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Abstract

The distributed and privacy-preserving characteristics of fine-grained smart grid data hinder data sharing, making federated

learning an attractive approach for collaborative training among data owners with similar load patterns. However, malicious

models can interfere with training in the federated learning aggregation process, making it difficult to ensure the accuracy

and safety of the central model in load forecasting. Therefore, we propose a secure aggregation federated learning method for

distributed load forecasting based on similarity and distance (Fed-SAD), which effectively eliminates the interference of malicious

models by securely aggregating models, thereby ensuring accurate and safe distributed scenario prediction. Experimental results

demonstrate that Fed-SAD maintains high accuracy and robustness in both the presence and absence of malicious models, while

maintaining data and model security.
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1 Introduction

As the power system continues to develop, data analysis and secu-
rity have become increasingly important issues. Accurate and safe
load demand forecasting using historical data in the power system
can help power companies and operators make rational operational
decisions and optimal plans[26]. Researchers have applied various
algorithms like BP neural network and decision trees to the field
of power data analysis and improved them to be more adaptable,
enabling the use of artificial intelligence methods for accurate data
prediction and analysis[1]. With the fine-grained segmentation and
distributed management of modern power grids, data exhibits a dis-
tributed nature. For instance, data samples obtained from various
regions, household meters, and substations are subject to high data
confidentiality requirements, which limit data sharing and restrict
the utility of data. To address this challenge, federated learning -
an approach proposed by Google in 2016 - presents a promising
solution that effectively balances the conflict between power data
availability and data privacy. The participants can jointly train mod-
els by aggregating model parameters trained on local data, enabling
them to share training parameters and expand data samples[21]. To
leverage the benefits of federated learning and meet the demands of
distributed forecasting scenarios, current research applies federated
learning to forecasting datasets with similar energy consumption
characteristics[6]. Such an approach can effectively resolve pri-
vacy issues in load forecasting scenarios and enhance predictive
capabilities[23].

Despite its potential benefits, federated learning faces attackers
uploading malicious models in the model aggregation process. Such
issues could impact the accuracy of the overall model. During the
model training process, if the central server aggregates the uploaded
parameters without evaluating their reasonableness, it could affect
the accuracy of the overall model parameters. Subsequently, other
participants who use the centralized model parameters issued by
the server for local model training could experience reduced model
accuracy[16]. The current aggregation methods for load prediction
models in federated learning have certain limitations. For instance,
the classical Federated Average Aggregation Algorithm (FedAvg)
weights the model based solely on the sample size of the train-
ing data volume of each participant. However, this approach does

not take into account practical scenarios and does not consider the
quality of the data samples provided by the participants. Further-
more, it does not address issues such as the presence of malicious
models that might interfere with the overall model aggregation qual-
ity in real-world applications. Such limitations could ultimately
reduce the predictive and generalization capabilities of the final
model. Prior research has revealed that using the FedAvg algorithm
to directly aggregate the parameters of local models can lead to
a loss of training performance for the entire federated learning
process if some participant nodes upload malicious model param-
eters, which would negatively impact the training results of other
participants[17]. There are a limited number of research methods
that address secure aggregation based on federated learning in the
context of distributed load forecasting, and these methods have
certain limitations. For instance, the method that spectral cluster-
ing algorithm to detect poisoning attacks fails to fully account for
the quality of each participant’s parameters during the aggrega-
tion process[18], while FedClamp relies on a testing and validation
method to ensure the reasonableness of uploaded parameters, which
lengthens each round[14].

This paper proposes a federated learning secure aggregation
algorithm to tackle the issue of malicious models in load predic-
tion collaboration based on Federated Learning. At each round of
central model aggregation, the proposed algorithm first calculates
the parameter similarity between two participants using the param-
eters uploaded by local participants. It then analyzes problem by
solving the "maximum clique problem" using graph theory. The
model parameters in the "maximum clique" are then used to approx-
imate the parameters of the global model for the current training
round. To achieve this, the algorithm utilizes cosine similarity as
the metric for model features, which has been shown to be a bet-
ter choice[19]. Cosine similarity takes into account the direction
and is not affected by scaling effects. Mathematically, the cosine
similarity measures the angle between two input vectors, and the
smaller the angle, the higher the cosine similarity value. Therefore,
using cosine similarity to calculate the approximate global model
parameters leads to relatively accurate results and accelerates the
model’s convergence. Furthermore, the algorithm employs the Gaus-
sian probability distribution function to assign a larger weight to
participants with smaller distances between the approximate global
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model calculated in each round and their respective local models.
The proposed method further improves the quality of the central
model.

Based on the aforementioned analysis, applying federated learn-
ing directly for model training and aggregation in the current
data collaborative training scenarios in the electric power industry
presents potential vulnerabilities. Such an approach could enable
malicious participants to upload malicious models and interfere
with the entire federated learning training process. Therefore, this
paper proposes a secure aggregation federated learning method for
distributed load forecasting based on similarity and distance (Fed-
SAD) that ensures model security aggregation while maintaining the
privacy of load data owners.

To summarize, this paper makes the following three contributions:
(1) We propose Fed-SAD, a secure aggregation method for feder-

ated learning. The global model parameters of the approximate solu-
tion is used as the criteria for selecting participants in each round,
which facilitates the prompt identification of malicious models and
accelerates model convergence.

(2) A Gaussian probability density function is introduced into the
method, which assign different weights to each participant in order
to further improve the quality of the model.

(3) We conduct experiments in collaborative training scenarios
for load forecasting in federated learning to prove the effectiveness
and robustness of the propsed method. Fed-SAD effectively excludes
malicious models while enhancing prediction accuracy.

2 Related work

2.1 Secure aggregation method research based on
federated learning

In the context of federated learning, the training process is designed
to prevent the central server from accessing data from participants
directly, limiting it to only aggregating model parameters from par-
ticipants. However, the inability to detect malicious models during
the parameter aggregation process could negatively impact the entire
training process, resulting in subpar model quality and reduced train-
ing accuracy for all participants. Currently, security aggregation
algorithms for federated learning mainly include the aggregation
algorithm based on the model update feature difference and the
aggregation algorithm based on the verification data set[9].

The model update feature difference aggregation algorithm lever-
ages the differences between normal and malicious model updates
to allow the central server to distinguish the latter. One example of
this type of algorithm is the multi-Krum model, which calculates
the Euclidean distance between all local models and excludes edge
nodes that are relatively far from the overall distribution[3]. Mean-
while, the Cao scheme treats participants as nodes in a graph. When
the Euclidean distance between two participants’ model weight
parameters is less than a defined threshold, a link is added between
them. The server subsequently identifies the largest clique on the
generated graph, then takes the average of the node parameters
on that clique as the aggregation result[5] . Another approach is
FoolsGold, which first calculates historical aggregated updates for
each participant in each iteration before adjusting weights based on
maximum cosine similarity with other participants. Less similarity
implies a greater likelihood of malicious updates and lower weights,
with the final result being a weighted average of the updates[7].
Median aggregates its input gradients by computing the median of
the values of each dimension of the gradient[25]. However, Baruch
M has proven that the above methods have limitations: historical
aggregated updates can hinder faster model convergence[2] .

The aggregation algorithm based on the validation dataset
requires the central server to possess data samples that are similar to
those owned by the participants. This algorithm utilizes a validation
dataset to evaluate parameters uploaded by the participants and iden-
tify erroneous updates. One shared model detection technique based
on feature importance is proposed by Fed-Fi. It can effectively miti-
gate model accuracy degradation due to conspiracy attacks, provided
the server has a small amount of sample data[27]. Furthermore, Su

proposes setting up a high-quality test dataset in the central server to
determine the reputation value of each participant, which will then be
used to lower the weight of participants with lower reputation values
in the global model aggregation process[20]. However, these meth-
ods may not apply to the power system scenario where the central
server lacks access to the actual energy consumption data.

2.2 Load forecasting-oriented secure aggregation method
research based on federated learning

Some studies have addressed the issue of detecting malicious mod-
els and performing model-safe aggregation during load forecasting
based on Federated Learning. For instance, N. B. S. Qureshi suggests
that in a Federated Learning collaborative training load forecasting
scenario, the central server clusters the uploaded parameter weight
features into two sets and identifies nodes in the smaller set as
anomalous participants before aggregating the parameters in the
larger set directly with FedAvg[18]. Meanwhile, FedClamp proposes
using Hidden Markov Models for anomalous model detection to
identify anomalous participants before model aggregation[14]. How-
ever, these approaches only perform initial screening of potentially
malicious models, and the aggregation weights do not fully consider
the impact of each participant on the weight of central model. As
a result, the aggregation process may waste part of the data sample
features for a small number of participants who are not malicious
models.

In the domain of federated learning, both in general scenarios
and specifically for load prediction, research has been conducted
on secure aggregation methods. These studies primarily focus on
designing secure aggregation algorithms to safeguard the security of
models. In our research, we aim to enhance existing methodologies
and introduce a novel federated learning-based secure aggregation
approach tailored for load prediction. In comparison to current
techniques, our proposed approach utilizes a similarity and distance-
based aggregation algorithm. Our proposed approach enhances
model accuracy, and effectively mitigates the influence of malicious
models on the central model. Through experimentation, our method
exhibits notable advantages in load forecasting tasks and offers a
practical solution to achieve secure and efficient load prediction.

3 Proposed secure federated aggregation
method for distributed load forecasting

3.1 Overview of proposed method architecture and design

The secure aggregation method proposed in this paper ensures that
each participant does not have to share their local data, thereby
preserving the privacy of sensitive information. It guarantees the
accuracy and validity of the central model by eliminating the inter-
ference of malicious models and expanding the sample data space
of each load data owner, leading to improved prediction accuracy.
Importantly, our method uploads the complete parameter weights of
the model rather than gradients to protect against potential gradient
parameter leakage. Such a breach would enable attackers to infer
corresponding training data and compromise data security[13].

The Fig.1 illustrates the overall architecture of our method, where
participants can consist of various users, such as electric utilities,
distributed buildings, and communities. The aggregation of model
parameters can better predict load patterns for each participant
and enhance prediction performance when the data characteristics
among participants are more similar. Each participant uses their own
local data directly to train their local model.

The overall process consists of four main steps, as shown in
Algorithm 1:

(1) The LSTM algorithm is used as the foundation for model
training. The central server initializes the model parameters and
distributes them to each participant node.

(2) Participants receive the model parameters from the central
server, update their local parameters with this information, and train
the model using their local data.

IET Research Journals, pp. 1–8
2 © The Institution of Engineering and Technology 2015



Participant ①

Local dataset

Upload parameters

server
Approximate calculation of

global model parameters

Participant ②

Local dataset

Upload parameters

Participant  N

Local dataset

Upload parameters

Aggregation of model based
on distance

D1 D2 Dn

W1 Wn

W2W W

Model upload\Model download

Local training Local training Local training

Fig. 1: Architecture of the Fed-SAD

(3) After each round of training, participants upload their updated
parameters to the central server.

(4) The central server approximates the global model parameters
based on the parameters uploaded by the participants. Following
that, it assigns weights to the parameters of individual participants
using the Euclidean distance between the approximate global model
parameters and the local model parameters. Finally, it calculates the
global model parameters based on this weighted aggregation.

Algorithm 1 Overview of the proposed federated learning security
aggregation algorithm

Input: The number of rounds of execution T, The distributed load
data participants involved in the training L, Learning Rate η .

Output: The model trained by the method proposed in this paper.
1: Server:
2: The central server initializes the model;
3: Set the initial local participants involved in the training pi(k =

1, 2, · · · , n);
4: Receive model parameters from participants;
5: Filtering and aggregation of models using Algorithm 2;
6: Participants:
7: for t = 1, 2, 3 · · · , T do
8: for pi ∈ L do
9: pi Download and update local weights from server wt;

10: pi Update and train local models and upload parameters
to central server.

11: end for
12: end for

3.2 Local training

For local model training, we utilize the LSTM (Long Short-Term
Memory) model[8], which is a type of recurrent neural network
(RNN) that excels at time series prediction tasks. LSTM is an
improved form of the recurrent neural network, which introduces
gated self-circulation to ensure that gradients can be propagated for
a long period and solve the problem of gradient vanishing. There-
fore, LSTM models can better extract long-term dependency features
in learning sequences and are widely used in time series prediction
problems. Similarly, in distributed load forecasting, this neural net-
work can be used to learn how daily load consumption patterns can
impact future energy usage. Therefore, we have chosen this model
algorithm for local model training in our research.

Fig. 2 shows the internal structure of the constituent units of the
LSTM model. The cells of LSTM are connected to each other, which

tanh

tanh

Fig. 2: LSTM network basic unit

mainly consist of input gates, forgetting gates and output gates.σ is
the sigmoid activation function, xt is the input sequence value at that
moment, and tanh represents the tanh activation function. Ct−1 and
Ct represent the cell states at the previous and current moments. In
addition, ht−1 and ht denote the hidden states at the previous and
current moments. ft, it and ot denote the forgetting gate, input gate
and output gate calculation variables at the current moment, and Ĉt

denotes the input cell state at that moment. The above variables are
calculated as follows:

ft = σ(Wfht−1 +Wfxt + bf ) (1)

it = σ(Wiht−1 +Wixt + bi) (2)

ot = σ(Woht−1 +Woxt + bo) (3)

Ĉt = tanh(Wcht−1 +Wcxt + bc) (4)

Ct = ft ∗ Ct−1 + it ∗ Ct (5)

ht = ot ∗ tanh(Ct) (6)

In equation (1-6),Wf ,Wi,Wo denote the weight matrices of for-
get gate, input gate, and output gate.bf , bi, bo denote the output bias
vectors of the forget gate, input gate and output gate. The ∗ denotes
the Hadamard product of matrices.

In this paper, load forecasting refers to the use of historical load
data to predict load values for future time periods. The input data in
our study primarily consists of date-time features and historical load
data. Since the load data and date-time features may differ greatly in
magnitude, we normalize the input data to account for these differ-
ences and ensure that participants with varying magnitudes of load
data can still contribute to the federated learning process.

3.3 Securing federated learning with Fed-SAD aggregation
algorithm

In current research on secure aggregation algorithms for federated
learning, some methods rely on either model parameter similarity
or statistical characteristics to select model parameters for the cur-
rent round. However, these approaches need to use the global model
of the previous round as a benchmark, which results in a certain
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lag in selecting model participants[24]. Alternatively, some methods
perform average aggregation directly after selection without fully
considering the quality of different model parameters. In contrast,
our study proposes a secure aggregation federated learning approach
for distributed load forecasting. In this approach, all local load data
owners upload their models to the central server after completing
local training, and the central server performs model screening and
aggregation weighting on all received models. If there is any inter-
ference from malicious models in a particular round, we remove
the model parameters of the participants associated with the mali-
cious model before aggregation. The central model parameters of
this round are weighted to aggregate the model parameters of par-
ticipants. The weighting method is based on the offset between the
model parameters uploaded by each participant and the computed
approximate global model parameters. This ensures that the final
aggregated central model has improved results, improves the training
accuracy of each participant, and ensures secure model aggrega-
tion. The Fed-SAD model aggregation algorithm consists of two key
steps, which are detailed below. Additionally, Algorithm 2 provides
a specific algorithmic procedure for the approach.

Algorithm 2 Fed-SAD: A securing aggregation algorithm for feder-
ated learning in distributed load forecasting

Input: Model parameters uploaded by each participant wi
t.

Output: Global training model wt.
1: Initialization :β = 1/2, Step = 0.05, T rust ⇐ ∅, V =

{p1, p2, p3, · · · pn}
2: for t = 1, 2, 3 · · · , T do
3: while trust == ∅ do
4: for i in range(N − 1) do
5: G(pi) ⇐ ∅
6: for j in range(i+ 1, N) do
7: if Similarity(wi

t, w
j
t ) > threshold then

8: G(pi) ⇐ G(pi) ∪ pj
9: end if

10: end for
11: end for
12: Cliques ⇐ BronKerbosch(V,G)
13: MaxClique ⇐ FindLargestClique(Cliques)
14: // Find the largest clique
15: if |MaxClique| >= N/2 then
16: Trust = MaxClique
17: w̃t = Σtrust

i=1
1

|trust|w
i
t

18: Return w̃t

19: //Approximate the global model for each round
20: end if
21: β = β + Step
22: end while
23: for i = 1, 2, 3 · · · , N do

24: guassian(wi
t; w̃t, σ) =

1√
2πσ

e−

(
∥wi

t−w̃t∥2

)2

2σ2

25: αi
t = softmax(guassian(wi

t; w̃t, σ))
26: if αi

t < β then
27: N = N\i // Remove malicious models
28: end if
29: wt =

∑N
i=1 α

i
tw

i
t // Aggregate weights

30: end for
31: end for

3.3.1 Approximate calculation of global model parameters
for each round: To determine convergence trends as soon as
possible and reduce the interference of malicious models, an approx-
imate calculation of the global model parameters for each round
is performed. This calculation is carried out on the parameters
submitted by the participants to estimate the overall trend.

Our research employs a graph-theoretic knowledge modeling
scheme to construct a graph where each vertex represents a local
model uploaded by participants in the federated learning process.

Each edge in the graph is generated based on the cosine similarity of
the uploaded model parameters between two vertices. As indicated
by Equation 7. To calculate the similarity between each pair of local
models, we first set a threshold value. If the similarity value exceeds
the threshold β between two models, an edge is created between the
two points; otherwise, no edge is created.

Similarity(wi
t, w

j
t ) = cos(wi

t, w
j
t ) =

〈
wi
t, w

j
t

〉
∣∣wi

t

∣∣ ∣∣∣wj
t

∣∣∣ (7)

To find a matching set of cliques, we solve the maximum clique
problem by dividing the local models into different cliques. We use
BronKerbosch[4] algorithm to find all the cliques and then find the
clique that contains the most local models while meeting the con-
dition that the number of vertices in this set is greater than N/2. If
the number of vertices in this set is less than N/2, decrease β with
Step,we decrease the similarity threshold and iterate until we find a
matching of cliques.

Ultimately, we obtain an approximation of the global model
parameters for this round by finding the largest clique. This approach
helps us identify a reliable set of local model parameters and improve
the estimation of global model parameters.

3.3.2 Aggregation of models based on distance : In our
research, we use similarity to calculate the approximate global model
parameters for each round instead of directly aggregating the global
model. This is because if the model parameters uploaded by individ-
ual participants significantly differ from the global model, the global
model can move in the wrong direction from the desired model con-
vergence. Using the wrong global model convergence direction as
the criterion for anomaly model screening is undesirable.

In real-life federated learning scenarios, research statistics show
that the percentage of malicious models does not usually exceed 1/5
[10]. Therefore, it is appropriate and accurate to use the "maximum
clique problem" to calculate the approximate global model parame-
ters. By dividing local models into different cliques and identifying
the largest clique, we obtain a reliable set of local model parame-
ters that can help improve the estimation of global model parameters
while minimizing the interference from faulty or malicious models.

Subsequently, to measure the anomalous nature of the model,
our research considers the use of a Gaussian probability distribu-
tion function. We calculate the distance between each participant’s
local model and the approximate global model for the current round.
Based on this distance, we assign different weights to the partici-
pants, with higher weights for those whose distance from the central
model parameters is smaller. In this way, we exclude model param-
eters that deviate far from the central model parameters and obtain a
reliable aggregation result. The final aggregation result is a weighted
average of the uploaded parameters of each participant. By using a
probability density function based on the Gaussian distribution, we
can identify anomalies in the model parameters and assign appropri-
ate weights to each participant’s input to obtain more accurate and
reliable global model parameters.

In comparison to normal participants, anomaly models exhibit
greater differences in their parameters from the central server. As
a result, our research measures anomalous models based on the dis-
tance between the approximate global model and the local model
calculated in the previous subsection. We then perform the aggrega-
tion of weights. During each training round’s aggregation process,
we assign smaller weights to participants whose local models have
larger distances from the global model. This is because the greater
the distance between the global and local models, the higher the
degree of anomaly. By utilizing this method, we can identify and
exclude anomalous models from the aggregation process, thereby
improving the accuracy and reliability of the global model param-
eters. The process is illustrated in Fig.3. The central server first
performs each round of receiving parameters. Secondly calculates
the similarity of the parameters of every two participants using the
parameters uploaded by the local participants, uses graph theory to
solve the "maximum clique problem " to find the maximum clique,
and uses the parameters of the participant models in this cluster

IET Research Journals, pp. 1–8
4 © The Institution of Engineering and Technology 2015



set to calculate the parameters of the global model that approxi-
mates the current training round. Thirdly uses the distance difference
between the parameters of the global model from the approximate
solution and the local model, for malicious models that exceed the
threshold to eliminate them to avoid the impact on the central model
aggregation.

In this paper, we utilize the Gaussian distribution function to
establish a correlation between the distance and the degree of
model anomaly. Equation 8 defines the expression for the Gaussian
distribution function.

guassian(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 (8)

The approximate global model parameter for this round is w̃t,
while the parameter uploaded by each participant for this round is
wt
i . Equation 9 calculates the Euclidean distance between all clients

and the approximate global model parameters.

d =
∥∥∥wi

t − w̃t

∥∥∥
2

(9)

Substituting this value into the equation for the Gaussian distribution
function, we obtain Equation 10.

guassian(wi
t; w̃t, σ) =

1√
2πσ

e−

(
∥wi

t−w̃t∥2

)2

2σ2 (10)

The standard deviation of the Gaussian distribution function is
computed using Equation 11.

σ =

√
1

N
Σn
i=1

(∥∥wi
t − w̃t

∥∥
2

)2 (11)

The output of the Gaussian distribution function is then normalized
to derive the participation weight of each participant, as shown in
Equation 12. This final weight determines the degree of influence of
each participant in the federated learning process.

αi
t = softmax(guassian(wi

t; w̃t, σ)) (12)

4 Experiment

4.1 Dataset

In this paper, we conduct experiments using the open-source Build-
ing Data Genome Project dataset[15]. This dataset consists of
energy consumption data from buildings in various countries. To
address the challenge of varying energy consumption patterns,
we select datasets with similar profiles to facilitate model train-
ing and improve prediction accuracy[11]. Specifically, we use 12
datasets with similar energy usage patterns[12], namely OfficeMax,
OfficeMarcus, OfficeMonty,OfficeMaya,OfficeMyron, OfficeMick,
OfficeMarion, OfficeMartha, OfficeMalik, OfficeMadaDetailed,
OfficeMuhammad, andnOfficeMoses. Our experimentation included
ten trusted participants and two adversaries. The data for these
twelve buildings are recorded as l1, l2, · · · , l10, A1, A2. It is impor-
tant to note that our proposed method aims to demonstrate that
the accuracy of load prediction is not significantly impacted by the
presence of malicious models, and that the aggregated model still
provides good prediction results even in the absence of malicious
models. Therefore, we excluded differences in the amount of data
from each region and interference from selected dates, opting instead
to use load data from the same period for this study. Ultimately, we
selected the load dataset for July from these twelve buildings, using
the first thirty days for training and the last day for testing.

4.2 Baseline and attack model

To evaluate the effectiveness of the proposed security aggregation
algorithm based on federated learning, we conduct three scenarios,
namely: (1) aggregating models without malicious model interfer-
ence, (2) Sign Flipping Attack, and (3) Additive Noise Attack.

Table 1 Experimental parameters

Parameters Setup/Values

Optimizer Adaptive Moment Estimation (Adam)
Learning rate 0.06

communication round 50
local training epochs 6

Threshold 1/2N
β 1/2

Step 0.05
Batch of size 256

4.2.1 Baseline: To provide a basis for comparison, we intro-
duce the following methods:

(1) Standalone: Each participant was trained independently and
locally using only their own local dataset without collaboration.

(2) FedAvg (Federated Averaging Algorithm): We compare Fed-
SAD with this method under both the presence and absence of
malicious model attacks.

(3) FoolsGold: In this method, historical aggregated updates of
each participant are calculated in each iteration, and then the weight
of each participant is adjusted based on the maximum cosine similar-
ity of its historical aggregated updates with others. We compare this
method with Fed-SAD in the presence of malicious model attacks.

(4) Median: This method sorts the jth parameter of each local
model and uses the sorted median as the jth parameter of the global
model. For comparison with Fed-SAD in the presence of malicious
model attacks.

4.2.2 Attack Models Setup: In the attack models setup, we
consider two attack scenarios:

(1) Sign Flipping Attack: In the case of simulating this attack,
the anomaly participant inverts the sign of the parameters in the
local model. The aim is to make the parameters transform in the
opposite direction, changing the convergence direction of the global
model and destroying the training efficiency of federal learning
and the accuracy of the model. The sign flipping attack can be
mathematically represented by Equation 13.

wi
t
′
= −1 ∗ wi

t (13)

(2) Additive noise attack: The anomaly model influences the train-
ing of the global model by adding noise to the uploaded model
parameters. Random numbers that obey Gaussian distribution and
have the same size as the training model are added to the weight val-
ues as parameters of the attack model. The mathematical expression
is shown in Equation 7.

wi
t
′
= wi

t +Gaussian(0, NoiseIntensity) (14)

4.3 Training setting and evaluation criteria

The experimental setup of this study was conducted on a Windows
11-64 bit operating system, using an 11th Gen Intel(R) Core(TM)
i7-11800H @ 2.30GHz 2.30 GHz processor and a NVIDIA GeForce
RTX 3050 Ti Laptop GPU. The deep learning algorithm was imple-
mented in Python 3.8 programming language, with the PyTorch 1.13
deep learning framework. The parameters used for the experimental
setup are listed in Table 1.

To evaluate the load forecasting effect, we use the mean abso-
lute percentage error (MAPE) as the evaluation index. A smaller
MAPE value indicates a smaller error between the predicted value
and actual value, and thus better model predictions[22]. Equation 15
shows the mathematical formula that is used to calculate the MAPE.
In the equation yprei represents the forecasted load value and yreali
represents the actual load value.

MAPE =
100%

n

∑n
i=1

∣∣∣∣∣yreali − yprei

yreali

∣∣∣∣∣ (15)
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Table 2 Forecast accuracy for each participant without malicious models

MAPE/% 1 2 3 4 5 6 7 8 9 10

Standalone 8.14% 8.41% 8.45% 8.43% 7.01% 7.26% 8.96% 9.56% 8.58% 8.39%
FedAvg 7.98% 8.22% 8.09% 7.59% 5.90% 8.65% 8.93% 8.36% 8.49% 6.04%

Fed-SAD 6.87% 5.18% 4.06% 4.73% 3.56% 7.21% 4.36% 6.26% 5.03% 3.24%

Table 3 Forecast accuracy for each participant under Sign Flipping Attack with 10 honest participants (adversaries omitted)

MAPE/% 1 2 3 4 5 6 7 8 9 10

FedAvg 21.89% 19.48% 20.82% 24.86% 21.34% 22.50% 21.06% 23.12% 22.14% 20.90%
Median 15.47% 12.17% 14.37% 17.36% 14.71% 13.55% 14.35% 16.86% 14.66% 15.18%

FoolsGold 12.19% 10.69% 11.54% 12.37% 11.23% 12.79% 13.07% 14.12% 13.25% 14.60%
Fed-SAD 7.61% 5.04% 6.15% 4.98% 4.26% 6.74% 7.32% 5.37% 6.67% 4.05%

Table 4 Forecast accuracy for each participant under Additive Noise Attack with 10 honest participants (adversaries omitted)

MAPE/% 1 2 3 4 5 6 7 8 9 10

FedAvg 15.13% 17.18% 16.79% 18.23% 18.77% 15.59% 17.49% 19.06% 18.45% 16.78%
Median 12.15% 11.50% 12.55% 16.16% 14.31% 13.79% 15.69% 12.46% 13.87% 14.39%

FoolsGold 10.97% 11.64% 9.87% 8.93% 10.47% 12.47% 9.81% 8.76% 11.79% 13.07%
Fed-SAD 7.06% 5.24% 4.19% 4.56% 3.87% 7.41% 5.19% 6.35% 5.12% 3.31%

4.4 Analysis of results

This paper evaluates the proposed security aggregation method, Fed-
SAD, in two aspects. Firstly, we evaluate and compare the prediction
accuracy of Fed-SAD in the absence of attack model interference, as
well as under Additive noise attack and Sign Flipping Attack. Sec-
ondly, we evaluate the robustness of the Fed-SAD method in quickly
detecting and eliminating participants who upload malicious models.

4.4.1 Predictive performance: To evaluate the predictive per-
formance, we compare and analyze the accuracy of model load
prediction in the following three cases.

(1) No Attack Model: Firstly, we train and predict the model
without any attack interference in this paper and compare the Fed-
SAD method with FedAvg and Standalone methods. Table 2 shows
the prediction results. The evaluation index used in this paper is
MAPE. It can be observed from the results that the Fed-SAD method
improves the prediction accuracy by up to 5% over the Standalone
method and up to 4.5% over the FedAvg method.

(2) Impact by Sign Flipping Attack: For the sign-flipping attack,
the experiments involve twelve participants, with two adversaries
performing the attack after each round of training. Among the ten
trusted participants, the Fed-SAD method shows better performance
compared to FedAvg, FoolsGold, and median methods, with predic-
tion results 13%-19%, 4%-10%, and 6%-12% higher, respectively.

The effectiveness of the approach was demonstrated in the results
presented in Table 3.

(3) Impact by Additive noise attack Similarly, for the Gaussian
noise attack simulation, twelve participants are employed, and two
adversaries perform the attack after each training round. During the
experiments, we set the variance value to 0.1 to represent additive
noise. The prediction results of the Fed-SAD method show better
performance than the FedAvg, FoolsGold, and median methods, with
predictions 8%-15%, 2%-10%, and 5%-11% higher, respectively.
The results are summarized in Table 4. Overall, the study shows
that the Fed-SAD approach is effective in improving model load
prediction accuracy in the presence of adversarial attacks.

From the analysis of the prediction accuracy results presented in
the study, it can be observed that Fed-SAD perform better in the
presence of adversarial attacks as compared to other methods such
as FedAvg, Median, and FoolsGold. FedAvg is the most affected
by malicious models since it aggregates weights directly without
a defense strategy. The Median strategy is better than FedAvg in
reducing the interference of malicious models to some extent, but it
cannot achieve the optimal aggregation of aggregated model param-
eters and cannot obtain the best prediction effect. On the other
hand, while FoolsGold performs better than Median and FedAvg,
the Fed-SAD method perform slightly better than FoolsGold in
terms of prediction accuracy. In distributed load forecasting, we con-
sider scenarios with similar data characteristics and use distance as
the basis for the final aggregation weight in the Fed-SAD method.
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Fig. 4: Weight changes of each participant in the Fed-SAD approach
during federated learning model aggregation under sign flipping
attacks
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Fig. 5: Weight changes of each participant in the Fed-SAD approach
during federated learning model aggregation under Additive noise
attacks

This approach results in improved accuracy for the final prediction.
Therefore, the results of the study demonstrate the effectiveness of
the Fed-SAD approach in improving model load prediction accuracy
in the presence of adversarial attacks.

It is worth noting that in the above prediction accuracy exper-
iments, a relatively moderate attack intensity is set in this paper.
To avoid wasting the diversity of data samples, the threshold is
set low, and the attackers’ weights are kept below the level of
ten normal participants to participate in the training process with
a lower threshold. For attack models with high attack intensity,
the Fed-SAD method can directly remove them. To demonstrate
the effectiveness of removing the anomalous models, the following
experiments involving adjusting the malicious attack model settings
were conducted to directly remove the malicious models.

4.4.2 Adversarial robustness: The robustness of Fed-SAD is
analyzed in the study by varying the weight of different participants
in the aggregation of a federated learning model, while simulat-
ing two types of attacks - additive noise attack and sign flipping
attack. Fig.4 presents the variation of weight size for each par-
ticipant when simulating the presence of sign flipping attacks. To

reflect the effect of removing attack participants in the method, the
weights are multiplied by a constant (set to 10) after sign-flipping.
The experiments are conducted in the fifteenth round of model train-
ing, where two participants perform attacks on uploaded parameters
that are identified and removed from collaborative training by the
central server. Fig.5 shows the graph of weight size changes for
each participant during the Additive noise attack simulation. In the
experiment, two participants performed Additive noise attacks on the
uploaded parameters at the beginning of the model training. To better
observe the effect of weight change in the attacked model, the noise
intensity was set to 20 during this set of experiments. These param-
eters were recognized and removed from subsequent model training
by the server. Identifying attack models in a timely manner can
speed up model convergence and ensure model correctness. Based
on the results of the experiments, Fed-SAD demonstrated robust-
ness against adversarial attacks by detecting and removing malicious
models during federated learning model aggregation. The study find-
ings highlight the importance of implementing defense strategies
against adversarial attacks in the federated learning system.

5 Conclusion

In this paper, we proposed Fed-SAD, a secure aggregation algorithm
for federated learning that addresses the problem of malicious mod-
els affecting prediction accuracy during load forecast collaborative
training. Fed-SAD not only protects data privacy by allowing par-
ticipants to train their own data collaboratively, but also prevents
malicious actors from interfering with the central model training
process by securely aggregating models. Experimental simulations
demonstrate that our approach is robust against interference from
malicious models and can improve prediction accuracy for all par-
ticipants even in the presence of attacks. This study provides a
foundation for further research on secure model aggregation in other
distributed load forecast training scenarios, leading to more secure
and accurate federated learning processes.
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