤
]𝑇 is the disturbance vector,

𝜏𝑢𝑤, 𝜏𝑣𝑤, and 𝜏𝑟𝑤 represent the external disturbances of the surge, sway and yaw motion respectively. 𝑀 is the inertia matrix.
𝐶(𝜈) is the Coriolis and centripetal matrix. 𝐷(𝜈) is the damping coefficient matrix.

(1) can be transformed into a general form of the state-space representation for the nonlinear system as

𝜈̇ = 𝐴(𝜈)𝜈 + 𝐵1𝜏𝑤 + 𝐵2𝜏, (2)

where 𝐴(𝜈) = −𝑀−1(𝐶(𝜈) +𝐷(𝜈)), 𝑀−1 is the inverse matrix of 𝑀 , 𝐵1 = 𝐵2 =𝑀−1.
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Since the sway velocity 𝑣 is assumed as very small, i.e., 𝑣 ≈ 0, the sway motion model and the coupling terms with 𝑣 can be
neglected. Moreover, the surge velocity 𝑢 is assumed as a varying parameter 𝜎(𝑡). For (2), NPV model of heading error can be
derived as13

𝑥̇ = 𝐴(𝑥, 𝜎(𝑡))𝑥 + 𝐵1𝑤 + 𝐵2𝑢𝜏 ,
𝑧 = 𝐶𝑥 +𝐷1𝑤 +𝐷2𝑢𝜏 ,

(3)

where 𝑥 =
[

𝑟 𝜓𝑒
]𝑇 , the heading angle error 𝜓𝑒 = 𝜓𝑑 − 𝜓 , 𝜓𝑑 is the desired heading angle, 𝜓 is the measured heading angle,

controller output 𝑢𝜏 =
[

𝜏𝑟 0
]𝑇 , external disturbance 𝑤 =

[

𝜏𝑟𝑤 0
]𝑇 . 𝐴(𝑥, 𝜎(𝑡)) =

[

𝑐1𝜎(𝑡) + 𝑐2𝜎2(𝑡) + 𝑐3𝑟2 0
−1 0

]

, 𝐵1 = 𝐵2 =
[

𝑐4 0
]𝑇 , 𝐶 =

[

0 1
]

, 𝐷1 = 𝐷2 =
[

0 0
]𝑇 , 𝑐𝑖(𝑖 = 1, 2, 3, 4) are the NPV model parameters.

3 NPV HEADING CONTROLLER BY EHPLF

3.1 State feedback controller with robust 𝐻∞ performance
For NPV model (3), the state feedback controller is designed as

𝑢𝜏 = 𝐾(𝑥, 𝜎(𝑡))𝑥. (4)

With (3) and (4), the closed-loop system of NPV is
𝑥̇ = 𝐴̂(𝑥, 𝜎(𝑡))𝑥 + 𝐵1𝑤,
𝑧 = 𝐶̂𝑥 +𝐷1𝑤,

(5)

where
𝐴̂(𝑥, 𝜎(𝑡)) = 𝐴(𝑥, 𝜎(𝑡)) + 𝐵2𝐾(𝑥, 𝜎(𝑡)),

𝐶̂ = 𝐶 +𝐷2𝐾(𝑥, 𝜎(𝑡)).
(6)

For (5), it is useful for robust 𝐻∞ control technology to suppress system parameter uncertainties and external disturbances.
For any initial system state 𝑥(𝑡0), if the system state and the integral inequality 𝐽 with the control output 𝑧 and the disturbance
𝑤 satisfy the inequalities:9,23

‖𝑥(𝑡)‖ < 𝑏𝑒−𝜅(𝑡−𝑡0) ‖
‖

𝑥(𝑡0)‖‖ ,∀𝑡 ≥ 𝑡0 ≥ 0, (7)

𝐽 =

∞

∫
0

(𝑧𝑇 𝑧 − 𝛾2𝑤𝑇𝑤)𝑑𝑡 < 0, 𝑤 ∈ 𝐿2 (0,∞] , (8)

where ‖⋅‖ denotes a suitable norm (e.g., Euclidean norm), 𝑏 > 0 and 𝜅 > 0 are constants, 𝛾 > 0 is the𝐻∞ performance criteria.
(7) and (8) mean that the system is globally exponentially stable with the robust𝐻∞ performance. Moreover, for any initial state
of the system, the system state decays exponentially and stabilizes within a bounded range as time 𝑡 approaches infinity. These
implies that the system possesses global exponential stability and eventually converge to a bounded stable state, regardless of
the initial state.

3.2 EHPLF stability conditions
To achieve global exponential stability and 𝐻∞ performance for the closed-loop system (5), it is necessary to design an NPV
controller (4) with the conditions of (7) and (8). Since both the method of PLF and the method of QLF restrict the sys-
tem performance10,13, EHPLF matrix with full states and varying parameter for NPV system is proposed to improve system
performance.

For the closed-loop system(5), EHPLF is designed as

𝑉 (𝑥, 𝜎(𝑡)) = 𝑥𝑇𝑃 (𝑥, 𝜎(𝑡))𝑥, (9)

where 𝑃 (𝑥, 𝜎(𝑡)) is EHPLF matrix with full states and varying parameter.
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The general form of EHPLF (9) is rewritten as

𝑉 (𝜉) = 𝜉𝑇𝑇 (𝜉)𝜉, (10)

where 𝜉 =
[

𝑥
𝜎(𝑡)

]

, 𝑇 (𝜉) =
[

𝑇11(𝑥, 𝜎(𝑡)) 𝑇12(𝑥, 𝜎(𝑡))
𝑇 𝑇12(𝑥, 𝜎(𝑡)) 𝑇22(𝑥, 𝜎(𝑡))

]

=
[

𝑃 (𝑥, 𝜎(𝑡)) 0
0 0

]

is a homogeneous polynomial symmetric matrix, the

0 represents the zero matrix of appropriate dimensions. Compared to HPLF, EHPLF considers not only the full state 𝑥, but also
the varying parameter 𝜎(𝑡), specially for NPV system.

Lemma 1 (Euler’s homogeneity relation19). If 𝑉 (𝑥) is a homogeneous polynomial function of degree 𝑔, the following relation
holds

𝑔𝑉 (𝑥) = 𝑥𝑇∇𝑥𝑉 (𝑥) = ∇𝑥𝑉 (𝑥)𝑇𝑥, (11)

where ∇𝑥𝑉 (𝑥) = 𝜕𝑉 (𝑥)∕𝜕𝑥 is the gradient of 𝑉 (𝑥) with respect to 𝑥.

Theorem 1. NPV closed-loop system (5) is globally exponentially stable with a robust 𝐻∞ performance by the form of the
state feedback controller (4) under the EHPLF stability conditions as

𝜂𝑇1 (𝑃 (𝑥, 𝜎(𝑡)) − 𝜀1𝐼)𝜂1 ≥ 0, (12)

𝜂𝑇2 (𝜀2𝐼 − 𝑃 (𝑥, 𝜎(𝑡)))𝜂2 ≥ 0, (13)

𝜂𝑇3
(

Π + 𝜀3𝐼
)

𝜂3 ≤ 0, (14)

where

Π =
⎡

⎢

⎢

⎣

Θ 𝑔
2
𝑃 (𝑥, 𝜎(𝑡))𝐵1 𝐶̂𝑇

∗ −𝛾2𝐼 𝐷1
𝑇

∗ ∗ −𝐼

⎤

⎥

⎥

⎦

, (15)

Θ =
𝑔
2
ℎ𝑒(𝑋) + 𝛼𝑃 (𝑥, 𝜎(𝑡)), (16)

𝑋 = 𝐴̂𝑇 (𝑥, 𝜎(𝑡))𝑃 (𝑥, 𝜎(𝑡)), (17)

ℎ𝑒(𝑋) = 𝑋 + 𝑋𝑇 , 𝑃 (𝑥, 𝜎(𝑡)) is a positive definite symmetric EHPLF matrix, 𝐾(𝑥, 𝜎(𝑡)) is a polynomial state feedback gain
matrix, 𝜀𝑖 > 0(𝑖 = 1, 2, 3) are constants and 𝜀2 > 𝜀1, 𝛼 > 0 is the exponential decay coefficient, ∗ is a symmetric block of the
symmetric matrix, 𝜂𝑖(𝑖 = 1, 2, 3) are column vectors of proper dimensions, the 𝐼 is the identity matrix of appropriate dimensions.

Proof. from (12) and (13), the relation is

0 < 𝜀1𝑥𝑇𝑥 ≤ 𝑥𝑇𝑃 (𝑥, 𝜎(𝑡))𝑥 ≤ 𝜀2𝑥
𝑇𝑥. (18)

With (10), (18) is

0 < 𝜀1‖𝑥‖
2 ≤ 𝑉 (𝜉) ≤ 𝜀2‖𝑥‖

2. (19)

𝑉 (𝜉) is positive definite and bounded from (19).
Since Lemma 1 of a homogeneous polynomial function 𝑉 (𝜉), the gradient of 𝑉 (𝜉) with respect to 𝜉 is

∇𝜉𝑉 (𝜉) = 1
𝑔 − 1

∇𝜉𝜉𝑉 (𝜉)𝜉, (20)

where ∇𝜉𝜉𝑉 (𝜉) means the Hessian of 𝑉 (𝜉).
Both sides of (20) are left-multiplied by 𝜉𝑇 ,

𝜉𝑇∇𝜉𝑉 (𝜉) = 1
𝑔 − 1

𝜉𝑇∇𝜉𝜉𝑉 (𝜉)𝜉. (21)

With (11), (21) is

𝑉 (𝜉) = 𝜉𝑇𝑇 (𝜉)𝜉 = 1
𝑔(𝑔 − 1)

𝜉𝑇∇𝜉𝜉𝑉 (𝜉)𝜉. (22)



Huang ET AL 5

The derivative of 𝑉 (𝜉) is

𝑉̇ (𝜉) =
𝑑𝑉 (𝜉)
𝑑𝑡

=
𝜕𝑉 (𝜉)
𝜕𝑥1

𝑑𝑥1
𝑑𝑡

+
𝜕𝑉 (𝜉)
𝜕𝑥2

𝑑𝑥2
𝑑𝑡

+⋯ +
𝜕𝑉 (𝜉)
𝜕𝑥𝑛

𝑑𝑥𝑛
𝑑𝑡

+
𝜕𝑉 (𝜉)
𝜕𝜎(𝑡)

𝑑𝜎(𝑡)
𝑑𝑡

= 𝜉̇𝑇∇𝜉𝑉 (𝜉).

(23)

With (20), (23) is

𝑉̇ (𝜉) = 1
𝑔 − 1

𝜉̇𝑇∇𝜉𝜉𝑉 (𝜉)𝜉. (24)

With (22), (24) is
𝑉̇ (𝜉) = 𝑔𝜉̇𝑇𝑇 (𝜉)𝜉

= 𝑔
[

𝑥̇
𝜎̇(𝑡)

]𝑇 [ 𝑇11(𝑥, 𝜎(𝑡)) 𝑇12(𝑥, 𝜎(𝑡))
𝑇 𝑇12(𝑥, 𝜎(𝑡)) 𝑇22(𝑥, 𝜎(𝑡))

] [

𝑥
𝜎(𝑡)

]

= 𝑔(𝐴̂(𝑥, 𝜎(𝑡))𝑥 + 𝐵1𝑤)𝑇𝑃 (𝑥, 𝜎(𝑡))𝑥.

(25)

When 𝑤 = 0, (25) is

𝑉̇ (𝜉) =
𝑔
2
𝑥𝑇ℎ𝑒(𝐴̂𝑇 (𝑥, 𝜎(𝑡))𝑃 (𝑥, 𝜎(𝑡)))𝑥. (26)

According to the negative definiteness of the matrix, (14) holds means Θ of (16) is
𝑔
2
ℎ𝑒(𝐴̂𝑇 (𝑥, 𝜎(𝑡))𝑃 (𝑥, 𝜎(𝑡))) + 𝛼𝑃 (𝑥, 𝜎(𝑡)) < 0. (27)

(27) is multiplied by the left with 𝑥𝑇 and on the right with 𝑥,
𝑔
2
𝑥𝑇ℎ𝑒(𝐴̂𝑇 (𝑥, 𝜎(𝑡))𝑃 (𝑥, 𝜎(𝑡)))𝑥 < −𝛼𝑥𝑇𝑃 (𝑥, 𝜎(𝑡))𝑥. (28)

with (26), (28) is

𝑉̇ (𝜉) < −𝛼𝑉 (𝜉) < 0, (29)

(29) is deduced as

𝑉 (𝜉(𝑡)) < 𝑒−𝛼(𝑡−𝑡0)𝑉 (𝜉(𝑡0)). (30)

With (30), (19) is

‖𝑥(𝑡)‖ ≤

√

1
𝜀1
𝑉 (𝜉(𝑡)) <

√

1
𝜀1
𝑉 (𝜉(𝑡0)) ⋅ 𝑒−𝛼(𝑡−𝑡0)

≤
√

𝜀2
𝜀1

‖

‖

𝑥(𝑡0)‖‖
2 ⋅ 𝑒−𝛼(𝑡−𝑡0)

=
√

𝜀2
𝜀1

‖

‖

𝑥(𝑡0)‖‖ ⋅ 𝑒
− 1

2
𝛼(𝑡−𝑡0),∀𝑡 ≥ 𝑡0 ≥ 0,

(31)

which is simplified as

‖𝑥(𝑡)‖ <
√

𝜀2
𝜀1

‖

‖

𝑥(𝑡0)‖‖ ⋅ 𝑒
− 1

2
𝛼(𝑡−𝑡0),∀𝑡 ≥ 𝑡0 ≥ 0. (32)

When 𝑏 =
√

𝜀2
𝜀1

and 𝜅 = 1
2
𝛼, (32) is equal to (7), which means that the NPV system (5) is globally exponentially stable with the

conditions of (12) and (13).
The robust 𝐻∞ performance of the closed-loop system is proved as following.
(14) holds means Π of (15) is

⎡

⎢

⎢

⎣

Θ 𝑔
2
𝑃 (𝑥, 𝜎(𝑡))𝐵1 𝐶̂𝑇

∗ −𝛾2𝐼 𝐷1
𝑇

∗ ∗ −𝐼

⎤

⎥

⎥

⎦

< 0. (33)
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Via Schur complementary lemma,24 (33) is equivalent to
[

𝐶̂𝑇

𝐷1
𝑇

]

[

𝐶̂ 𝐷1
]

+
[

Θ 𝑔
2
𝑃 (𝑥, 𝜎(𝑡))𝐵1

∗ −𝛾2𝐼

]

< 0. (34)

(34) is multiplied by the left term
[

𝑥𝑇 𝑤𝑇
]

and the right term
[

𝑥𝑇 𝑤𝑇
]𝑇 ,

[

𝑥
𝑤

]𝑇 [Θ + 𝐶̂𝑇 𝐶̂ 𝑔
2
𝑃 (𝑥, 𝜎(𝑡))𝐵1 + 𝐶̂𝑇𝐷1

∗ −𝛾2𝐼 +𝐷1
𝑇𝐷1

] [

𝑥
𝑤

]

< 0, (35)

(35) is expanded as

𝑉̇ (𝜉) + 𝑧𝑇 𝑧 − 𝛾2𝑤𝑇𝑤 + 𝛼𝑉 (𝜉) < 0. (36)

Since 𝛼𝑉 (𝜉) > 0, the term of (36) is

𝑉̇ (𝜉) + 𝑧𝑇 𝑧 − 𝛾2𝑤𝑇𝑤 < 0. (37)

From (37), the relation is

𝐽 =

∞

∫
0

(𝑧𝑇 𝑧 − 𝛾2𝑤𝑇𝑤)𝑑𝑡

=

∞

∫
0

(𝑉̇ (𝜉) + 𝑧𝑇 𝑧 − 𝛾2𝑤𝑇𝑤)𝑑𝑡 − 𝑉 (𝜉)

< 0, 𝑤 ∈ 𝐿2 (0,∞] .

(38)

(38) is equal to (8), which means that the NPV closed-loop system (5) has robust 𝐻∞ performance with Theorem 1. This
completes the proof.

However, (14) contains a coupling term 𝑋 of (17), which is difficultly solved by the existing methods. Moreover, the closed-
loop system matrix 𝐴̂(𝑥, 𝜎(𝑡)) and the EHPLF matrix 𝑃 (𝑥, 𝜎(𝑡)) of (17) contain both system states and varying parameter, which
cannot be solved by LMI solver. Therefore, it is crucial technology to decouple the nonlinear coupling term𝑋 of (17) to transform
the EHPLF stability conditions into SOS stability conditions.

3.3 EHPLF-SOS stability conditions
Definition 1 (SOS12). With real polynomials 𝑞1(𝑥), 𝑞2(𝑥),… , 𝑞𝑘(𝑥), a real multivariate polynomial 𝑝

(

𝑥1, 𝑥2,… , 𝑥𝑛
) Δ
= 𝑝 (𝑥) is

given as

𝑝(𝑥) =
𝑘
∑

𝑖=1
𝑞2𝑖 (𝑥), 𝑘 ∈ 𝐍, (39)

then 𝑝(𝑥) is SOS polynomial, namely 𝑝(𝑥) ∈ ΣSOS, ΣSOS is a set of all SOS polynomials.

SOS polynomial is used to transform non-negative polynomial problems into convex optimization problems for solutions by
convex optimization algorithms. Here, the stability conditions in Theorem 1 is modified into SOS polynomial to solve NPV
controller and to achieve global exponential stability with a robust 𝐻∞ performance for the closed-loop system (5).

Theorem 2. NPV closed-loop system (5) is globally exponentially stable with a robust𝐻∞ performance under the EHPLF-SOS
stability conditions as

𝜂𝑇1 (𝑃 (𝑥, 𝜎(𝑡)) − 𝜀1𝐼)𝜂1 ∈ ΣSOS,
𝜂𝑇2 (𝜀2𝐼 − 𝑃 (𝑥, 𝜎(𝑡)))𝜂2 ∈ ΣSOS,

−𝜂𝑇3
(

Ψ + 𝜀3𝐼
)

𝜂3 ∈ ΣSOS,
(40)
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where

Ψ =

⎡

⎢

⎢

⎢

⎢

⎣

Ψ11 Ψ12 −𝐺𝑇𝐶𝑇 −𝑍𝑇 (𝑥, 𝜎(𝑡))𝐷2
𝑇 −𝐵1𝐻(𝑥, 𝜎(𝑡))

∗ 𝜆(𝐺 + 𝐺𝑇 ) −𝜆(𝐺𝑇𝐶𝑇 +𝑍𝑇 (𝑥, 𝜎(𝑡))𝐷2
𝑇 ) 0

∗ ∗ −𝛾2𝐼 −𝐷1𝐻(𝑥, 𝜎(𝑡))
∗ ∗ ∗ 𝐼 +𝐻(𝑥, 𝜎(𝑡)) +𝐻𝑇 (𝑥, 𝜎(𝑡))

⎤

⎥

⎥

⎥

⎥

⎦

, (41)

where Ψ11 = −ℎ𝑒(𝐴(𝑥, 𝜎(𝑡))𝐺 +𝐵2𝑍(𝑥, 𝜎(𝑡))) + 𝛼𝑃 (𝑥, 𝜎(𝑡)), Ψ12 =
𝑔
2
𝑃 (𝑥, 𝜎(𝑡)) +𝐺𝑇 − 𝜆(𝐴(𝑥, 𝜎(𝑡))𝐺 +𝐵2𝑍(𝑥, 𝜎(𝑡))). 𝐺 is a

constant matrix, 𝑍(𝑥, 𝜎(𝑡)) is a polynomial matrix, 𝐻(𝑥, 𝜎(𝑡)) is a polynomial matrix, 𝜆 > 0 is a tuning scalar.

Proof. From (40), it is possible to obtain Ψ < 0 in (41).
A novel matrix is defined as

Ξ𝑇 =
[

𝐼 𝐴̂(𝑥, 𝜎(𝑡)) 0 𝐵1
0 𝐶̂ 𝐼 𝐷1

]

, (42)

where
𝐴̂(𝑥, 𝜎(𝑡)) = 𝐴(𝑥, 𝜎(𝑡)) + 𝐵2𝑍(𝑥, 𝜎(𝑡))𝐺−1,

𝐶̂ = 𝐶 +𝐷2𝑍(𝑥, 𝜎(𝑡))𝐺−1.
(43)

With (42), Ψ is multiplied by the left term Ξ𝑇 and the right term Ξ,
[

Θ + 𝐵1𝐵1
𝑇 𝑔

2
𝑃 (𝑥, 𝜎(𝑡))𝐶̂𝑇 + 𝐵1𝐷1

𝑇

∗ −𝛾2𝐼 +𝐷1𝐷1
𝑇

]

< 0. (44)

Via Schur complementary lemma,24 (44) is equivalent to

⎡

⎢

⎢

⎣

Θ 𝑔
2
𝑃 (𝑥, 𝜎(𝑡))𝐶̂𝑇 𝐵1

∗ −𝛾2𝐼 𝐷1
∗ ∗ −𝐼

⎤

⎥

⎥

⎦

< 0. (45)

(45) is a dual version of (33) presented in Theorem 1, implying that (40) is a sufficient condition for (7) and (8). Therefore, the
NPV closed-loop system (5) is globally exponentially stable with a robust 𝐻∞ performance under the EHPLF-SOS stability
conditions in Theorem 2. This completes the proof.

3.4 EHPLF-based NPV controller
By comparing (43) with (6), the NPV controller (4) based on EHPLF is

𝑢𝜏 = 𝐾(𝑥, 𝜎(𝑡))𝑥 = 𝑍(𝑥, 𝜎(𝑡))𝐺−1𝑥, (46)

Therefore, if there exists a state feedback controller given by (46) under the EHPLF-SOS stability conditions for the closed-loop
system (5), it is referred to as globally exponentially stable and exhibits 𝐻∞ performance.

4 SIMULATION

A twin-propeller USV is used as the controlled plant. The parameters of NPV model (3) are, 𝑐1 = −4.0836, 𝑐2 = −0.0450,
𝑐3 = −2.0114, 𝑐4 = 3.2995. Considering actuator saturation, the controller output moment 𝜏𝑟 is constrained to be in the range
of [−15, 15]N ⋅m. EHPLF heading control system is shown in Figure 1.

4.1 Solution of NPV controller based on EHPLF
In EHPLF-SOS stability conditions (40), the𝐻∞ performance criteria is 𝛾 = 1, the degree of EHPLF is 𝑔 = 4, the tuning scalar
is 𝜆 = 0.1, the exponential decay coefficient is 𝛼 = 0.1, and the constants are 𝜀1 = 1 × 10−6, 𝜀2 = 5 × 103, 𝜀3 = 1 × 10−6. By
using the MATLAB toolbox SOSTOOLS,25 the EHPLF matrix and controller parameters are obtained,

𝑃 (𝑥, 𝜎(𝑡)) =
[

𝑃11 𝑃12
𝑃21 𝑃22

]

, (47)
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EHPLF-SOS stability conditions (40)

Controller

(46)

NPV model

(3)

A(x, (t))Z(x, (t))

(t)

B1, B2, C, D1, D2G 
1

w

 

r

d

 

e

Figure 1 EHPLF heading control system

where

𝑃11 = −0.0054635𝜎(𝑡)2 + 1.4552 × 10−11𝜎(𝑡)𝑥1 − 3.638 × 10−12𝜎(𝑡)𝑥2
− 0.0054048𝑥12 + 3.2742 × 10−11𝑥1𝑥2 − 0.005755𝑥22,

𝑃12 = 𝑃21 = −2.0903 × 10−5𝜎(𝑡)2 + 1.819 × 10−11𝜎(𝑡)𝑥1 + 7.276 × 10−12𝜎(𝑡)𝑥2
+ 2.3842 × 10−5𝑥12 + 2.1828 × 10−11𝑥1𝑥2 − 1.4552 × 10−11𝑥22,

𝑃22 = −0.0066888𝜎(𝑡)2 + 2.1828 × 10−11𝜎(𝑡)𝑥1 − 5.8208 × 10−11𝜎(𝑡)𝑥2
− 0.0066866𝑥12 − 3.638 × 10−11𝑥1𝑥2 − 0.0066865𝑥22.

𝑍(𝑥, 𝜎(𝑡)) =
[

𝑍11 𝑍12
]

, (48)

where

𝑍11 = −2320.4497𝜎(𝑡)2 − 8.4765 × 10−10𝜎(𝑡)𝑥1 − 8.331 × 10−10𝜎(𝑡)𝑥2 + 1595.82𝑥12 + 1.0295 × 10−9𝑥1𝑥2
+ 2.4645𝑥22 + 3153.7972𝜎(𝑡) + 3.6282 × 10−8𝑥1 + 8.0734 × 10−8𝑥2 + 3547.3409,

𝑍12 = −232.1399𝜎(𝑡)2 − 3.2742 × 10−11𝜎(𝑡)𝑥1 − 3.638 × 10−12𝜎(𝑡)𝑥2 + 159.2279𝑥12 − 4.0018 × 10−11𝑥1𝑥2
− 3.638 × 10−12𝑥22 + 315.2127𝜎(𝑡) + 3.6889 × 10−9𝑥1 + 8.1091 × 10−9𝑥2 + 354.2202.

𝐺 =
[

−1169.4976 −116.8834
−108.6262 −10.8626

]

. (49)

With (48) and (49), the EHPLF-based NPV controller (46) is
𝑢𝜏 = 𝑍(𝑥, 𝜎(𝑡))𝐺−1𝑥

= −1.4149𝜎(𝑡)2𝑥1 + 36.5952𝜎(𝑡)2𝑥2 + 7.8032 × 10−10𝜎(𝑡)𝑥12 − 7.1983 × 10−9𝜎(𝑡)𝑥1𝑥2 − 1.2858 × 10−8𝜎(𝑡)𝑥22

− 5.3185𝑥13 + 42.5695𝑥12𝑥2 − 3.6966𝑥1𝑥22 + 39.776𝑥23 − 2.5187𝜎(𝑡)𝑥1 − 1.9169𝜎(𝑡)𝑥2 + 9.1113 × 10−10𝑥12

− 9.609 × 10−9𝑥1𝑥2 − 6.497 × 10−9𝑥22 − 7.7227𝑥1 + 50.4887𝑥2.

(50)

4.2 Nonlinear heading performance analysis
The nonlinearity of NPV model (3) is caused by the high-order term of yaw velocity. Different yaw velocities reflect the varying
degree of nonlinearity for NPV system. To compare the nonlinear control performance of EHPLF and PLF10 methods on
the NPV system, external disturbance is 𝑤 = 0, the surge velocity is 𝑢 = 1.5 m/s, and the desired heading angle is 𝜓𝑑 =
𝜋∕3+0.4 sin(0.05𝛽1𝜋𝑡) rad26, yaw velocity is 𝑟 = 𝜓̇𝑑 = 0.02𝛽1𝜋 cos(0.05𝛽1𝜋𝑡) rad/s. Different values of 𝛽1(𝛽1 = 1, 2, 4) indicate
different levels of nonlinearity. Figure 2 shows the heading angle responses of the system for 𝛽1 = 2 and 4. Figure 3 shows the
heading angle errors 𝜓𝑒 for different values of 𝛽1.

Figure 2A shows the transient time of EHPLF is 0.580 s and PLF is 1.180 s when 𝛽1 = 2. Figure 2B shows the transient time
for these two methods are 0.624 s and 1.420 s when 𝛽1 = 4, respectively. The transient time of the EHPLF control system is
about half of PLF control system. Figure 3 shows the steady-state errors of the heading angle with EHPLF method is ±0.008012
rad of 𝛽1 = 1, ±0.01602 rad of 𝛽1 = 2, and ±0.03203 rad of 𝛽1 = 4, respectively, while it is ±0.01915 rad of 𝛽1 = 1, ±0.03818
rad of 𝛽1 = 2, and ±0.07544 rad of 𝛽1 = 4 for the PLF method respectively. Moreover, the steady-state errors increase as
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Figure 2 Heading angle responses. (A) 𝛽1 = 2; (B) 𝛽1 = 4
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Figure 3 Heading angle errors. (A) EHPLF method; (B) PLF method

𝛽1 increases, but the errors by EHPLF method always is exhibits smaller than PLF. Therefore, EHPLF can better suppress the
nonlinear characters of NPV system compared with PLF.

4.3 Analysis of heading performance with varying surge velocity
To analyze the suppression of varying parameter of surge velocity, the external disturbance is 𝑤 = 0, the desired heading angle
is 𝜓𝑑 = 𝜋∕3 rad, and the varying surge velocity is 𝑢 = (sin(𝛽2𝑡) + 1) m/s.13 𝛽2(𝛽2 = 0.1, 1, 2, 3) represents different rates of
varying parameters. Figure 4 shows the responses of the heading control system when 𝛽2 = 2. Figure 5 shows the variation of
yaw velocity 𝑟 for different values of 𝛽2 by the two methods.

Figure 4A shows the transient time of EHPLF and PLF control systems is 0.525 s and 0.912 s when 𝛽2 = 2, which implies the
EHPLF control system still exhibits a shorter transient time. Figure 4B shows the yaw velocity variation by EHPLF is smoother
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Figure 4 The responses of heading control system. (A) heading angle responses; (B) yaw velocity responses
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Figure 5 Yaw velocity responses. (A) EHPLF method; (B) PLF method

than that by PLF, which enhances the stable navigation of USV. Figure 5 shows that the fluctuations of the state 𝑟 increase as
𝛽2 increases of both EHPLF system and PLF system. As it can be seen that the fluctuations of the state 𝑟 of EHPLF system are
smaller than those of PLF system. Therefore, the EHPLF method can effectively suppress the adverse effects of varying surge
velocity 𝑢 on NPV system, and exhibits a faster response and stronger robustness.

4.4 Analysis of heading performance with external disturbance
In order to suppress unknown wave disturbances, external wave disturbances are introduced as27

𝑤 = 𝐴𝑤 sin(𝜔𝑒𝑡 + 𝜗), (51)
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where 𝐴𝑤 = 0.3 is the wave amplitude, 𝜗 = 0 rad is the random phase, 𝜔𝑒 is the encounter frequency which is assumed to be
distributed randomly within the range [0.3, 1.3] rad/s. The desired heading angle is 𝜓𝑑 = 𝜋∕3 rad, the varying surge velocity is
𝑢 = (sin(𝑡) + 1) m/s. Figure 6 shows the responses of heading angle by the two methods.
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Figure 6 The responses of heading angle

In Figure 6, EHPLF system exhibits the transient time and the steady-state error of 0.555 s and ±0.00105 rad respectively,
while PLF system shows the transient time and the steady-state error of 0.921 s and ±0.00131 rad. Compared to the PLF system,
EHPLF system has the shorter transient time, the smaller steady-state error, and the stronger robustness to suppress external
disturbances.

5 CONCLUSIONS

A robust𝐻∞ heading control method is proposed by EHPLF for NPV model of the USV, which effectively enhances the system
performance. Firstly, a NPV model of heading error is established with the nonlinearity of the yaw velocity and the varying
surge velocity, and a general form of state feedback controller is constructed by the exponential stability conditions with a robust
𝐻∞ performance. Secondly, a Lyapunov matrix is defined with full states and varying parameter with the idea of HPLF. By
utilizing the Euler’s homogeneity relation, the robust 𝐻∞ global exponential stability conditions are deduced for NPV system,
namely EHPLF stability conditions. Thirdly, since EHPLF stability conditions consist of a set of nonlinear coupled inequalities,
they cannot be directly solved by SOSTOOLS. The EHPLF stability conditions are decoupled by the matrix transformation to
obtain the EHPLF-SOS stability conditions, which are solved directly to obtain the parameters of the NPV controller. Finally,
NPV controller based on EHPLF is applied to simulate the USV heading control. The simulation results indicate that,

1. Both the transient time and steady-state errors of the EHPLF system are approximately 50% of those of the PLF system
for different degrees of nonlinear.

2. The EHPLF system also exhibits a transient time of about 50% of the PLF system, and has the smaller fluctuations of the
state 𝑟 than those of PLF system with the different varying parameter of the surge velocity.

3. With unknown wave disturbances, the EHPLF system also exhibits smaller steady-state errors than those of the PLF
system.
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