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Abstract

We are concerned with the existence of global and blow-up solutions for the semilinear heat equation with variable exponent u

t - Δ u = h ( t ) f ( u ) p ( x ) in Ω×(0 ,T ) with zero Dirichlet boundary condition and initial data in C 0 ( Ω ) . The scope

of our analysis encompasses both bounded and unbounded domains, with p ( x ) [?] C ( Ω ) , 0 < p - [?] p ( x ) [?] p + ,

h[?] C (0 ,[?]), and f [?] C [0 ,[?]). Our findings have significant implications, as they enhance the blow-up result discovered by

Castillo and Loayza in Comput. Math. App. 74(3), 351-359 (2017) when f ( u)= u.
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Summary

We are concerned with the existence of global and blow-up solutions for the semi-
linear heat equation with variable exponent 𝑢𝑡−Δ𝑢 = ℎ(𝑡)𝑓 (𝑢)𝑝(𝑥) in Ω×(0, 𝑇 ) with
zero Dirichlet boundary condition and initial data in 𝐶0(Ω). The scope of our anal-
ysis encompasses both bounded and unbounded domains, with 𝑝(𝑥) ∈ 𝐶(Ω), 0 <
𝑝− ≤ 𝑝(𝑥) ≤ 𝑝+, ℎ ∈ 𝐶(0,∞), and 𝑓 ∈ 𝐶[0,∞). Our findings have significant im-
plications, as they enhance the blow-up result discovered by Castillo and Loayza in
Comput. Math. App. 74(3), 351-359 (2017) when 𝑓 (𝑢) = 𝑢.
KEYWORDS:
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1 INTRODUCTION

Let Ω ⊂ ℝ𝑁 be a domain (bounded or unbounded) with smooth boundary 𝜕Ω. We consider the semilinear parabolic problem
⎧

⎪

⎨

⎪

⎩

𝑢𝑡 − Δ𝑢 = ℎ(𝑡)𝐹 (𝑥, 𝑢) in Ω × (0, 𝑇 ),
𝑢 = 0 on 𝜕Ω × (0, 𝑇 ),

𝑢(0) = 𝑢0 ≥ 0 in Ω,
(1)

where 𝐹 (𝑥, 𝑠) = 𝑓 (𝑠)𝑝(𝑥), for 𝑥 ∈ Ω, 𝑠 ≥ 0, 𝑓 ∈ 𝐶[0,∞) is a nondecreasing locally Lipschitz function, ℎ ∈ 𝐶(0,∞), 𝑝 ∈ 𝐶(Ω)
is a bounded function such that

0 < 𝑝− ≤ 𝑝(𝑥) ≤ 𝑝+ < ∞, (2)
for all 𝑥 ∈ Ω, with 𝑝− = inf𝑥∈Ω{𝑝(𝑥)}, 𝑝+ = sup𝑥∈Ω{𝑝(𝑥)}, and 𝑢0 ∈ 𝐶0(Ω). Here, 𝐶0(Ω) denotes the closure in 𝐿∞(Ω) of
infinitely differentiable functions with compact support in Ω. Throughout the work we consider only nonnegative solutions in
the sense of (11).

Problem (1) appears in several models of the applied sciences such as electrorheological fluids22, thermo-rheological fluids3,
image processing1,5, chemical reactions, heat transfer and population dynamics12. It has been considered for many authors. For
example, when Ω is a bounded domain and ℎ(𝑡) = 1, blow up results for problem (1) were obtained in13 for 𝐹 (𝑥, 𝑠) = 𝑒𝑝(𝑥)𝑠, and
in21 for 𝐹 (𝑥, 𝑢) = 𝑎(𝑥)𝑢𝑝(𝑥). When Ω = ℝ𝑁 , Fujita type results were obtained in14 for 𝐹 (𝑥, 𝑠) = 𝑠𝑝(𝑥), ℎ(𝑡) = 1. Specifically, in
the last case it was shown that:

• If 𝑝− > 1 + 2∕𝑁 , then problem (1) possesses global nontrivial solutions.
• If 1 < 𝑝− < 𝑝+ ≤ 1 + 2∕𝑁 , then all nontrivial solutions to problem (1) blow up in finite time.
• If 𝑝− < 1+2∕𝑁 < 𝑝+, then there are functions 𝑝 such that problem (1) possesses global nontrivial solutions and functions

𝑝 such that all nontrivial solutions blow up.
0MSC: 35B33, 35B44, 35K15, 35K55, 35K57
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These results were extended for any domain Ω (bounded or unbounded); see Theorem 1.2 and Remark 1.3 of9. Specifically,
they showed the following result.
Theorem 1. Suppose that 𝐹 (𝑥, 𝑠) = 𝑠𝑝(𝑥) for 𝑠 ≥ 0.

(i) If 𝑝+ ≤ 1, then all solutions of problem (1) are global.
(ii) If 𝑝+ > 1 and

lim sup
𝑡←→∞

‖𝑆(𝑡)𝑢0‖𝑝
+−1
∞

𝑡

∫
0

ℎ(𝜎)𝑑𝜎 = ∞, (3)

for every nonnegative 0 ≠ 𝑢0 ∈ 𝐶0(Ω), then every nontrivial solution of problem (1) either blow up in finite time or in
infinite time. In the last case, we mean that the solution is global and lim sup𝑡←→∞ ‖𝑢(𝑡)‖∞ = ∞.

(iii) If 𝑝− > 1 and there exists 𝑤0 ∈ 𝐶0(Ω), 𝑤0 ≥ 0, 𝑤0 ≠ 0 verifying
∞

∫
0

ℎ(𝜎)‖𝑆(𝑡)𝑤0‖
𝑝−−1
∞ < ∞, (4)

then there exists a constant Λ > 0, depending on 𝑝+ and 𝑝−, so that if 0 < 𝜆 < Λ, then the solution of (1), with initial data
𝜆𝑤0, is a nontrivial global solution.

Notice that the conditions (3) and (4) of Theorem 1 are expressed in terms of the asymptotic behavior of ‖𝑆(𝑡)𝑢0‖∞, where
{𝑆(𝑡)}𝑡≥0 denotes the heat semigroup. The first result of this type was given by Meier19 for problem (1) in the case 𝐹 (𝑥, 𝑠) =
𝑠𝑝, 𝑠 ≥ 0, 𝑝 > 1. It is important because the conditions are valid for any domain Ω, bounded or unbounded, and because it is
sufficient to know the behavior of ‖𝑆(𝑡)𝑢0‖∞ to decide whether the solution of problem (1) is global or not. For example, we
know, in ℝ𝑁 , that ‖𝑆(𝑡)𝑢0‖∞ ∼ 𝑡−𝑁∕2 for 𝑡 near infinity and 𝑢0 ∈ 𝐶0(ℝ𝑁 ), 𝑢0 ≠ 0. Thus, assuming ℎ = 1, condition (3) holds
if 𝑝+ < 1 + 2∕𝑁 , while condition (4) holds if 𝑝− > 1 + 2∕𝑁 . This coincides with the results obtained in14. Similar results have
been obtained for parabolic coupled system related to problem (1) in7,8 and10.

The main objective of this work is to obtain Meier type results, similar to Theorem 1, for problem (1) considering 𝐹 (𝑥, 𝑠) =
𝑓 (𝑠)𝑝(𝑥), where 𝑓 ∈ 𝐶[0,∞) is a locally Lipschitz and nondecreasing function, and 𝑝 ∈ 𝐶(Ω) satisfies condition (2). We also
analyze situations where 𝑝(𝑥) < 1 or 𝑝(𝑥) > 1 on subdomains of Ω. As a consequence of our results, we improve Theorem 1
(ii) and remove the possibility of the existence of solutions that blow up in infinite time, see Remark 2-(vi).

Our results depend on the conditions:
∞

∫
𝛼

𝑑𝜎
min{𝑓 (𝜎)𝑝− , 𝑓 (𝜎)𝑝+}

< ∞, (5)

for some 𝛼 ≥ 0 such that 𝑓 (𝛼) > 0, and
∞

∫
𝜏

𝑑𝜎
max{𝑓 (𝜎)𝑝− , 𝑓 (𝜎)𝑝+}

= ∞, (6)

for all 𝜏 > 0 with 𝑓 (𝜏) > 0.
Note that if 𝐹 (𝑥, 𝑠) = 𝑓 (𝑠) and ℎ = 1, condition (5) turns into

∞

∫
𝑤

𝑑𝜎
𝑓 (𝜎)

< ∞, (7)

which is well known as a necessary and sufficient condition for the existence of blow up solutions. Some examples of a function
𝑓 satisfying condition (7) are 𝑓 (𝑢) = 𝑢𝑞 , 𝑓 (𝑢) = (1 + 𝑢)[ln(1 + 𝑢)]𝑞 , 𝑓 (𝑢) = 𝑒𝛼𝑢 − 1 for 𝑞 > 1 and 𝛼 > 0.

In our first result we use condition (6) to get global solutions for problem (1).
Theorem 2. Assume that condition (6) holds with 𝑝− < 1. Then for every 𝑢0 ∈ 𝐶0(Ω), 𝑢0 ≥ 0 there exists a global solution of
problem (1).

Moreover, 𝑢 is a positive if
(i) 𝑓 (0) > 0 or 𝑢0 ≠ 0 or
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(ii) 𝑢0 = 0 with the additional assumptions:
(a) 𝑓 (0) = 0, 𝑓 (𝑠) > 0 in (0, 𝜏) for some 𝜏 > 0.
(b) 𝑝(𝑥) ≤ 𝛾 < 1 for some subdomain Ω′ ⊂ Ω.
(c) ∫ 𝜏

0
𝑑𝜎

𝑓 (𝜎)𝛾
< ∞ for some 𝜏 > 0.

Moreover, 𝑢(𝑡) ≥ 𝜇(𝑡)𝜒𝐵(𝑥0,𝑟) on some interval [0, 𝜏1], 𝜏1 ≤ 𝜏, 𝑟 > 0 such that 𝐵𝑟+2𝛿(𝑥0) ⊂ Ω′, 𝛿 > 0, and
𝜇 ∈ 𝐶([0, 𝜏1], [0,∞)) is a positive solution of the Cauchy problem:

𝑥𝑡 =
𝑐𝑁
2𝑁

ℎ(𝑡)𝑓 𝛾 (𝑥), 𝑥(0) = 0, (8)
where 𝑐𝑁 is the constant given in Lemma 1. Here 𝜒𝐵𝑟(𝑥0) denotes the characteristic function on the open ball centered at
𝑥0 and radius 𝑟 > 0.

Remark 1. Here are some comments about Theorem 2.
(i) Condition 𝑓 (0) = 0 implies that 𝑢 = 0 is a solution of problem (8) and assumption ∫ 𝜏

0 𝑑𝜎∕𝑓 (𝜎)𝛾 < ∞ guarantees the
existence of a positive solution of problem (8).

(ii) The existence of a positive solution of (1) with 𝑢0 = 0, for 𝑓 (𝑠) = 𝑠, ℎ = 1, it was shown in14 considering a subsolution
of the form 𝑤(𝑡) = 𝐶𝑡1∕(1−𝛾)𝜑1 for an appropriate constant 𝐶 > 0 and 𝜑1 > 0 the first eigenfunction of the Laplacian
operator on 𝐻1

0 (Ω
′). Here, we use the subsolution 𝑤 = 𝜇(⋅)𝜒𝑟 of problem 𝑢𝑡 − Δ𝑢 = ℎ(𝑡)𝑓 (𝑢)𝛾 in Ω′ × (0, 𝜏1). This idea

was used firstly in17.
(iii) For 𝑓 (𝑠) = 𝑠, 𝑝(𝑥) = 𝑝 ∈ (0, 1) constant, ℎ = 1 and Ω = ℝ𝑁 , the function 𝑢(𝑡) = [(1 − 𝑝)𝑡]1∕(1−𝑝), 𝑡 > 0, is the positive

solution of problem (1) (𝑢0 = 0) which is obtained solving the Cauchy problem: 𝑥𝑡 = 𝑥𝑝, 𝑥(0) = 0, see2 and11.
(iv) When 𝐹 (𝑥, 𝑠) = 𝑠𝑝(𝑥), 𝑠 ≥ 0 and 0 < 𝜏 < 1 we have

+∞ =

∞

∫
𝜏

𝑑𝜎
max{𝜎𝑝− , 𝜎𝑝+}

=

1

∫
𝜏

𝑑𝜎
𝑠𝑝−

+

∞

∫
1

𝑑𝜎
𝑠𝑝+

if and only if 𝑝+ ≤ 1. Thus Theorem 2 coincides with Theorem 1(i).

In our second result we use condition (5) to obtain blow up solutions.
Theorem 3. (i) (Global existence) Let  ∶ (0, 𝑚] → [0,∞) be defined by  (𝑠) = 1

𝑠
max{𝑓 (𝑠)𝑝− , 𝑓 (𝑠)𝑝+} for 𝑠 ∈ (0, 𝑚].

Assume that  is a nondecreasing function and there exists 𝑣0 ∈ 𝐶0(Ω), 0 ≠ 𝑣0 ≥ 0, ‖𝑣0‖∞ ≤ 𝑚 satisfying
∞

∫
0

ℎ(𝜎)
(

‖𝑆(𝜎)𝑣0‖∞
)

𝑑𝜎 < 1.

Then there exists a constant 𝛿 > 0 such that for 𝑢0 = 𝛿𝑣0 the solution of problem (1) is a global solution.
(ii) (Nonglobal existence) Assume that 𝑓 (0) = 0, condition (5) holds, 𝑝− ≥ 1 and the following assumptions are satisfied:

(a) 𝑓 (𝑠) > 0 for all 𝑠 > 0, and
𝑓 (𝑆(𝑡)𝑣0) ≤ 𝑆(𝑡)𝑓 (𝑣0), (9)

for all 0 ≤ 𝑣0 ∈ 𝐶0(Ω) and 𝑡 > 0.

(b) There exist 𝜏 > 0 such that
∞

∫
‖𝑆(𝜏)𝑢0‖∞

𝑑𝜎
min{𝑓 (𝜎)𝑝− , 𝑓 (𝜎)𝑝+}

≤ 2−𝑝+
𝜏

∫
0

ℎ(𝜎)𝑑𝜎. (10)

Then the solution of problem (1) with initial condition 𝑢0 ≥ 0, 𝑢0 ≠ 0 blows up in finite time.
Remark 2. Here are some comments about Theorem 3.
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(i) If 𝑓 (0) = 0 and 𝑝− ≥ 1, then  is well defined, since 𝑓 is locally Lipschitz, and if we assume additionally that 𝑓 is a
convex function we have that  is nondecreasing.

(ii) Condition 𝑓 (0) = 0 is used in inequality (9) because the Dirichlet condition on the boundary must be satisfied.
(iii) Constant 2−𝑝+ in inequality (10) appears due to Jensen’s inequality, see Lemma 2.
(iv) Condition (9) holds for any convex function 𝑓 when Ω = ℝ𝑁 . This is a consequence of Jensen’s inequality and the

representation of the semigroup 𝑆(𝑡)𝑢0 = 𝐾𝑡 ⋆ 𝑢0, where 𝐾𝑡 = (4𝜋𝑡)−𝑁∕2 exp(−|𝑥|2∕(4𝑡)) is the heat kernel.
(v) When Ω is any domain, condition (9) holds for any twice differentiable and convex function with 𝑓 (0) = 0. Indeed, if

𝑣(𝑡) = 𝑓 (𝑆(𝑡)𝑢0) then
𝑣𝑡 − Δ𝑣 = −𝑓 ′′(𝑆(𝑡)𝑢0)|∇𝑆(𝑡)𝑢0|2 ≤ 0

in Ω × (0,∞) and 𝑣(𝑡) = 𝑓 (0) = 0 on 𝜕Ω × (0,∞). Since 𝑣(0) = 𝑓 (𝑢0) we conclude by the maximum principle.
(vi) Theorem 3 improves Theorem 1(ii) if 𝑝− > 1, 𝑓 (𝑠) = 𝑠 and condition (3) holds. Indeed, since 𝑝− > 1 the condition (5) is

verified. Thus, it is sufficient to check the condition (10). First, note that
∞

∫
𝛼

𝑑𝜎
min{𝜎𝑝− , 𝜎𝑝+}

≤ 𝑝+ − 𝑝−

(𝑝+ − 1)(𝑝− − 1)
+ 𝛼1−𝑝+

𝑝+ − 1
,

for every 𝛼 > 0. From condition (3) there exists 𝜏 > 0 such that
𝑝+ − 𝑝−

(𝑝+ − 1)(𝑝− − 1)
‖𝑢0‖

𝑝+−1
∞ + 1

𝑝+ − 1
≤
(1
2

)𝑝+

‖𝑆(𝜏)𝑢0‖𝑝
+−1
∞

𝜏

∫
0

ℎ(𝜎)𝑑𝜎.

Hence,
∫ ∞
‖𝑆(𝜏)𝑢0‖∞

𝑑𝜎
min{𝜎𝑝− ,𝜎𝑝+}

≤ ‖𝑆(𝜏)𝑢0‖
1−𝑝+
∞

[

𝑝+−𝑝−

(𝑝+−1)(𝑝−−1)
‖𝑆(𝜏)𝑢0‖

𝑝+−1
∞ + 1

𝑝+−1

]

≤ ‖𝑆(𝜏)𝑢0‖
1−𝑝+
∞

[

𝑝+−𝑝−

(𝑝+−1)(𝑝−−1)
‖𝑢0‖

𝑝+−1
∞ + 1

𝑝+−1

]

≤ 2−𝑝+ ∫ 𝜏
0 ℎ(𝜎)𝑑𝜎.

By Theorem 3, 𝑢 blows up in finite time.

In the proof of Theorem 3, we adapt the techniques used in18. It is worth noting that in that work, the authors utilized their
findings to derive Fujita exponents for the problem (1) with 𝐹 (𝑥, 𝑢) = (1 + 𝑢)(ln(𝑢+ 1))𝑞 and 𝐹 (𝑥, 𝑢) = 𝑒𝛼𝑢 − 1. Theorem 3 can
also be applied to obtain Fujita-type results for problem (1) with more complex source terms and on different domains Ω. This
may include the logarithmic function with variable exponent [(1+ 𝑢)(ln(𝑢+1))𝑞]𝑝(𝑥) and the exponential with variable exponent
[𝑒𝛼𝑢 − 1]𝑝(𝑥).

It is important always to be aware that solutions may blow up in a finite time when dealing with large initial data. This was
demonstrated in14, Theorem 3.3 using Kaplan’s argument15. Our next Theorem shows how this approach can be modified to present
a similar result. We will focus on the scenario where ℎ = 1 for simplicity.
Theorem 4. Suppose that 𝑝+ > 1, ℎ = 1 and there exists a bounded subdomain Ω′ ⊂ Ω such that 𝑝(𝑥) ≥ 𝛾 > 1 for all 𝑥 ∈ Ω′.
Assume also that 𝑓 is a convex function such that ∫ ∞

𝜏 𝑑𝜎∕𝑓 (𝜎)𝛾 < ∞ for some 𝜏 > 0 with 𝑓 (𝜏) > 0. Then there are solutions
of problem (1) such that blow up in finite time.
Remark 3. Theorem 4 for 𝑓 (𝑠) = 𝑠 was established in14, Theorem 3.3.

The rest of the paper is organized as follows. Section 2 is dedicated to analyze the existence of positive global solution and
Theorem 2 is proved. Blow up for large initial data is shown in Section 3. Section 4 is devoted to the proof of Theorem 3.
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2 EXISTENCE AND UNIQUENESS

Solutions of problem (1) are understood in the following sense: given 𝑢0 ∈ 𝐶0(Ω), a function 𝑢 ∈ 𝐶([0, 𝑇 ), 𝐶0(ℝ𝑁 )) is said to
be a solution of problem (1) in (0, 𝑇 ) if 𝑢 is nonnegative and verifies the following equation

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +

𝑡

∫
0

𝑆(𝑡 − 𝜎)ℎ(𝜎)𝐹 (⋅, 𝑢(𝜎))𝑑𝜎 (11)

for all 𝑡 ∈ (0, 𝑇 ), where 𝐹 (𝑥, 𝑢) = 𝑓 (𝑢)𝑝(𝑥).
Since 𝑓 ∈ 𝐶[0,∞) is a locally Lipschitz function, it is clear that if 𝑝(𝑥) ≥ 1, the nonlinear term 𝐹 (𝑥, 𝑢), for 𝑥 ∈ Ω fixed, is a

locally Lipschitz function. Thus, using usual methods it is possible to show the existence of a unique local solution of (1) defined
in some interval [0, 𝑇 ]. Moreover, this solution can be extended to a maximal interval [0, 𝑇max) and the blow up alternative
occurs: either 𝑇max = +∞ (we say that 𝑢 is a global solution) or 𝑇max < ∞ and lim sup𝑡→𝑇max

‖𝑢(𝑡)‖∞ = +∞. In the last case, we
say that the solution blows up in a finite time, see for example6,14,4 and9.

When 𝑝(𝑥) < 1 on some subdomain of Ω, the function 𝐹 (𝑥, 𝑢) is not locally Lipschitz (for 𝑥 fixed), and we can use an
approximation method to find a solution; see problem (12). We give more details in the proof of Theorem 2 below.

The existence of a positive solution of problem (1) for 𝑢0 = 0 is proved with the aid of the following result given in16, Lemma 2.1.
Lemma 1. There exists a constant 𝑐𝑁 , which depend only on 𝑁 , such that for any 𝑟, 𝛿 > 0 with 𝐵𝑟+2𝛿 = 𝐵(0, 𝑟 + 2𝛿) ⊂ Ω,

𝑆(𝑡)𝜒𝑟 ≥ 𝑐𝑁

(

𝑟
𝑟 +

√

𝑡

)𝑁

𝜒𝑟+
√

𝑡

for all 0 < 𝑡 ≤ 𝛿2.
Proof of Theorem 2 Local existence. We use a standard approximation method, see for instance20. For every 𝜖 > 0, let

𝐹𝜖 ∶ Ω × [0,∞) → [0,∞) be defined by
𝐹𝜖(𝑥, 𝑠) =

{

𝑓 (𝑠)𝑝(𝑥) if 𝑠 ≥ 𝜖 or 𝑝(𝑥) ≥ 1,
𝑓 (𝜖)𝑝(𝑥)−1𝑓 (𝑠) if 0 ≤ 𝑠 < 𝜖 and 𝑝(𝑥) < 1.

Note that since we are assuming 𝑝− < 1 there exists a subdomain of Ω where 𝑝(𝑥) < 1.
The function 𝐹𝜖(𝑥, ⋅) is locally Lipschitz for every 𝑥 ∈ Ω. Let 𝑢𝜖 be a solution of the problem

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 − Δ𝑢 = ℎ(𝑡)𝐹𝜖(𝑥, 𝑢) in Ω × (0, 𝑇 ),
𝑢 = 𝜖 on 𝜕Ω × (0, 𝑇 ),

𝑢(0) = 𝑢0 + 𝜖 in Ω,
(12)

defined on a maximal interval [0, 𝑇 𝜖
max). We know that the blow-up alternative occurs, that is, either 𝑇 𝜖

max = ∞ or 𝑇 𝜖
max < ∞ and

lim sup𝑡→𝑇 𝜖
max

‖𝑢𝜖(𝑡)‖∞ = ∞. Since 𝑢 = 𝜖 is a subsolution to problem (12), by a comparison principle we conclude that 𝑢𝜖 ≥ 𝜖.
Note that if 𝜖1 < 𝜖2 then 𝐹𝜖2(⋅, 𝑢

𝜖2) = 𝐹𝜖1(⋅, 𝑢
𝜖2) and 𝑢𝜖2 is a supersolution to problem (12) (with 𝜖 = 𝜖1). Hence, by a comparison

principle we have 𝑢𝜖1 ≤ 𝑢𝜖2 in [0, 𝑇 𝜖2
max). Thus, we can define 𝑢 = lim𝜖→0 𝑢𝜖 on [0, 𝑇 𝜖0

max) for some 𝜖0 > 0.

Global existence. By the existence part we observe that it is sufficient to show that 𝑇 𝜖
max = ∞ for some 𝜖 > 0 sufficiently

small. Since 𝑢𝜖 is a solution of problem (12) and 𝑢𝜖(𝑡) ≥ 𝜖 we obtain

𝑢𝜖(𝑡) = 𝑆(𝑡)𝑢(0) + 𝜖 +

𝑡

∫
0

ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 (𝑢𝜖(𝜎))]𝑝(𝑥)𝑑𝜎, (13)

for 𝑡 ∈ (0, 𝑇 𝜖
max). Hence

‖𝑢𝜖(𝑡)‖∞ ≤ ‖𝑢0‖∞ + 𝜖 + ∫ 𝑡
0 ℎ(𝜎)‖[𝑓 (𝑢𝜖(𝜎))]𝑝(𝑥)‖∞𝑑𝜎.

Using the fact that 𝑓 is nondecreasing we have that 𝑓 (𝑢𝜖(𝜎)) ≤ 𝑓 (‖𝑢𝜖(𝜎)‖∞), and hence
‖[𝑓 (𝑢𝜖(𝜎))]𝑝(𝑥)‖∞ ≤ ‖[𝑓

(

‖𝑢𝜖(𝜎)‖∞
)

]𝑝(𝑥)‖∞
≤ max{[𝑓 (‖𝑢𝜖(𝜎)‖∞)]𝑝

− , [𝑓 (‖𝑢𝜖(𝜎)‖∞)]𝑝
+}.
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Thus,
‖𝑢𝜖(𝑡)‖∞ ≤ ‖𝑢0‖∞ + 𝜖 +

𝑡

∫
0

ℎ(𝜎) max{[𝑓 (‖𝑢𝜖(𝜎)‖∞)]𝑝
− , [𝑓 (‖𝑢𝜖(𝜎)‖∞)]𝑝

+}𝑑𝜎.

Set
Ψ(𝑡) = ‖𝑢0‖∞ + 𝜖 + ∫ 𝑡

0 ℎ(𝜎) max{[𝑓 (‖𝑢𝜖(𝜎)‖∞]𝑝
−), [𝑓 (‖𝑢𝜖(𝜎)‖∞]𝑝

+)}𝑑𝜎 and
𝑔1(𝑡) = max{[𝑓 (𝑡)]𝑝− , [𝑓 (𝑡)]𝑝+)}.

Then, ‖𝑢𝜖(𝑡)‖∞ ≤ Ψ(𝑡) and
Ψ′(𝑡) = ℎ(𝑡) max{[𝑓 (‖𝑢𝜖(𝑡)‖∞]𝑝

−), [𝑓 (‖𝑢𝜖(𝑡)‖∞]𝑝
+)}

≤ ℎ(𝑡) max{[𝑓 (Ψ(𝑡))]𝑝− , [𝑓 (Ψ(𝑡))]𝑝+}.

Fix 𝜏 ∈ (0,min{𝜖, 𝑇 𝜖
max}) such that 𝑓 (𝜏) > 0 and condition (6) holds. Defining 𝐻(𝑡) = ∫ 𝑡

𝜏 𝑑𝜎∕𝑔1(𝜎), for 𝑡 ≥ 𝜏, we obtain
(𝐻◦Ψ)′(𝑡) ≤ ℎ(𝑡) for 𝑡 ∈ (0, 𝑇 𝜖

max). Thus,
‖𝑢𝜖(𝑡)‖∞

∫
𝜏

𝑑𝜎
𝑔1(𝜎)

≤

Ψ(𝑡)

∫
𝜏

𝑑𝜎
𝑔1(𝜎)

≤

𝑡

∫
0

ℎ(𝜎)𝑑𝜎 +𝐻(Ψ(0)), (14)

for 𝑡 ∈ (0, 𝑇 𝜖
max). From this inequality, we concluded that 𝑇 𝜖

max = ∞, since if 𝑇 𝜖
max < ∞ we have that lim sup𝑡→𝑇 𝜖

max
‖𝑢𝜖(𝑡)‖∞ =

+∞, which contradicts condition (6).
Existence of a positive solution. (i) If 𝑢0 ≥ 0 and 𝑢0 ≠ 0, the result follows from (11) and the strong maximum principle,

since 𝑢(𝑡) ≥ 𝑆(𝑡)𝑢0 > 0 for 𝑡 > 0.
Assume now that 𝑓 (0) > 0. Without loss of generality we may assume that 0 ∈ Ω and 𝐵𝑟+𝛿 ⊂ Ω for some 𝑟 > 0 and 𝛿 > 0,

where 𝐵𝑟+2𝛿 = 𝐵𝑟+2𝛿(0). Since 𝑢0 and 𝑢 are nonnegatives, and 𝑓 is nondecreasing, from (11) we have
𝑢(𝑡) ≥ ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 (𝑢(𝜎))]𝑝(𝑥)𝑑𝜎
≥ ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)𝑓 (0)𝑝(𝑥)𝑑𝜎
≥ min{𝑓 (0)𝑝− , 𝑓 (0)𝑝+} ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)𝜒𝑟𝑑𝜎,

where 𝜒𝑟 = 𝜒𝐵𝑟
. Let 𝜑1,𝑟 > 0 be the first eigenfunction of the Laplacian operator on 𝐻1

0 (𝐵𝑟) associated to the first eigenvalue
𝜆1,𝑟 > 0. Since 𝜒𝑟 ≥ 𝐶𝜑1,𝑟 for some constant 𝐶 > 0, we have that 𝑆(𝑡 − 𝜎)𝜒𝑟 ≥ 𝐶𝑒−(𝑡−𝜎)𝜆1,𝑟𝜑1,𝑟, and thus

𝑢(𝑡) ≥ 𝐶 min{𝑓 (0)𝑝− , 𝑓 (0)𝑝+}𝑒−𝜆1,𝑟𝑡𝜑1,𝑟

𝑡

∫
0

ℎ(𝜎)𝑑𝜎 > 0

on 𝐵𝑟(0) × (0,∞).
Using again (11) it is possible to show that 𝑢(𝑡) ≥ 𝑆(𝑡−𝑠)𝑢(𝑠) for 𝑡 ≥ 𝑠 > 0. Thus, since 0 ≠ 𝑢(𝑠) ≥ 0, by the strong maximum

principle, we have that 𝑢(𝑡) > 0 for 𝑡 ≥ 𝑠 > 0. Letting 𝑠 → 0 we get the result.
(ii) When 𝑢0 = 0, from (14) we have that

‖𝑢𝜖(𝑡)‖∞ ≤ 𝐻−1
⎛

⎜

⎜

⎝

𝑡

∫
0

ℎ(𝜎)𝑑𝜎 +𝐻(𝜖)
⎞

⎟

⎟

⎠

,

for 𝑡 ∈ (0, 𝑇 𝜖
max). Thus, 𝑓 (𝑢𝜖0(𝑡)) ≤ 𝑓 (‖𝑢𝜖0(𝑡)‖∞) ≤ 1 for 𝑡 ∈ [0, 𝑇 ] with 𝑇 = 𝑇 (𝜖0) > 0 small and some 𝜖0 > 0.

On the other hand, since 𝑝− < 1, there exists a subdomain Ω′ ⊂ Ω so that 𝑝(𝑥) ≤ 𝛾 < 1 for 𝑥 ∈ Ω′. Assume that 0 ∈ Ω′ and
that the ball 𝐵𝑟+2𝛿 ⊂ Ω′ for some 𝑟, 𝛿 > 0. Since {𝑢𝜖} is nonincreasing in 𝜖 we have that 𝑓 (𝑢𝜖(𝑡)) ≤ 𝑓 (𝑢𝜖0(𝑡)) ≤ 1 for 0 < 𝜖 ≤ 𝜖0
and 0 ≤ 𝑡 ≤ 𝑇 . Thus, from (13)

𝑢𝜖(𝑡) ≥ ∫ 𝑡
0 ℎ(𝜎)𝑆(𝑡 − 𝜎)

{

[𝑓 (𝑢𝜖(𝜎))]𝑝(𝑥)𝜒𝑟
}

𝑑𝜎
≥ ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)
{

[𝑓 (𝑢𝜖(𝜎))]𝛾𝜒𝑟
}

𝑑𝜎.
(15)

It is well known that condition ∫ 𝜏
0 𝑑𝜎∕[𝑓 (𝜎)]𝛾 < ∞ assures that the solution 𝜇 of the Cauchy problem (8) is continuous and

positive in some interval [0, 𝜏1]. Since 𝑓 (0) = 0 and 𝜇(0) = 0, it is possible to choose 𝜏2 ∈ (0, 𝜏1) so that 𝑓 (𝜇(𝑡)) ≤ 1 for



AUTHOR ONE ET AL 7

𝑡 ∈ (0, 𝜏2). Thus by Lemma 1
∫ 𝑡
0 ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 (𝑤(𝜎))]𝛾𝜒𝑟𝑑𝜎
= ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 (𝜇(𝜎)𝜒𝑟)]𝛾𝜒𝑟𝑑𝜎
= ∫ 𝑡

0 ℎ(𝜎)[𝑓 (𝜇(𝜎))]𝛾𝑆(𝑡 − 𝜎)𝜒𝑟𝑑𝜎

≥ 𝑐𝑁 ∫ 𝑡
0 ℎ(𝜎)[𝑓 (𝜇(𝜎))]𝛾

(

𝑟
√

𝑡−𝜎+𝑟

)𝑁
𝜒𝑟+

√

𝑡−𝜎 𝑑𝜎

≥ 𝑐𝑁
2𝑁
𝜒𝑟 ∫

𝑡
0 ℎ(𝜎)[𝑓 (𝜇(𝜎))]𝛾𝑑𝜎

= 𝜇(𝑡)𝜒𝑟 = 𝑤(𝑡),

(16)

for 0 < 𝑡 < min{𝜏2, 𝑟2, 𝛿2} = 𝜏3.
Subtracting (16) of (15)

𝑤(𝑡) − 𝑢𝜖(𝑡)
≤ ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎){[𝑓 (𝑤)]𝛾 − [𝑓 (𝑢𝜖(𝜎))]𝛾}𝜒𝑟𝑑𝜎
≤ 𝛾 ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝜃𝑓 (𝑤) + (1 − 𝜃)𝑓 (𝑢𝜖)]𝛾−1(𝑤 − 𝑢𝜖)+𝜒𝑟𝑑𝜎; 𝜃 ∈ (0, 1)
≤ 𝛾 ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 (𝑢𝜖)]𝛾−1(𝑤 − 𝑢𝜖)+𝜒𝑟𝑑𝜎
≤ 𝛾[𝑓 (𝜖)]𝛾−1 ∫ 𝑡

0 ℎ(𝜎)𝑆(𝑡 − 𝜎)(𝑤 − 𝑢𝜖)+𝜒𝑟𝑑𝜎,

where 𝑎+ = max{𝑎, 0} for all 𝑎 ∈ ℝ. Thus,

[𝑤(𝑡) − 𝑢𝜖(𝑡)]+ ≤ 𝑝+[𝑓 (𝜖)]𝑝+−1
𝑡

∫
0

ℎ(𝜎)𝑆(𝑡 − 𝜎)(𝑤 − 𝑢𝜖)+𝜒𝑟𝑑𝜎,

and
‖[𝑤(𝑡) − 𝑢𝜖(𝑡)]+𝜒𝑟‖∞ ≤ 𝑝+[𝑓 (𝜖)]𝑝+−1

𝑡

∫
0

ℎ(𝜎)‖[𝑤 − 𝑢𝜖]+𝜒𝑟‖∞𝑑𝜎.

By Gronwall’s inequality, (𝑤(𝑡) − 𝑢𝜖(𝑡))+𝜒𝑟 = 0, for 𝑡 ∈ (0, 𝜏3), that is, 𝑤(𝑡) ≤ 𝑢𝜖(𝑡) on the ball 𝐵𝑟 for 𝑡 ∈ (0, 𝜏3). Letting, 𝜖 → 0
we conclude that 𝑤(𝑡) ≤ 𝑢(𝑡) on 𝐵𝑟 × [0, 𝜏3).

Since 𝑤 ≥ 0 and 𝑤 ≠ 0, we can argue as in case (i) to conclude that 𝑢 is positive.

3 LARGE INITIAL DATA

For the existence of blow up solutions we need of the following result established in14, Lemma 3.1.
Lemma 2. Let 𝜂 be a positive measure in Ω ⊂ ℝ𝑁 such that ∫Ω 𝑑𝜂 = 1 and let 𝑓 ∈ 𝐿𝑝+(Ω, 𝑑𝜂) with 1 ≤ 𝑝− ≤ 𝑝(𝑥) ≤ 𝑝+ for
all 𝑥 ∈ Ω. Then

∫
Ω

|𝑓 (𝑥)|𝑝(𝑥)𝑑𝜂(𝑥) ≥ 2−𝑝+ min

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

∫
Ω

|𝑓 (𝑥)|𝑑𝜂(𝑥)
⎞

⎟

⎟

⎠

𝑝−

,
⎛

⎜

⎜

⎝

∫
Ω

|𝑓 (𝑥)|𝑑𝜂(𝑥)
⎞

⎟

⎟

⎠

𝑝+
⎫

⎪

⎬

⎪

⎭

.

Proof of Theorem 4 Let 𝜑1 > 0 be the first eigenvalue associated to the first eigenvalue 𝜆1 > 0 of the Laplacian operator on
𝐻1

0 (Ω
′) such that ∫Ω′ 𝜑1 = 1. Let Θ(𝑡) = ∫Ω′ 𝑢(𝑡)𝜑1𝑑𝑥. By Lemma 2 and Jensen’s inequality

Θ′ + 𝜆1Θ ≥ ∫Ω′[𝑓 (𝑢(𝑡))]𝑝(𝑥)𝜑1𝑑𝑥
≥ 2−𝑝+ min

{

(

∫Ω′ 𝑓 (𝑢(𝑡))𝜑1
)𝛾 ,

(

∫Ω′ 𝑓 (𝑢(𝑡))𝜑1
)𝑝+

}

≥ 2−𝑝+ min{[𝑓 (Θ(𝑡))]𝛾 , [𝑓 (Θ(𝑡))]𝑝+}
≥ 2−𝑝+𝑓 𝛾 (Θ(𝑡)),

if 𝑓 (Θ(𝑡)) ≥ 1. Since 𝑓 𝛾 is a convex function and ∫ ∞
𝜏

𝑑𝜎
𝑓 (𝜎)𝛾

< ∞, we have that

lim
𝑟→∞

𝑓 𝛾 (𝑟) − 𝑓 𝛾 (0)
𝑟

= +∞.

Thus, there exists 𝑀 > 0 such that 1
2𝑝+

𝑓 𝛾 (𝑟) − 𝜆1𝑟 > 1
2𝑝++1 𝑓 𝛾 (𝑟) for 𝑟 > 𝑀 . Therefore, Θ′ > 1

2𝑝++1 𝑓 𝛾 (Θ) whenever 𝑓 (Θ) ≥ 1
and Θ > 𝑀 . Taking Θ(0) such that Θ(0) > max{𝑀,𝛼}, where 𝑓 (𝛼) > 1, we have that the solution blows up.
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4 BLOW UP AND GLOBAL EXISTENCE

Proof of Theorem 3 (i) We apply an argument similar to the one used in24. Consider 𝛿 > 0 such that
𝛿 < 1

𝛽 + 1
, (17)

where 𝛽 > 0 satisfies
∞

∫
0

ℎ(𝜎) (‖𝑆(𝜎)𝑣0‖∞)𝑑𝜎 <
𝛽

𝛽 + 1
,

for some 𝑣0 ∈ 𝐶0(Ω), 𝑣0 ≥ 0, 𝑣0 ≠ 0. Set 𝑢0 = 𝛿𝑣0 ∈ 𝐶0(Ω) and define the sequence {𝑢𝑘}𝑘≥0 by 𝑢0(𝑡) = 𝑆(𝑡)𝑢0 and

𝑢𝑘(𝑡) = 𝑆(𝑡)𝑢0 +

𝑡

∫
0

𝑆(𝑡 − 𝜎)ℎ(𝜎)[𝑓 (𝑢𝑘−1(𝜎))]𝑝(𝑥) 𝑑𝜎,

for 𝑘 ∈ ℕ and 𝑡 ≥ 0.
We claim that

𝑢𝑘(𝑡) ≤ (1 + 𝛽)𝑆(𝑡)𝑢0, (18)
for 𝑘 ≥ 0 and 𝑡 > 0. To show this, we use induction on 𝑘. Estimate (18) is clear for 𝑘 = 0, thus we assume that (18) holds for 𝑘.
Note that condition (17) implies ‖(1+𝛽)𝑆(𝑡)𝑢0‖∞ ≤ ‖𝑆(𝑡)𝑣0‖∞ ≤ 𝑚 for 𝑡 > 0. Since  (0, 𝑚] → [0,∞) and 𝑓 are nondecreasing
functions, and 𝑠 (𝑠) = max{𝑓 (𝑠)𝑝− , 𝑓 (𝑠)𝑝+} for 𝑠 ∈ (0, 𝑚] we have

𝑢𝑘+1(𝑡) = 𝑆(𝑡)𝑢0 +

𝑡

∫
0

𝑆(𝑡 − 𝜎)ℎ(𝜎)[𝑓 (𝑢𝑘(𝜎))]𝑝(𝑥) 𝑑𝜎

≤ 𝑆(𝑡)𝑢0 +

𝑡

∫
0

ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 ((1 + 𝛽)𝑆(𝜎)𝑢0)]𝑝(𝑥) 𝑑𝜎

≤ 𝑆(𝑡)𝑢0 +

𝑡

∫
0

ℎ(𝜎)𝑆(𝑡 − 𝜎)[𝑓 (𝑆(𝜎)𝑣0)]𝑝(𝑥) 𝑑𝜎

≤ 𝑆(𝑡)𝑢0 +

𝑡

∫
0

ℎ(𝜎)𝑆(𝑡 − 𝜎) max{[𝑓 (𝑆(𝜎)𝑣0)]𝑝
− , [𝑓 (𝑆(𝜎)𝑣0)]𝑝

+}𝑑𝜎

= 𝑆(𝑡)𝑢0 +

𝑡

∫
0

ℎ(𝜎)𝑆(𝑡 − 𝜎) (𝑆(𝜎)𝑣0)𝑆(𝜎)𝑣0𝑑𝜎

≤ 𝑆(𝑡)𝑢0 + 𝑆(𝑡)𝑣0

𝑡

∫
0

ℎ(𝜎) (‖𝑆(𝜎)𝑣0‖∞) 𝑑𝜎

≤ 𝑆(𝑡)𝑢0 + (1 + 𝛽)𝑆(𝑡)𝑢0
𝛽

𝛽 + 1
= (1 + 𝛽)𝑆(𝑡)𝑢0.

Hence, claim (18) holds for 𝑘 + 1.
On the other hand, using again induction on 𝑘, it is possible to that 𝑢𝑘+1 ≤ 𝑢𝑘 for all 𝑘 ∈ ℕ. Thus, from monotone convergence

theorem and estimate (18), we conclude that 𝑢 = lim 𝑢𝑛 is a global solution of (1).
Proof of Theorem 3 (ii) We argue by contradiction and assume that there exists a global solution 𝑢 ∈ 𝐶([0,∞), 𝐶0(Ω) of

problem (1) with initial condition 𝑢0 ≠ 0, that is

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +

𝑡

∫
0

𝑆(𝑡 − 𝜎)ℎ(𝜎)[𝑓 (𝑢(𝜎))]𝑝(𝑥) 𝑑𝜎,
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for 𝑡 ≥ 0. Let 0 < 𝑡 < 𝑠. Then,

𝑆(𝑠 − 𝑡)𝑢(𝑡) = 𝑆(𝑠)𝑢0 +

𝑡

∫
0

ℎ(𝜎)𝑆(𝑠 − 𝜎)[𝑓 (𝑢(𝜎))]𝑝(𝑥) 𝑑𝜎. (19)

Set Φ(𝑡) = 𝑆(𝑠)𝑢0 + ∫ 𝑡
0 ℎ(𝜎)𝑆(𝑠 − 𝜎)[𝑓 (𝑢(𝜎))]𝑝(𝑥) 𝑑𝜎, for 𝑡 ∈ [0, 𝑠]. Then

Φ′(𝑡) = ℎ(𝑡)𝑆(𝑠 − 𝑡)[𝑓 (𝑢(𝑡))]𝑝(𝑥),

and from Lemma 2
𝑆(𝑠 − 𝑡)[𝑓 (𝑢(𝑡))]𝑝(𝑥) = ∫Ω 𝐾Ω(𝑥, 𝑦; 𝑠 − 𝑡)[𝑓 (𝑢(𝑡, 𝑦))]𝑝(𝑦)𝑑𝑦

≥ 2−𝑝+ min
{

[𝑆(𝑠−𝑡)𝑓 (𝑢(𝑡))]𝑝−

𝑎(𝑠−𝑡,𝑥)𝑝−−1 , [𝑆(𝑠−𝑡)𝑓 (𝑢(𝑡))]
𝑝+

𝑎(𝑠−𝑡,𝑥)𝑝+−1

}

,
where𝐾Ω is the Dirichlet heat kernel onΩ and 𝑎(𝑠−𝑡, 𝑥) = ∫Ω 𝐾Ω(𝑥, 𝑦; 𝑠−𝑡)𝑑𝑦. Since𝐾Ω(𝑥, 𝑦; 𝑠−𝑡) ≤ 𝐾ℝℕ(𝑥, 𝑦; 𝑠−𝑡),23, Lemma 7,
we conclude that 𝑎(𝑠 − 𝑡, 𝑥) ≤ 1. Thus, since 𝑝− ≥ 1, 𝑓 is nondecreasing, inequality (9) and (19) we obtain

Φ′(𝑡) ≥ 2−𝑝+ℎ(𝑡) min
{

[𝑆(𝑠 − 𝑡)𝑓 (𝑢(𝑡))]𝑝− , [𝑆(𝑠 − 𝑡)𝑓 (𝑢(𝑡))]𝑝+
}

≥ 2−𝑝+ℎ(𝑡) min
{

[𝑓 (𝑆(𝑠 − 𝑡)𝑢(𝑡))]𝑝+ , [𝑓 (𝑆(𝑠 − 𝑡)𝑢(𝑡))]𝑝−
}

= 2−𝑝+ℎ(𝑡) min
{

[𝑓 (Φ(𝑡))]𝑝+ , [𝑓 (Φ(𝑡))]𝑝−
}

.
(20)

Set 𝑔2(𝑡) = min{[𝑓 (𝑡)]𝑝− , [𝑓 (𝑡)]𝑝+} for all 𝑡 ≥ 0. Then, by (20) we have Φ′(𝑡) ≥ 2−𝑝+ℎ(𝑡)𝑔2(Φ(𝑡)). Defining 𝐺(𝑡) = ∫ +∞
𝑡

𝑑𝜎
𝑔2(𝜎)

for
𝑡 > 0 we obtain [𝐺(Φ(𝑡))]′ = − Φ′(𝑡)

𝑔2(Φ(𝑡))
≤ −2−𝑝+ℎ(𝑡), for 0 < 𝑡 < 𝑠. Note that condition (5) guarantees that the function 𝐺 is well

defined.
Integrating, from 0 to 𝑠, we obtain

−𝐺(𝑆(𝑠)𝑢0) ≤ ∫𝐺(Φ(𝑠))
𝑑𝜎
𝑔2(𝜎)

− ∫𝐺(Φ(0))
𝑑𝜎
𝑔2(𝜎)

= 𝐺(Φ(𝑠)) − 𝐺(Φ(0))
≤ −2−𝑝+ ∫ 𝑠

0 ℎ(𝜎)𝑑𝜎

which is equivalent to 2−𝑝+ ∫ 𝑠
0 ℎ(𝜎)𝑑𝜎 ≤ 𝐺([𝑆(𝑠)𝑢0]). Since 𝐺 is decreasing and the left hand does not depend on 𝑥, we conclude

that
2−𝑝+

𝑠

∫
0

ℎ(𝜎)𝑑𝜎 ≤ 𝐺(‖𝑆(𝑠)𝑢0‖∞),

which contradicts condition (10).

5 CONCLUSIONS

We deal with the parabolic problem 𝑢𝑡 −Δ𝑢 = ℎ(𝑡)𝐹 (𝑥, 𝑢) in Ω× (0, 𝑇 ), where Ω is a smooth domain (bounded or unbounded),
𝐹 (𝑥, 𝑢) = 𝑓 (𝑢)𝑝(𝑥), with 𝑓 ∈ 𝐶[0,∞) non-decreasing, ℎ ∈ 𝐶(0,∞) and 𝑝 ∈ 𝐶(Ω) with 0 < 𝑝− ≤ 𝑝(𝑥) ≤ 𝑝+. We assume that
𝑢0 ∈ 𝐶0(Ω), 𝑢0 ≥ 0 and consider only non-negative solutions.

Under the assumption ∫ ∞
𝜏

𝑑𝜎
max{𝑓 (𝜎)𝑝− ,𝑓 (𝜎)𝑝+}

= ∞we show that all the solutions non-negative are global. Moreover, we establish
some conditions to get positive solutions in the case that 𝑢0 = 0, extending the results of the classical case 𝐹 (𝑥, 𝑡) = 𝑡𝑞 with
0 < 𝑞 < 1. When ∫ ∞

𝜏
𝑑𝜎

min{𝑓 (𝜎)𝑝− ,𝑓 (𝜎)𝑝+}
< ∞ we obtain blow up solutions and we use this result to improve a result established in9.

Global existence is obtained for small initial data assuming that ∫ ∞
0 ℎ(𝜎) (‖𝑆(𝜎)𝑣0‖∞)𝑑𝜎 < 1 for some 𝑣0 ∈ 𝐶0(Ω), 𝑣0 ≠ 0,

where  (𝑠) = max{𝑓 (𝑠)𝑝+ , 𝑓 (𝑠)𝑝−}∕𝑠 defined on a small interval (0, 𝑚).
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