
P
os
te
d
on

19
J
u
l
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
97
98
79
.9
92
47
80
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Magenetic Tile Fault Detecion of High Voltage Electitric Machine:

A consistent soft-label-based Multi-view feature selection Method

Zuanyuan Yang1, Junhang Chen1, Mingyang Liu1, and Daoyuan Li1

1Guangdong University of Technology School of Automation

July 19, 2023

Abstract

The detection of high voltage permanent magnet motors has always been a big problem due to the interference of high voltage

and magnetic field on the diagnosis. Especially the magenetic tile of the motor, the failure of the magenetic tile will directly lead

to the operation failure of the motor. We propose Multi-view Unsupervised Consistent Soft-label Feature Selection(MUCSFS).

This method constructed consistent pseudo-labels through soft labels of clustering affinity of each view sample and constructed

the model by integrating selection constraints into the mapping model. This model is used to filter the fault data set to get the

feature subset, and the feature subset is used to cluster. We verify the effectiveness of the method by simulating multi-view

data and through the fault clustering experiment of the magnetic tile fault data set of high voltage motor, it is confirmed that

our method can effectively cluster the fault categories.
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Abstract
The detection of high voltage permanent magnet motors has always been a big problem due to the

interference of high voltage and magnetic field on the diagnosis. Especially the magenetic tile of the motor,
the failure of the magenetic tile will directly lead to the operation failure of the motor. We propose Multi-
view Unsupervised Consistent Soft-label Feature Selection(MUCSFS). This method constructed consistent
pseudo-labels through soft labels of clustering affinity of each view sample and constructed the model by
integrating selection constraints into the mapping model. This model is used to filter the fault data set to
get the feature subset, and the feature subset is used to cluster. We verify the effectiveness of the method by
simulating multi-view data and through the fault clustering experiment of the magnetic tile fault data set of
high voltage motor, it is confirmed that our method can effectively cluster the fault categories.

K E Y W O R D S

Unsupervised feature selection, multi-view learing, Fault clustering, soft-label

1 INTRODUCTION

In high-voltage motor equipment, we need to pay close attention to the running state of the motor, which is determined by the
harsh working environment and the high-precision structure of the equipment itself1,2. The general construction diagram of a
high-voltage permanent magnet motor is shown in FIGURE. 1†. During its operation, the failure of the magnet will lead to low
operation efficiency or even damage to the whole motor. Therefore, we need to detect the motor magnet to ensure the reliability of
the motor, so fault detection technology is essential in the detection of high-voltage motor3. Standard fault diagnosis techniques
can be divided into vibration signal analysis and image object detection. Because the fault feature information of the motor in the
early stage of the fault is fragile, it is often submerged by interference signals such as environmental noise. Traditional methods
based on signal analysis cannot make an accurate judgment. It takes a long time to accumulate the corresponding data of motor
magnet faults and a lot of time and manpower to establish a sample database. Sometimes it is difficult to use deep learning
methods for detection. The collected data will be of high dimensionality4,5. Therefore, it is necessary to use dimensionality
reduction techniques to process data in fault detection.

Image dimensionality reduction can be divided into feature extraction and feature selection methods. Feature extraction
methods use methods such as matrix decomposition to decompose data by changing the value of the data6. Feature selection
method is to reduce the dimension by screening the features of the data and selecting the representative feature set in the data set
to represent the features of the data set in the form of low rank without changing the value of the original data in the feature set7.
Due to the diversity of data, it gives us a lot of challenges, but it also provides a new way of data processing mode. The same
thing can be described in different forms by different sensors, and the data collected under such multi-form collection can be
called multi-view data. Compared with single-view data, multi-view data can help us understand the object’s related properties
more deeply. The standard unsupervised multi-view feature selection method uses graph structure to learn the features of each

† Oleh Lillian D’Amore, November 16, 2022 Posting[https://warezism.blogspot.com/2022/11/23-how-does-permanent-magnet-motor-work.html]
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F I G U R E 1 Internal construction diagram of high voltage permanent magnet motor

view, and then uses the consistency principle of multi-view to build a unified pseudo-label, and uses the pseudo-label to guide
the feature selection process8.

In unsupervised feature selection methods, there are three difficult problems. The first is how to build pseudo-label. He et
al. used graph structure to guide the feature selection method9. Nie et al. closely combine the graph structure with the feature
selection method to map each other to obtain a better low-rank representation10. Expanding to multi-view feature selection,
Zhang et al. proposed a multi-view feature selection method based on a multistage projection of an adaptive neighbor graph
model11. Shang et al. presented a joint sparse transform representation module and pseudo-label matrix module, using the
pseudo-label matrix to guide the learning of sparse low-dimensional Spaces while obtaining the relationship between data points
and mining the relationship between data, features, and pseudo-labels12. The second challenge is integrating pseudo-labels with
the feature selection process. The original feature selection mapping model can be regarded as a special matrix factorization
model. The feature selection model selects k features in the data set as the feature matrix by filtering rules and then calculates the
corresponding coefficient matrix to ensure the minimum error. However, it is difficult to establish the filtering rules for selecting
the model, and the selected features are only sometimes the best. Therefore, Li and Yi et al. used the linear regression model to
change the nonlinear selection structure into a linear mapping structure so that the features correspond to the pseudo-labels,
and it is convenient to obtain more representative features13. Li and Zhang et al. added an error term in the regression model
and considered the uncorrelated nature of features. When the number of features required is small, differentiated but redundant
features can be selected14. The third challenge is how to find the most appropriate subset of features. Due to the different
correspondence between features and samples, we also hope to find features with more independent features for features. Hence,
we need to consider the relationship between feature views. Qian et al. initially used the L2,1 norm to find the sparse features with
the largest proportion as the feature subset15. However, the L2, 0 norm can only guarantee a certain sparsity. Therefore, Li et al.
used the structural relationship of the feature graph in the original data set to preserve the feature related to the feature subset16.
Lim et al. used mutual information constraints to distinguish the selected features and tries their best to find the features with
strong independence17. Du et al. improve the L2,0 norm, utilizes the feature group effect, select feature groups at the same time,
and replace the mode of searching for the best feature group one by one with the way of searching for the best feature group18.

This paper uses a multi-view regression mapping model combined with soft labels related to the affinity of cluster categories to
screen feature subsets with variations of the L2,0 norm. This method is Multi-view Unsupervised Consistent Soft-label Feature
Selection(MUCSFS). It has the following three advantages:

First, the multi-view regression mapping model is used to add weights to each feature mapping relationship, which is conducive
to maintaining the mapping relationship between the feature weight matrix and the pseudo-label and improving feature selection.
The second is to obtain the same pseudo-label by using the clustering category affinity of each sample under each view and
the consistency principle of multi-view. The affinity distance between each sample and the centroid of different categories is
obtained, which helps to learn the relationship between samples and ensure the validity of pseudo-labels. Thirdly, the feature
selection screening mode is integrated into the mapping model of feature selection, and a matrix is used to reflect the screening
rules, which helps to improve the selection accuracy and select the feature subset that represents the result more strongly.

The rest of the paper is organized as follows. In Section 2, we describe in detail our research on feature selection methods. In
Section 3, we introduce the experiment and analyze the results. The Section 4 is the summary of the thesis.
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2 THE METHODOLOGY

In this section, we introduce the details of the proposed method. First, we present the problem definition. Then, we formulate the
overall objective function and offer an alternative optimization strategy. Finally, we discuss the time complexity of the proposed
method.

2.1 Notation

In this paper, we denote the matrices by boldface capital letters, the vectors by boldface lower-case letters, and the scalar
values by italic letters. For an arbitrary matrix V ∈ ℜd×n , vij denotes its (i, j)-th entry, vi denotes its i-th row vector. Tr(V)
denotes the trace of a matrix V when V is square, and VT denotes the transpose of V. The l2-norm of matrix V is defined as
∥V∥2 =

√∑n
i=1 v2

i , where vi represents the i-th entry of v. ∥V∥F =
√∑n

i=1
∑d

j=1 v2
ij =

√
Tr(VVT ) denotes the Frobenius norm of

V. ∥V∥2,1 =
∑n

i=1

√∑d
j=1 v2

ij denotes l2,1-norm of V. v ≥ 0 or V ≥ 0 indicates all of their entries are larger than or equal to zero.
In denotes the identity matrix of n × n. 1n = [1, 1, · · · , 1]T , 1n ∈ ℜn×1 is a column vector with the corresponding dimension. For
clarity, TABLE 1 shows some frequently-used notations and their descriptions.

T A B L E 1 Main notations used in this paper

Notation Description

n The number of samples
dv The number of features in the v-th view

d = d1 + d2 + · · · + dv The sum of the number of all feature dimensions for all views
c The number of clusters
V The number of views

Xv ∈ ℜdv×n Data matrix in the v-th view
W ∈ ℜd×c The feature weight projection matrix

Kv ∈ ℜdv×m The subspace projection matrix
G ∈ ℜc×n The consistent feature pseudo-labels
Sv ∈ ℜn×c The learned affinity matrix

2.2 Objective formulation

In the unsupervised feature selection method, the pseudo-label constructed by the structure information of the data set is needed
to guide the selection. In the past unsupervised feature selection methods, we often used regression models to select features.
The regression model is as follows:

min ∥WTX + 1naT – GT∥2
F (1)

W ∈ ℜd×c is the feature weight matrix, X ∈ ℜd×n is the data set, G ∈ ℜc×n is the pseudo-label to guide the selection, and a
is the deviation of the regression map. With the iteration of the model, G constantly updates the learned cluster structure and
gradually records the mapping relationship between data and labels. Find the partial derivative of a on the expression, so that it is
equal to 0, you can get the expression of a:

a = 1
n (GT – WTX)1n (2)
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Bringing this formula into the original model, we can get the new formula:

min ∥(WTX – GT )H∥2
F

s.t. H = In – 1
n 1n1T

n , In ∈ ℜn×n, 1n ∈ ℜn×1 (3)

However, how to select features is another big problem in feature selection. Unsupervised feature selection methods often
use L2,1 norm to make the W matrix sparse enough to score features, but indirect constraints cannot avoid feature redundancy.
Therefore, the L2,0 norm is used to define the sparsity of W:

min ∥(WTX – GT )H∥2
F + ∥W∥2,0

s.t. H = In – 1
n 1n1T

n , ∥W∥2,0 = k
(4)

However, L2,0-norm is difficult to optimize sparse to only k rank, so other methods are often used to assist optimization. Due
to the diversity of data, we must deal with multi-view data. Feature selection for multi-view data needs to consider the features
from multi-view, so the features from all views are stacked together, which makes the optimization more difficult. Because of
this situation, we can divide W into two matrix forms for optimization, one of which represents the matrix of feature scores of
all views, and the other represents the screening matrix. The screening process and sparsity are transformed into another matrix:
let W = UM. M represents a feature weight matrix of k dimensions, while U represents a screening matrix. At the same time,
each view will have different structures and characteristics because of the different construction principles so that each view will
have the most suitable for its pseudo-labels. When screening, we need to unify multiple pseudo-labels. Therefore, according to
the above, the new multi-view data set model we obtained is:

min
∑V

v ∥((UM)TX – FT )H∥2
F + ∥F – Gv∥2

F

s.t. H = In – 1
n 1n1T

n .
(5)

In the formula, U = [u1, u2, · · · , uk] can be represented as a matrix composed of k vector groups, and the elements of each
vector are 0 or 1, and the expression is uk = [0...0︸︷︷︸

t–1

, 1, 0...0︸︷︷︸
d–t

]. Where, the value of t is related to the feature indicator vector, and

the feature indicator vector is the matrix composed of the indicators of k features in the data set screened by the L2,0 norm of W.
However, obtaining accurate pseudo-labels from each view is another difficult problem, especially the feature selection problem
based on surface detection targets, where various faults are very similar. Therefore, we consider using the affinity between
samples from each view and each cluster category as a soft label to guide the final feature selection process. In this way, the
learned soft labels are more consistent with the inherent fuzziness of data distribution and thus have stronger discriminative
ability. However, since the data set may have noise interference, we use the pattern of finding the sample’s affinity with each
cluster category in the subspace to construct the pseudo-label. This helps to obtain the genuine sample affinity to the class
attribute, then the new multi-view model is:

min
V∑

v=1

n∑
i=1

c∑
j=1

Pv∥(Kv)Txv
i – ov

j ∥2
Fsv

ij + α∥G – Sv∥2
F + β∥

(
(UV)TX – GT)H∥2

F

s.t.sT
1 1 = 1, 0 ≤ sij ≤ 1, H = In – 1

n 1n1T
n , Kv(Kv)T = Idv .

(6)

In this model, Kv ∈ ℜdv×m represents the subspace weight matrix. In order to reduce the noise interference in the data set, we
convert the data to cluster in the subspace. At the same time, not every view is the most important, so we introduce the weight
matrix Pv to unify the soft label matrix obtained from different views into a consistent pseudo-label matrix G, and use G to
guide feature selection.

2.3 Optimization

f (U, M, G, Kv, Sv, Oj, Pv) is a function of six variables with respect to MUCSFS. The objective function is non-convex due to the
presence of multiple variables. It isn’t easy to obtain the optimal global solution. However, the objective function is convex to
a single variable. The best solution is alternating optimization over a single variable. This paper uses an alternating iterative
optimization method suitable for multivariate optimization to optimize the Objective Eq. (6).
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1) 1) Solving M with fixed variables U, G, Kv, Sv, Oj, Pv. Take the function about the M part and transform it, then there is:

min
M

Tr[
(
GT – MTUTX

)TH
(
GT – MTUTX

)
]

= min
M

Tr(GHF + MTUTXHXTUM – GHXTUM – MTUTXHF)
(7)

Then, according to the above formula, M is derived, and the solution formula for M is finally obtained as follows:

M = (UTXHXTU)–1UTXHGT (8)

2) Solving U with fixed variables M, G, Kv, Sv, Oj, Pv. Similar to solving M, we can also obtain the solution formula for U as
follows:

min
U

Tr(–GHXTU(UTXHXTU)
–1UTXHF + GHGT ) (9)

Since GHGT is a fixed value, we remove this value and reverse the sign to get a new solution matrix:

max
U

Tr((UTXHXTU)–1UTXHGTGHXTU) (10)

For ease of solution, let’s set A = XHXT and B = XHFFTHXT , then the formula becomes:

max
U

Tr((UTAU)
–1UTBU) (11)

After constructing such a model, we can follow the solution method of problem (7) in [19]. According to the solution of this
problem, we can choose the maximum k vectors and their subscript vector group Q. Combined with the above methods, we can
derive the composition of the selection matrix U:

uij =
{

1, if j ∈ Q
0, otherwise

j = 1, 2, · · · , d; i = 1, 2, · · · , k (12)

3) Solving Oj with fixed variables M, G, Kv, Sv, U, Pv. According to the solution formula of the cluster centroid, we can obtain:

Ov
j =

∑n
i=1 sv

ij(K
v)T xv

i∑n
i=1 sv

ij
(13)

4) Solving Kv with fixed variables M, G, Oj, Sv, U, Pv. According to [20], we can know the solution model of Kvas follows:{
min

Kv
Tr((Kv)TQvKv)

Qv=Xv(Lv – SvD(Sv)T )(Xv)T
(14)

Where we have Lv ∈ ℜn×n and Dv ∈ ℜc×c are diagonal matrices, defined as Lv
ii =

∑c
j=1 sv

ij and Dv
jj = diag( 1∑n

i=1 sv
ij
), and in this

way, we can solve for Kv.
5) Solving Sv with fixed variables M, G, Oj, Kv, U, Pv. According to the solution formula related to Sv and the solution method

of graph in [10], let zv
ij = ∥(Kv)Txv

i – ov
j ∥2

2, we can get the solution formula as follows:

min
sv

i

∥sv
i + zv

i
2β ∥

2
2 + α∥Gi – sv

i ∥2
2 (15)

6) Solving G with fixed variables M, Sv, Oj, Kv, U, Pv. According to the solution formula related to G, the solution formula of
the consistency matrix G can be obtained as follows:

G = (αI + βH)–1(α
∑V

v=1 PvSv + βMTUTXH) (16)
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7) Solving Pv with fixed variables M, Sv, Oj, Kv, U, G. To distinguish the weight of each view according to the relevant

similarity component of each view, we set: Nv =
n∑

i=1

c∑
j=1

∥(Kv)Txv
i – Ov

j ∥2
Fsv

ij then:

min
V∑

v=1
Pt

vNv

s.t.
V∑

v=1
Pv = 1, 0 ≤ Pv ≤ 1

(17)

The weight calculation formula can be obtained as follows:

Pv=
( 1

Nv
)

V∑
v=1

( 1
Nv

)
(18)

After synthesizing the calculation results of the above parameters, we use a table to represent the specific iterative process of
our algorithm, as shown in the Algorithm 1:

Algorithm 1 Alternative optimization to solve the model (6)

Input: Multi-view feature matrix X, the dimension of the feature subspace m; Number of selected
features k; the number of iterations t; the number of clusters c and the parameters α, β, γ and η.
Output: k features for the data
1. Initialize the various parameters
2. repeat
3. Update M with Eq. (8).
4. Update U with Eq. (12).
5. Update Oj with Eq. (13).
6. Update Kv with Eq. (14).
7. Update Sv with Eq. (15).
8. Update G with Eq. (16).
9. Update Pv with Eq. (18).
10. until Convergence
11. We use W=UM to compute the feature weight matrix W. Use the rank size of W to find the k largest
Ordinal Numbers, and use the Ordinal Numbers to find the k features in the dataset.

2.4 Complexity analysis

According to this algorithm, the computational complexity of the proposed MUCSFS method is analyzed. According to the
setting, n represents the total number of data samples, V is the number of views, dv represents the number of features in a single
view, the number of features in all view datasets can be represented by d = d1 +d2 + · · ·+dv, c is the number of potential clusters, r
is the dimension of the projected subspace, and t is the total number of iterations. Update the matrix U by solving MUCSFS. The
complexity of updating U is given by O(k). Update the projection matrix M by solving MUCSFS. The complexity of updating
M is given by O(k2d + k2m + kdn + kmn). Update the Oj by solving MUCSFS. The complexity of updating Oj is given by O(vnc).
Update the Kv by solving MUCSFS. The complexity of updating Kv is given by O(vdm). Update the Sv by (15). The complexity
of updating Sv is given by O(vnc). Update the matrix G by (16). The complexity of updating G is given by O(nc). Update the Pv

by solving MUCSFS. The complexity of updating Pv is given by O(v). Since this is a multi-view operation, there is O(d3t), and
the total complexity of algorithm. MUCSFS is combined with the complexity results of the above iteration parameters.
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3 EXPERIMENT

The experiment is divided into two parts, one is a simulation experiment on a data set similar to the surface detection data set,
and the other is a fault detection experiment using the magnetic tile surface picture data set in a high-voltage motor.

3.1 simulation experiment

In order to prove the reliability of our method, we will introduce two data sets to prove the superiority of our method, namely
MSRC-v1 and Handwritten data set. MSRC-v121 † is by trees, buildings, plane, car, bicycle, cattle, face of seven class, There
are 30 images for each refinement class. Handwritten22‡ is handwritten digital data set multiple points of view. the two data
sets are based on shape feature based data set, It is suitable for testing analog surface fault data sets. At the same time, we also
introduce five methods to compare with MUCSFS to illustrate the optimization of this method. The four methods are ASVW,
ASCL, NSGL and MRUFS. We present the characteristics of the data set in Table 2.

T A B L E 2 Statistics of two datasets

View MSRC-v1 Handwritten

1 CM(24) FCCS(76)
2 CF(254) PC(216)
3 GIST(512) KLC(64)
4 LBP(256) PA(240)
5 - ZM(76)
6 - Morp(6)

#Size 210 2000
#Classes 7 20

We will describe and explain the comparison method to ensure the experiment’s reliability. Adaptive Similarity and View
Weight (ASVW): This approach uses a learning mechanism to adaptively represent common structures through an objective
function defined by a standard graph Laplace operator across different views, and sparse L2,p norm constraints designed for
feature selection23. Adaptive Collaborative Similarity Learning (ACSL): By considering the final feature selection performance,
this method adaptively learns collaborative similarity structure and similarity combination weights24. Non-negative Structured
Graph Learning (NGSL): Adaptive similarity graph learning and feature selection learn ideal graphs by imposing reasonable
rank constraints, effectively capturing the relationship between multi-view samples25. MRUFS(Multi-level regularization based
unsupervised multi-view feature selection): This method adaptively learns a suitable similarity matrix in the dimensionality
reduction feature space based on the learned projection matrix26. In order to reduce the redundancy and noise information in
multi-view data, the intellectual projection matrix is constrained by using the structural sparsity, dependence, and diversity
information of multi-view data.

To prove the effectiveness of the experimental results, we use two evaluation indicators to verify and illustrate the experimental
results, which are clustering accuracy (ACC) and normalized mutual information (NMI)27,28. ACC represents the proportion of
the sample correctly predicted by the algorithm, resulting in accurate data. The calculation process is as follows:

ACC =
1
n

n∑
i=1

δ(vi, map(ti)) (19)

In the equation, n represents the number of samples, vi represents the predicted label of the ith sample, ti represents the ith
true label, and map(ti) represents the best mapping function of the real label cluster.

NMI represents the quality of cluster quality, the calculation process is as follows

NMI =
MI(C, L)

max(H(C), H(L))
(20)

† https://github.com/goodbai-sdnu/NSGL_code
‡ https://archive.ics.uci.edu/ml/datasets/Multiple+Feature
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After describing the experimental data, we adopted matlab2018 under the win10 system as the experimental operating
environment. Since the method needs parameter setting, we give the range of parameters here, and most parameter setting values
are [10–4, 104]. For the specific parameters in each method, m in the MUCSFS method is generally in the range of [5 100]. In
contrast, the nearest neighbor search ranges k of the method with graph structure is set to 5. The optimal number of features will
vary from one method to another for different datasets, so we use an increasing sequence of values. The number of features
in MSRC-v1 datasets and Handwritten datasets will be [100,200,300,400,500] and [250,300,350,400,450], respectively. The
results obtained by our experiment are shown in Table 3 to Table 6:

T A B L E 3 ACC of all approaches on MSRC-v1 datasets (%).

Datasets FeaDim ASVW ACSL NSGL MRUFS MUCSFS

MSRC-v1

100 41.77 30.00 39.76 45.01 58.09
200 46.10 31.24 44.29 50.52 59.38
300 48.05 31.24 50.95 57.16 63.00
400 50.01 32.19 52.76 53.00 63.23
500 56.38 34.00 57.95 55.46 65.95

T A B L E 4 NMI of all approaches on MSRC-v1 datasets (%).

Datasets FeaDim ASVW ACSL NSGL MRUFS MUCSFS

MSRC-v1

100 29.35 16.35 25.57 32.37 49.08
200 31.30 18.75 30.46 36.74 50.89
300 31.44 19.12 38.43 46.43 53.12
400 40.55 19.05 41.25 42.26 53.85
500 50.21 21.46 49.99 44.12 57.35

T A B L E 5 ACC of all approaches on Handwritten datasets (%).

Datasets FeaDim ASVW ACSL NSGL MRUFS MUCSFS

Handwritten

250 70.01 76.30 67.28 75.24 82.00
300 71.62 77.40 76.59 73.25 81.60
350 63.27 45.10 77.04 68.93 82.30
400 64.73 43.30 61.19 70.33 81.30
450 63.03 51.90 65.31 73.51 76.65

T A B L E 6 NMI of all approaches on Handwritten datasets (%).

Datasets FeaDim ASVW ACSL NSGL MRUFS MUCSFS

Handwritten

250 74.54 68.36 65.33 75.86 77.07
300 73.97 70.62 72.62 74.74 77.62
350 62.15 37.94 73.93 71.22 78.24
400 64.63 37.25 57.58 71.56 76.51
450 63.17 49.56 61.42 74.27 74.61

In Table 3 to Table 6, the best are shown in bold, and the next best are underlined. As can be seen from the experimental
results table, the results obtained by our method are better on average than those obtained by other methods in the MSRC-v1 and
Handwritten data sets. However, the two results in the Handwritten data sets could be better. This is because the number of
optimal features selected by each feature selection method differs, but the overall trend is gradually increasing and decreasing.
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F I G U R E 2 On the MSRC-v1 datasets, ACC and NMI fluctuation status of all methods as the number of features changes.
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F I G U R E 3 On the Handwritten datasets, ACC and NMI fluctuation status of all methods as the number of features changes.

For more intuitive reflection, we enumerate a decomposition result graph that changes with the number of features, as shown in
the FIGURE 2 and FIGURE 3:

3.2 Fault clustering experiment on magnetic tile surface of high voltage motor

We use the magnetic tile surface image data collected by the Chinese Academy of Sciences for fault clustering29. Magnetic tile
is a kind of tile magnet mainly used in permanent magnet motors, which can make the simple motor structure easy maintenance,
lightweight, small volume, reliable use, less copper, low copper consumption, low energy consumption, and other advantages.
However, the actual use of the process due to high voltage caused by a high magnetic environment will make the adoption of the
target detection results not accurate, and because of the diversity of magnetic tile faults, it is difficult to distinguish the naked eye.
The fault types of magnetic tiles can be divided into Blowhole, Break, Crack, Fray, and Uneven. The specific fault picture is
shown in FIGure 4:

However, the original data set image will have corresponding interference during the acquisition process, such as light and
electromagnetic field interference. Therefore, we use the LBP features and HOG features of the original image as the second and
third views. LBP(Local Binary Pattern) is an operation used to describe image local features. LBP features have significant
advantages, such as gray invariance and rotation invariance. It was proposed by T. Ojala, M. Pitikainen, and D. Harwood in
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Blowhole Break Crack Fray Uneven

F I G U R E 4 In the figure, We show pictures of each class of faults in the Magnet tile fault dataset

199430. LBP feature has been widely used in many fields of computer vision due to its simple computation and good effect. The
LBP feature operator can effectively reflect the feature texture of the magnetic tile fault image, and the feature vector group is
used to represent the feature of the image. It constructs features by calculating and counting the gradient direction histogram of
the local area of the image. HOG(Histogram of Oriented Gradient) is operated on the local grid unit of the image so that it can
maintain a good invariance to the geometric and optical deformation of the image31.

After determining the contents of each perspective, we randomly selected 15 images from the five types of fault feature
images, totaling 75 images, to construct the magnetic vado perspective data set. The magnetic vado perspective data set we
obtained is shown in the Table 7:

T A B L E 7 Magnet tile fault dataset

View Magnet tile fault

1 Gray(2500)
2 LBP(90)
3 HOG (900)

#Size 75
#Classes 5

After processing the magnetic tile data set, we decomposed it. In order to further prove the effectiveness of the proposed
method in the fault clustering experiment, the method of simulation experiment in the previous paper is also introduced in the
experiment, and the results of all methods are compared. The parameter setting is the same as that of the simulation experiment
above, and the number of feature selections was set as [100,150,200,250,300]. The experimental results are shown in Table 8
and Table 9:

T A B L E 8 ACC of all approaches on four datasets (%).

Datasets FeaDim ASVW ACSL NSGL MRUFS MUCSFS

Magnet tile fault

100 33.50 35.26 39.03 39.04 44.64
150 31.80 34.73 39.10 39.20 48.34
200 34.43 35.60 40.13 38.83 52.83
250 37.00 36.07 38.93 39.40 50.07
300 37.73 41.33 39.56 39.33 50.66

T A B L E 9 NMI of all approaches on four datasets (%).

Datasets FeaDim ASVW ACSL NSGL MRUFS MUCSFS

Magnet tile fault

100 14.24 14.46 19.67 20.23 27.91
150 13.78 14.81 20.41 19.51 29.36
200 14.65 15.48 19.71 19.92 34.09
250 17.69 16.62 20.29 20.10 33.13
300 18.11 22.45 20.03 20.86 33.22
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F I G U R E 5 On the magnet tile fault datasets, ACC and NMI fluctuation status of all methods as the number of features changes.

(a) (b) (c)

F I G U R E 6 The parameter variation of this method on the the magnet tile fault datasets, each graph shows the influence
between two parameters, and the remaining parameters are fixed.

In these tables, the result of our method is the best, and it has a good effect on the clustering accuracy of faults. Our method
adopts the L2,0 norm and obtains sufficiently sparse features compared to other models. At the same time, the model has the
bias structure and the subspace soft label to avoid noise interference in the image data set of the magnetic tile fault. These help
distinguish different fault pictures of magnetic tiles. To further demonstrate the effectiveness of our method, we use a graph to
show the trend of all methods in the number of feature selections.

3.3 Parameter analysis

The model is mainly affected by three parameters, α, β, and m. To explain the influence between α and β, considering the close
relationship between the value of m and the characteristics of each view, the influence of multi-view will be more obvious.
Therefore, in order to intuitively explain the impact of parameters on the result. We take the Magnet tile fault data set as an
example to illustrate the relationship between the three parameters, and the results are shown as FIGURE.6:

We compare the three parameters separately and fix the other parameters when compare the two parameters. For α and β, the
fixed value is 104, and for the feature dimension of the feature subspace the fixed value is 30. The number of feature selections
taken is fixed to 250. Then, as shown in the FIGURE. 6, (a), (b) and (c) show the model accuracy changes under the combination
of α and β, α and m, and β and m respectively. It can be seen that the parameters α and β fluctuate in the range [10–4, 106] and
have little impact on the accuracy, while the m value only has a large increase in a fixed range, and there is little difference in
other ranges. There is no direct interaction between the parameters.
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4 CONCLUSIONS

This paper proposes a multi-view feature selection method called MUCSFS, which constructs consistent pseudo-labels by soft
labels of sample cluster affinity in each view, integrates the selection constraints into the mapping model, reduces the screening
steps, and finally obtains the feature subset. This method can be used for target surface detection. We verify the effectiveness of
this method by using handwritten and MSRC-v1 data sets. Then, through the fault clustering experiment of the magnetic tile
fault data set of high voltage motors, it is confirmed that our method can effectively enumerate the fault categories. In the future,
we will study to improve the clustering accuracy of fault categories.
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