Global and blow up solutions for a semilinear heat equation with variable reaction reaction on a general domain

Miguel Loayza¹ and Ricardo Castillo²

 1 Universidade Federal de Pernambuco
 2 Universidad del Bio Bio Facultad de Ciencias

July 18, 2023

Abstract

We are concerned with the existence of global and blow-up solutions for the semilinear heat equation with variable exponent u t - Δ u = h (t) f (u) p (x) in $\Omega \times (0, T)$ with zero Dirichlet boundary condition and initial data in C 0 (Ω). The scope of our analysis encompasses both bounded and unbounded domains, with p (x) [?] C (Ω), 0 < p - [?] p (x) [?] p +, h[?] C(0, [?]), and f[?] C[0, [?]). Our findings have significant implications, as they enhance the blow-up result discovered by Castillo and Loayza in Comput. Math. App. 74(3), 351-359 (2017) when f(u) = u.

ARTICLE TYPE

Global and blow up solutions for a semilinear heat equation with variable reaction reaction on a general domain

Ricardo Castillo¹ | Miguel Loayza^{*2}

¹Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile ²Departamento de Matemática, Universidade Federal de Pernambuco,

Correspondence *Corresponding author name. Email: miguel.loayza@ufpe.br

Pernambuco, Brasil

Summary

We are concerned with the existence of global and blow-up solutions for the semilinear heat equation with variable exponent $u_t - \Delta u = h(t)f(u)^{p(x)}$ in $\Omega \times (0, T)$ with zero Dirichlet boundary condition and initial data in $C_0(\Omega)$. The scope of our analysis encompasses both bounded and unbounded domains, with $p(x) \in C(\Omega), 0 < p^- \le p(x) \le p^+, h \in C(0, \infty)$, and $f \in C[0, \infty)$. Our findings have significant implications, as they enhance the blow-up result discovered by Castillo and Loayza in Comput. Math. App. 74(3), 351-359 (2017) when f(u) = u.

KEYWORDS:

Semilinear heat equation, Global Solution, Blow up solution, Variable exponent, Arbitrary domain

1 | INTRODUCTION

Let $\Omega \subset \mathbb{R}^N$ be a domain (bounded or unbounded) with smooth boundary $\partial \Omega$. We consider the semilinear parabolic problem

$$u_t - \Delta u = h(t)F(x, u) \quad \text{in } \Omega \times (0, T),$$

$$u = 0 \qquad \text{on } \partial\Omega \times (0, T),$$

$$u(0) = u_0 \ge 0 \qquad \text{in } \Omega,$$
(1)

where $F(x, s) = f(s)^{p(x)}$, for $x \in \Omega$, $s \ge 0$, $f \in C[0, \infty)$ is a nondecreasing locally Lipschitz function, $h \in C(0, \infty)$, $p \in C(\Omega)$ is a bounded function such that

$$0 < p^{-} \le p(x) \le p^{+} < \infty, \tag{2}$$

for all $x \in \Omega$, with $p^- = \inf_{x \in \Omega} \{p(x)\}, p^+ = \sup_{x \in \Omega} \{p(x)\}$, and $u_0 \in C_0(\Omega)$. Here, $C_0(\Omega)$ denotes the closure in $L^{\infty}(\Omega)$ of infinitely differentiable functions with compact support in Ω . Throughout the work we consider only nonnegative solutions in the sense of (11).

Problem (1) appears in several models of the applied sciences such as electrorheological fluids²², thermo-rheological fluids³, image processing^{1,5}, chemical reactions, heat transfer and population dynamics¹². It has been considered for many authors. For example, when Ω is a bounded domain and h(t) = 1, blow up results for problem (1) were obtained in¹³ for $F(x, s) = e^{p(x)s}$, and in²¹ for $F(x, u) = a(x)u^{p(x)}$. When $\Omega = \mathbb{R}^N$, Fujita type results were obtained in¹⁴ for $F(x, s) = s^{p(x)}$, h(t) = 1. Specifically, in the last case it was shown that:

- If $p^- > 1 + 2/N$, then problem (1) possesses global nontrivial solutions.
- If $1 < p^- < p^+ \le 1 + 2/N$, then all nontrivial solutions to problem (1) blow up in finite time.
- If $p^- < 1+2/N < p^+$, then there are functions *p* such that problem (1) possesses global nontrivial solutions and functions *p* such that all nontrivial solutions blow up.

2

These results were extended for any domain Ω (bounded or unbounded); see Theorem 1.2 and Remark 1.3 of⁹. Specifically, they showed the following result.

Theorem 1. Suppose that $F(x, s) = s^{p(x)}$ for $s \ge 0$.

- (i) If $p^+ \leq 1$, then all solutions of problem (1) are global.
- (ii) If $p^+ > 1$ and

$$\limsup_{t \to \infty} \|S(t)u_0\|_{\infty}^{p^+-1} \int_0^t h(\sigma)d\sigma = \infty,$$
(3)

for every nonnegative $0 \neq u_0 \in C_0(\Omega)$, then every nontrivial solution of problem (1) either blow up in finite time or in infinite time. In the last case, we mean that the solution is global and $\limsup_{t\to\infty} ||u(t)||_{\infty} = \infty$.

(iii) If $p^- > 1$ and there exists $w_0 \in C_0(\Omega)$, $w_0 \ge 0$, $w_0 \ne 0$ verifying

$$\int_{0}^{\infty} h(\sigma) \|S(t)w_0\|_{\infty}^{p^{-1}} < \infty,$$
(4)

then there exists a constant $\Lambda > 0$, depending on p^+ and p^- , so that if $0 < \lambda < \Lambda$, then the solution of (1), with initial data λw_0 , is a nontrivial global solution.

Notice that the conditions (3) and (4) of Theorem 1 are expressed in terms of the asymptotic behavior of $||S(t)u_0||_{\infty}$, where $\{S(t)\}_{t\geq 0}$ denotes the heat semigroup. The first result of this type was given by Meier¹⁹ for problem (1) in the case $F(x, s) = s^p, s \ge 0, p > 1$. It is important because the conditions are valid for any domain Ω , bounded or unbounded, and because it is sufficient to know the behavior of $||S(t)u_0||_{\infty}$ to decide whether the solution of problem (1) is global or not. For example, we know, in \mathbb{R}^N , that $||S(t)u_0||_{\infty} \sim t^{-N/2}$ for t near infinity and $u_0 \in C_0(\mathbb{R}^N), u_0 \neq 0$. Thus, assuming h = 1, condition (3) holds if $p^+ < 1 + 2/N$, while condition (4) holds if $p^- > 1 + 2/N$. This coincides with the results obtained in ¹⁴. Similar results have been obtained for parabolic coupled system related to problem (1) in ⁷, ⁸ and ¹⁰.

The main objective of this work is to obtain Meier type results, similar to Theorem 1, for problem (1) considering $F(x, s) = f(s)^{p(x)}$, where $f \in C[0, \infty)$ is a locally Lipschitz and nondecreasing function, and $p \in C(\Omega)$ satisfies condition (2). We also analyze situations where p(x) < 1 or p(x) > 1 on subdomains of Ω . As a consequence of our results, we improve Theorem 1 (ii) and remove the possibility of the existence of solutions that blow up in infinite time, see Remark 2-(vi).

Our results depend on the conditions:

$$\int_{\alpha}^{\infty} \frac{d\sigma}{\min\{f(\sigma)^{p^{-}}, f(\sigma)^{p^{+}}\}} < \infty,$$
(5)

for some $\alpha \ge 0$ such that $f(\alpha) > 0$, and

$$\int_{\tau}^{\infty} \frac{d\sigma}{\max\{f(\sigma)^{p^{-}}, f(\sigma)^{p^{+}}\}} = \infty,$$
(6)

for all $\tau > 0$ with $f(\tau) > 0$.

Note that if F(x, s) = f(s) and h = 1, condition (5) turns into

$$\int_{0}^{\infty} \frac{d\sigma}{f(\sigma)} < \infty, \tag{7}$$

which is well known as a necessary and sufficient condition for the existence of blow up solutions. Some examples of a function f satisfying condition (7) are $f(u) = u^q$, $f(u) = (1 + u)[\ln(1 + u)]^q$, $f(u) = e^{\alpha u} - 1$ for q > 1 and $\alpha > 0$.

 ∞

In our first result we use condition (6) to get global solutions for problem (1).

Theorem 2. Assume that condition (6) holds with $p^- < 1$. Then for every $u_0 \in C_0(\Omega)$, $u_0 \ge 0$ there exists a global solution of problem (1).

Moreover, *u* is a positive if

(i) f(0) > 0 or $u_0 \neq 0$ or

- (ii) $u_0 = 0$ with the additional assumptions:
 - (a) f(0) = 0, f(s) > 0 in $(0, \tau)$ for some $\tau > 0$.
 - (b) $p(x) \le \gamma < 1$ for some subdomain $\Omega' \subset \Omega$.
 - (c) $\int_0^{\tau} \frac{d\sigma}{f(\sigma)^{\gamma}} < \infty$ for some $\tau > 0$.

Moreover, $u(t) \ge \mu(t)\chi_{B(x_0,r)}$ on some interval $[0, \tau_1], \tau_1 \le \tau, r > 0$ such that $B_{r+2\delta}(x_0) \subset \Omega', \delta > 0$, and $\mu \in C([0, \tau_1], [0, \infty))$ is a positive solution of the Cauchy problem:

$$x_t = \frac{c_N}{2^N} h(t) f^{\gamma}(x), \ x(0) = 0,$$
(8)

where c_N is the constant given in Lemma 1. Here $\chi_{B_r(x_0)}$ denotes the characteristic function on the open ball centered at x_0 and radius r > 0.

Remark 1. Here are some comments about Theorem 2.

- (i) Condition f(0) = 0 implies that u = 0 is a solution of problem (8) and assumption $\int_0^{\tau} d\sigma / f(\sigma)^{\gamma} < \infty$ guarantees the existence of a positive solution of problem (8).
- (ii) The existence of a positive solution of (1) with $u_0 = 0$, for f(s) = s, h = 1, it was shown in ¹⁴ considering a subsolution of the form $w(t) = Ct^{1/(1-\gamma)}\varphi_1$ for an appropriate constant C > 0 and $\varphi_1 > 0$ the first eigenfunction of the Laplacian operator on $H_0^1(\Omega')$. Here, we use the subsolution $w = \mu(\cdot)\chi_r$ of problem $u_t \Delta u = h(t)f(u)^{\gamma}$ in $\Omega' \times (0, \tau_1)$. This idea was used firstly in ¹⁷.
- (iii) For f(s) = s, $p(x) = p \in (0, 1)$ constant, h = 1 and $\Omega = \mathbb{R}^N$, the function $u(t) = [(1 p)t]^{1/(1-p)}$, t > 0, is the positive solution of problem (1) ($u_0 = 0$) which is obtained solving the Cauchy problem: $x_t = x^p$, x(0) = 0, see² and ¹¹.
- (iv) When $F(x, s) = s^{p(x)}, s \ge 0$ and $0 < \tau < 1$ we have

$$+\infty = \int_{\tau}^{\infty} \frac{d\sigma}{\max\{\sigma^{p^-}, \sigma^{p^+}\}} = \int_{\tau}^{1} \frac{d\sigma}{s^{p^-}} + \int_{1}^{\infty} \frac{d\sigma}{s^{p^+}}$$

if and only if $p^+ \leq 1$. Thus Theorem 2 coincides with Theorem 1(i).

In our second result we use condition (5) to obtain blow up solutions.

Theorem 3. (i) (Global existence) Let \mathcal{F} : $(0,m] \to [0,\infty)$ be defined by $\mathcal{F}(s) = \frac{1}{s} \max\{f(s)^{p^-}, f(s)^{p^+}\}$ for $s \in (0,m]$. Assume that \mathcal{F} is a nondecreasing function and there exists $v_0 \in C_0(\Omega), 0 \neq v_0 \ge 0$, $\|v_0\|_{\infty} \le m$ satisfying

$$\int_{0}^{\infty} h(\sigma) \mathcal{F}\left(\left\|S(\sigma)v_{0}\right\|_{\infty}\right) d\sigma < 1.$$

Then there exists a constant $\delta > 0$ such that for $u_0 = \delta v_0$ the solution of problem (1) is a global solution.

- (ii) (Nonglobal existence) Assume that f(0) = 0, condition (5) holds, $p^- \ge 1$ and the following assumptions are satisfied:
 - (a) f(s) > 0 for all s > 0, and

$$f(S(t)v_0) \le S(t)f(v_0),\tag{9}$$

for all $0 \le v_0 \in C_0(\Omega)$ and t > 0.

(b) There exist $\tau > 0$ such that

$$\int_{\left\|S(\tau)u_{0}\right\|_{\infty}}^{\infty} \frac{d\sigma}{\min\{f(\sigma)^{p^{-}}, f(\sigma)^{p^{+}}\}} \leq 2^{-p^{+}} \int_{0}^{\tau} h(\sigma)d\sigma.$$
(10)

Then the solution of problem (1) with initial condition $u_0 \ge 0, u_0 \ne 0$ blows up in finite time.

Remark 2. Here are some comments about Theorem 3.

- (i) If f(0) = 0 and $p^- \ge 1$, then \mathcal{F} is well defined, since f is locally Lipschitz, and if we assume additionally that f is a convex function we have that \mathcal{F} is nondecreasing.
- (ii) Condition f(0) = 0 is used in inequality (9) because the Dirichlet condition on the boundary must be satisfied.
- (iii) Constant 2^{-p^+} in inequality (10) appears due to Jensen's inequality, see Lemma 2.
- (iv) Condition (9) holds for any convex function f when $\Omega = \mathbb{R}^N$. This is a consequence of Jensen's inequality and the representation of the semigroup $S(t)u_0 = K_t \star u_0$, where $K_t = (4\pi t)^{-N/2} \exp(-|x|^2/(4t))$ is the heat kernel.
- (v) When Ω is any domain, condition (9) holds for any twice differentiable and convex function with f(0) = 0. Indeed, if $v(t) = f(S(t)u_0)$ then

$$v_t - \Delta v = -f''(S(t)u_0)|\nabla S(t)u_0|^2 \le 0$$

in $\Omega \times (0, \infty)$ and v(t) = f(0) = 0 on $\partial \Omega \times (0, \infty)$. Since $v(0) = f(u_0)$ we conclude by the maximum principle.

(vi) Theorem 3 improves Theorem 1(ii) if $p^- > 1$, f(s) = s and condition (3) holds. Indeed, since $p^- > 1$ the condition (5) is verified. Thus, it is sufficient to check the condition (10). First, note that

$$\int_{\alpha}^{\infty} \frac{d\sigma}{\min\{\sigma^{p^{-}}, \sigma^{p^{+}}\}} \le \frac{p^{+} - p^{-}}{(p^{+} - 1)(p^{-} - 1)} + \frac{\alpha^{1 - p^{+}}}{p^{+} - 1}$$

for every $\alpha > 0$. From condition (3) there exists $\tau > 0$ such that

$$\frac{p^{+}-p^{-}}{(p^{+}-1)(p^{-}-1)} \|u_{0}\|_{\infty}^{p^{+}-1} + \frac{1}{p^{+}-1} \leq \left(\frac{1}{2}\right)^{p^{+}} \|S(\tau)u_{0}\|_{\infty}^{p^{+}-1} \int_{0}^{\tau} h(\sigma)d\sigma.$$

Hence,

$$\begin{split} &\int_{\|S(\tau)u_0\|_{\infty}}^{\infty} \frac{d\sigma}{\min\{\sigma^{p^-}, \sigma^{p^+}\}} \\ &\leq \|S(\tau)u_0\|_{\infty}^{1-p^+} \left[\frac{p^+ - p^-}{(p^+ - 1)(p^- - 1)} \|S(\tau)u_0\|_{\infty}^{p^+ - 1} + \frac{1}{p^+ - 1} \right] \\ &\leq \|S(\tau)u_0\|_{\infty}^{1-p^+} \left[\frac{p^+ - p^-}{(p^+ - 1)(p^- - 1)} \|u_0\|_{\infty}^{p^+ - 1} + \frac{1}{p^+ - 1} \right] \\ &\leq 2^{-p^+} \int_0^{\tau} h(\sigma) d\sigma. \end{split}$$

By Theorem 3, *u* blows up in finite time.

In the proof of Theorem 3, we adapt the techniques used in ¹⁸. It is worth noting that in that work, the authors utilized their findings to derive Fujita exponents for the problem (1) with $F(x, u) = (1 + u)(\ln(u + 1))^q$ and $F(x, u) = e^{\alpha u} - 1$. Theorem 3 can also be applied to obtain Fujita-type results for problem (1) with more complex source terms and on different domains Ω . This may include the logarithmic function with variable exponent $[(1 + u)(\ln(u + 1))^q]^{p(x)}$ and the exponential with variable exponent $[e^{\alpha u} - 1]^{p(x)}$.

It is important always to be aware that solutions may blow up in a finite time when dealing with large initial data. This was demonstrated in ^{14, Theorem 3.3} using Kaplan's argument ¹⁵. Our next Theorem shows how this approach can be modified to present a similar result. We will focus on the scenario where h = 1 for simplicity.

Theorem 4. Suppose that $p^+ > 1$, h = 1 and there exists a bounded subdomain $\Omega' \subset \Omega$ such that $p(x) \ge \gamma > 1$ for all $x \in \Omega'$. Assume also that f is a convex function such that $\int_{\tau}^{\infty} d\sigma / f(\sigma)^{\gamma} < \infty$ for some $\tau > 0$ with $f(\tau) > 0$. Then there are solutions of problem (1) such that blow up in finite time.

Remark 3. Theorem 4 for f(s) = s was established in ^{14, Theorem 3.3}.

The rest of the paper is organized as follows. Section 2 is dedicated to analyze the existence of positive global solution and Theorem 2 is proved. Blow up for large initial data is shown in Section 3. Section 4 is devoted to the proof of Theorem 3.

2 | EXISTENCE AND UNIQUENESS

Solutions of problem (1) are understood in the following sense: given $u_0 \in C_0(\Omega)$, a function $u \in C([0, T), C_0(\mathbb{R}^N))$ is said to be a solution of problem (1) in (0, T) if u is nonnegative and verifies the following equation

$$u(t) = S(t)u_0 + \int_0^t S(t-\sigma)h(\sigma)F(\cdot, u(\sigma))d\sigma$$
(11)

for all $t \in (0, T)$, where $F(x, u) = f(u)^{p(x)}$.

Since $f \in C[0, \infty)$ is a locally Lipschitz function, it is clear that if $p(x) \ge 1$, the nonlinear term F(x, u), for $x \in \Omega$ fixed, is a locally Lipschitz function. Thus, using usual methods it is possible to show the existence of a unique local solution of (1) defined in some interval [0, T]. Moreover, this solution can be extended to a maximal interval $[0, T_{max})$ and the blow up alternative occurs: either $T_{max} = +\infty$ (we say that u is a global solution) or $T_{max} < \infty$ and $\lim \sup_{t \to T_{max}} ||u(t)||_{\infty} = +\infty$. In the last case, we say that the solution blows up in a finite time, see for example⁶, ¹⁴, ⁴ and⁹.

When p(x) < 1 on some subdomain of Ω , the function F(x, u) is not locally Lipschitz (for x fixed), and we can use an approximation method to find a solution; see problem (12). We give more details in the proof of Theorem 2 below.

The existence of a positive solution of problem (1) for $u_0 = 0$ is proved with the aid of the following result given in ^{16, Lemma 2.1}.

Lemma 1. There exists a constant c_N , which depend only on N, such that for any $r, \delta > 0$ with $B_{r+2\delta} = B(0, r+2\delta) \subset \Omega$,

$$S(t)\chi_r \ge c_N \left(\frac{r}{r+\sqrt{t}}\right)^N \chi_{r+\sqrt{t}}$$

for all $0 < t \le \delta^2$.

Proof of Theorem 2 Local existence. We use a standard approximation method, see for instance²⁰. For every $\epsilon > 0$, let $F_{\epsilon} : \Omega \times [0, \infty) \rightarrow [0, \infty)$ be defined by

$$F_{\epsilon}(x,s) = \begin{cases} f(s)^{p(x)} & \text{if } s \ge \epsilon \text{ or } p(x) \ge 1, \\ f(\epsilon)^{p(x)-1} f(s) & \text{if } 0 \le s < \epsilon \text{ and } p(x) < 1 \end{cases}$$

Note that since we are assuming $p^- < 1$ there exists a subdomain of Ω where p(x) < 1.

The function $F_{\epsilon}(x, \cdot)$ is locally Lipschitz for every $x \in \Omega$. Let u^{ϵ} be a solution of the problem

$$u_t - \Delta u = h(t)F_{\epsilon}(x,u) \quad \text{in } \Omega \times (0,T),$$

$$u = \epsilon \qquad \text{on } \partial\Omega \times (0,T),$$

$$u(0) = u_0 + \epsilon \qquad \text{in } \Omega,$$
(12)

defined on a maximal interval $[0, T_{\max}^{\epsilon})$. We know that the blow-up alternative occurs, that is, either $T_{\max}^{\epsilon} = \infty$ or $T_{\max}^{\epsilon} < \infty$ and $\limsup_{t \to T_{\max}^{\epsilon}} ||u^{\epsilon}(t)||_{\infty} = \infty$. Since $u = \epsilon$ is a subsolution to problem (12), by a comparison principle we conclude that $u^{\epsilon} \ge \epsilon$. Note that if $\epsilon_1 < \epsilon_2$ then $F_{\epsilon_2}(\cdot, u^{\epsilon_2}) = F_{\epsilon_1}(\cdot, u^{\epsilon_2})$ and u^{ϵ_2} is a supersolution to problem (12) (with $\epsilon = \epsilon_1$). Hence, by a comparison principle we have $u^{\epsilon_1} \le u^{\epsilon_2}$ in $[0, T_{\max}^{\epsilon_2})$. Thus, we can define $u = \lim_{\epsilon \to 0} u^{\epsilon}$ on $[0, T_{\max}^{\epsilon_0})$ for some $\epsilon_0 > 0$.

Global existence. By the existence part we observe that it is sufficient to show that $T_{\max}^{\epsilon} = \infty$ for some $\epsilon > 0$ sufficiently small. Since u^{ϵ} is a solution of problem (12) and $u^{\epsilon}(t) \ge \epsilon$ we obtain

$$u^{\epsilon}(t) = S(t)u(0) + \epsilon + \int_{0}^{t} h(\sigma)S(t-\sigma)[f(u^{\epsilon}(\sigma))]^{p(x)}d\sigma,$$
(13)

for $t \in (0, T_{\max}^{\epsilon})$. Hence

$$\|u^{\epsilon}(t)\|_{\infty} \leq \|u_{0}\|_{\infty} + \epsilon + \int_{0}^{t} h(\sigma) \|[f(u^{\epsilon}(\sigma))]^{p(x)}\|_{\infty} d\sigma.$$

Using the fact that f is nondecreasing we have that $f(u^{\epsilon}(\sigma)) \leq f(||u^{\epsilon}(\sigma)||_{\infty})$, and hence

$$\begin{aligned} \|[f(u^{\epsilon}(\sigma))]^{p(x)}\|_{\infty} &\leq \|[f\left(\|u^{\epsilon}(\sigma)\|_{\infty}\right)]^{p(x)}\|_{\infty} \\ &\leq \max\{[f(\|u^{\epsilon}(\sigma)\|_{\infty})]^{p^{-}}, [f(\|u^{\epsilon}(\sigma)\|_{\infty})]^{p^{+}}\}. \end{aligned}$$

Thus,

$$\|u^{\epsilon}(t)\|_{\infty} \leq \|u_0\|_{\infty} + \epsilon + \int_0^t h(\sigma) \max\{[f(\|u^{\epsilon}(\sigma)\|_{\infty})]^{p^-}, [f(\|u^{\epsilon}(\sigma)\|_{\infty})]^{p^+}\}d\sigma.$$

Set

$$\begin{split} \Psi(t) &= \|u_0\|_{\infty} + \epsilon + \int_0^t h(\sigma) \max\{ [f(\|u^{\epsilon}(\sigma)\|_{\infty}]^{p^-}), [f(\|u^{\epsilon}(\sigma)\|_{\infty}]^{p^+}) \} d\sigma \text{ and } \\ g_1(t) &= \max\{ [f(t)]^{p^-}, [f(t)]^{p^+}) \}. \end{split}$$

Then, $\|u^{\epsilon}(t)\|_{\infty} \leq \Psi(t)$ and

$$\begin{aligned} \Psi'(t) &= h(t) \max\{ [f(||u^{\varepsilon}(t)||_{\infty}]^{p^{-}}), [f(||u^{\varepsilon}(t)||_{\infty}]^{p^{+}}) \} \\ &\leq h(t) \max\{ [f(\Psi(t))]^{p^{-}}, [f(\Psi(t))]^{p^{+}} \}. \end{aligned}$$

Fix $\tau \in (0, \min\{\epsilon, T_{\max}^{\epsilon}\})$ such that $f(\tau) > 0$ and condition (6) holds. Defining $H(t) = \int_{\tau}^{t} d\sigma/g_1(\sigma)$, for $t \ge \tau$, we obtain $(H \circ \Psi)'(t) \le h(t)$ for $t \in (0, T_{\max}^{\epsilon})$. Thus,

$$\int_{\tau}^{\|u^{\epsilon}(t)\|_{\infty}} \frac{d\sigma}{g_{1}(\sigma)} \leq \int_{\tau}^{\Psi(t)} \frac{d\sigma}{g_{1}(\sigma)} \leq \int_{0}^{t} h(\sigma)d\sigma + H(\Psi(0)),$$
(14)

for $t \in (0, T_{\max}^{e})$. From this inequality, we concluded that $T_{\max}^{e} = \infty$, since if $T_{\max}^{e} < \infty$ we have that $\limsup_{t \to T_{\max}^{e}} ||u^{e}(t)||_{\infty} = +\infty$, which contradicts condition (6).

Existence of a positive solution. (i) If $u_0 \ge 0$ and $u_0 \ne 0$, the result follows from (11) and the strong maximum principle, since $u(t) \ge S(t)u_0 > 0$ for t > 0.

Assume now that f(0) > 0. Without loss of generality we may assume that $0 \in \Omega$ and $B_{r+\delta} \subset \Omega$ for some r > 0 and $\delta > 0$, where $B_{r+2\delta} = B_{r+2\delta}(0)$. Since u_0 and u are nonnegatives, and f is nondecreasing, from (11) we have

$$u(t) \ge \int_0^t h(\sigma)S(t-\sigma)[f(u(\sigma))]^{p(x)}d\sigma$$

$$\ge \int_0^t h(\sigma)S(t-\sigma)f(0)^{p(x)}d\sigma$$

$$\ge \min\{f(0)^{p^-}, f(0)^{p^+}\}\int_0^t h(\sigma)S(t-\sigma)\chi_r d\sigma,$$

where $\chi_r = \chi_{B_r}$. Let $\varphi_{1,r} > 0$ be the first eigenfunction of the Laplacian operator on $H_0^1(B_r)$ associated to the first eigenvalue $\lambda_{1,r} > 0$. Since $\chi_r \ge C\varphi_{1,r}$ for some constant C > 0, we have that $S(t - \sigma)\chi_r \ge Ce^{-(t-\sigma)\lambda_{1,r}}\varphi_{1,r}$, and thus

$$u(t) \ge C \min\{f(0)^{p^{-}}, f(0)^{p^{+}}\}e^{-\lambda_{1,r}t}\varphi_{1,r}\int_{0}^{t}h(\sigma)d\sigma > 0$$

on $B_r(0) \times (0, \infty)$.

Using again (11) it is possible to show that $u(t) \ge S(t-s)u(s)$ for $t \ge s > 0$. Thus, since $0 \ne u(s) \ge 0$, by the strong maximum principle, we have that u(t) > 0 for $t \ge s > 0$. Letting $s \to 0$ we get the result.

(ii) When $u_0 = 0$, from (14) we have that

$$\|u^{\varepsilon}(t)\|_{\infty} \leq H^{-1}\left(\int_{0}^{t} h(\sigma)d\sigma + H(\varepsilon)\right),$$

for $t \in (0, T_{\max}^{\epsilon})$. Thus, $f(u^{\epsilon_0}(t)) \le f(||u^{\epsilon_0}(t)||_{\infty}) \le 1$ for $t \in [0, T]$ with $T = T(\epsilon_0) > 0$ small and some $\epsilon_0 > 0$.

On the other hand, since $p^- < 1$, there exists a subdomain $\Omega' \subset \Omega$ so that $p(x) \le \gamma < 1$ for $x \in \Omega'$. Assume that $0 \in \Omega'$ and that the ball $B_{r+2\delta} \subset \Omega'$ for some $r, \delta > 0$. Since $\{u^{\epsilon}\}$ is nonincreasing in ϵ we have that $f(u^{\epsilon}(t)) \le f(u^{\epsilon_0}(t)) \le 1$ for $0 < \epsilon \le \epsilon_0$ and $0 \le t \le T$. Thus, from (13)

$$u^{\varepsilon}(t) \ge \int_{0}^{t} h(\sigma) S(t-\sigma) \left\{ [f(u^{\varepsilon}(\sigma))]^{p(x)} \chi_{r} \right\} d\sigma$$

$$\ge \int_{0}^{t} h(\sigma) S(t-\sigma) \left\{ [f(u^{\varepsilon}(\sigma))]^{\gamma} \chi_{r} \right\} d\sigma.$$
(15)

It is well known that condition $\int_0^{\tau} d\sigma / [f(\sigma)]^{\gamma} < \infty$ assures that the solution μ of the Cauchy problem (8) is continuous and positive in some interval $[0, \tau_1]$. Since f(0) = 0 and $\mu(0) = 0$, it is possible to choose $\tau_2 \in (0, \tau_1)$ so that $f(\mu(t)) \le 1$ for

6

 $t \in (0, \tau_2)$. Thus by Lemma 1

$$\int_{0}^{t} h(\sigma)S(t-\sigma)[f(w(\sigma))]^{\gamma}\chi_{r}d\sigma
= \int_{0}^{t} h(\sigma)S(t-\sigma)[f(\mu(\sigma)\chi_{r})]^{\gamma}\chi_{r}d\sigma
= \int_{0}^{t} h(\sigma)[f(\mu(\sigma))]^{\gamma}S(t-\sigma)\chi_{r}d\sigma
\ge c_{N}\int_{0}^{t} h(\sigma)[f(\mu(\sigma))]^{\gamma} \left(\frac{r}{\sqrt{t-\sigma+r}}\right)^{N}\chi_{r+\sqrt{t-\sigma}}d\sigma
\ge \frac{c_{N}}{2^{N}}\chi_{r}\int_{0}^{t} h(\sigma)[f(\mu(\sigma))]^{\gamma}d\sigma
= \mu(t)\chi_{r} = w(t),$$
(16)

for $0 < t < \min\{\tau_2, r^2, \delta^2\} = \tau_3$. Subtracting (16) of (15)

$$\begin{split} & w(t) - u^{\epsilon}(t) \\ & \leq \int_{0}^{t} h(\sigma)S(t-\sigma)\{[f(w)]^{\gamma} - [f(u^{\epsilon}(\sigma))]^{\gamma}\}\chi_{r}d\sigma \\ & \leq \gamma \int_{0}^{t} h(\sigma)S(t-\sigma)[\theta f(w) + (1-\theta)f(u^{\epsilon})]^{\gamma-1}(w-u^{\epsilon})_{+}\chi_{r}d\sigma; \ \theta \in (0,1) \\ & \leq \gamma \int_{0}^{t} h(\sigma)S(t-\sigma)[f(u^{\epsilon})]^{\gamma-1}(w-u^{\epsilon})_{+}\chi_{r}d\sigma \\ & \leq \gamma [f(\epsilon)]^{\gamma-1} \int_{0}^{t} h(\sigma)S(t-\sigma)(w-u^{\epsilon})_{+}\chi_{r}d\sigma, \end{split}$$

where $a_{+} = \max\{a, 0\}$ for all $a \in \mathbb{R}$. Thus,

$$[w(t) - u^{\epsilon}(t)]_{+} \leq p^{+}[f(\epsilon)]^{p^{+}-1} \int_{0}^{t} h(\sigma)S(t-\sigma)(w-u^{\epsilon})_{+}\chi_{r}d\sigma,$$

and

$$\|[w(t) - u^{\epsilon}(t)]_{+}\chi_{r}\|_{\infty} \leq p^{+}[f(\epsilon)]^{p^{+}-1} \int_{0}^{t} h(\sigma)\|[w - u^{\epsilon}]_{+}\chi_{r}\|_{\infty} d\sigma$$

By Gronwall's inequality, $(w(t) - u^{\epsilon}(t))_{+}\chi_{r} = 0$, for $t \in (0, \tau_{3})$, that is, $w(t) \le u^{\epsilon}(t)$ on the ball B_{r} for $t \in (0, \tau_{3})$. Letting, $\epsilon \to 0$ we conclude that $w(t) \le u(t)$ on $B_{r} \times [0, \tau_{3})$.

Since $w \ge 0$ and $w \ne 0$, we can argue as in case (i) to conclude that u is positive.

e t

3 | LARGE INITIAL DATA

For the existence of blow up solutions we need of the following result established in ^{14, Lemma 3.1}.

Lemma 2. Let η be a positive measure in $\Omega \subset \mathbb{R}^N$ such that $\int_{\Omega} d\eta = 1$ and let $f \in L^{p^+}(\Omega, d\eta)$ with $1 \le p^- \le p(x) \le p^+$ for all $x \in \Omega$. Then

$$\int_{\Omega} |f(x)|^{p(x)} d\eta(x) \ge 2^{-p+} \min\left\{ \left(\int_{\Omega} |f(x)| d\eta(x) \right)^p, \left(\int_{\Omega} |f(x)| d\eta(x) \right)^{p^+} \right\}.$$

Proof of Theorem 4 Let $\varphi_1 > 0$ be the first eigenvalue associated to the first eigenvalue $\lambda_1 > 0$ of the Laplacian operator on $H_0^1(\Omega')$ such that $\int_{\Omega'} \varphi_1 = 1$. Let $\Theta(t) = \int_{\Omega'} u(t)\varphi_1 dx$. By Lemma 2 and Jensen's inequality

$$\begin{split} \Theta' + \lambda_1 \Theta &\geq \int_{\Omega'} [f(u(t))]^{p(x)} \varphi_1 dx \\ &\geq 2^{-p^+} \min\left\{ \left(\int_{\Omega'} f(u(t)) \varphi_1 \right)^{\gamma}, \left(\int_{\Omega'} f(u(t)) \varphi_1 \right)^{p^+} \right\} \\ &\geq 2^{-p^+} \min\{ [f(\Theta(t))]^{\gamma}, [f(\Theta(t))]^{p^+} \} \\ &\geq 2^{-p^+} f^{\gamma}(\Theta(t)), \end{split}$$

if $f(\Theta(t)) \ge 1$. Since f^{γ} is a convex function and $\int_{\tau}^{\infty} \frac{d\sigma}{f(\sigma)^{\gamma}} < \infty$, we have that

$$\lim_{r \to \infty} \frac{f^{\gamma}(r) - f^{\gamma}(0)}{r} = +\infty$$

Thus, there exists M > 0 such that $\frac{1}{2^{p^+}} f^{\gamma}(r) - \lambda_1 r > \frac{1}{2^{p^++1}} f^{\gamma}(r)$ for r > M. Therefore, $\Theta' > \frac{1}{2^{p^++1}} f^{\gamma}(\Theta)$ whenever $f(\Theta) \ge 1$ and $\Theta > M$. Taking $\Theta(0)$ such that $\Theta(0) > \max\{M, \alpha\}$, where $f(\alpha) > 1$, we have that the solution blows up.

7

4 | BLOW UP AND GLOBAL EXISTENCE

Proof of Theorem 3 (i) We apply an argument similar to the one used in ²⁴. Consider $\delta > 0$ such that

$$\delta < \frac{1}{\beta + 1},\tag{17}$$

where $\beta > 0$ satisfies

$$\int_{0}^{\infty} h(\sigma) \mathcal{F}(\|S(\sigma)v_0\|_{\infty}) d\sigma < \frac{\beta}{\beta+1},$$

for some $v_0 \in C_0(\Omega)$, $v_0 \ge 0$, $v_0 \ne 0$. Set $u_0 = \delta v_0 \in C_0(\Omega)$ and define the sequence $\{u^k\}_{k\ge 0}$ by $u^0(t) = S(t)u_0$ and

$$u^{k}(t) = S(t)u_{0} + \int_{0}^{t} S(t-\sigma)h(\sigma)[f(u^{k-1}(\sigma))]^{p(x)} d\sigma,$$

for $k \in \mathbb{N}$ and $t \ge 0$.

We claim that

$$u^{k}(t) \le (1+\beta)S(t)u_{0},$$
(18)

for $k \ge 0$ and t > 0. To show this, we use induction on k. Estimate (18) is clear for k = 0, thus we assume that (18) holds for k. Note that condition (17) implies $||(1+\beta)S(t)u_0||_{\infty} \le ||S(t)v_0||_{\infty} \le m$ for t > 0. Since $\mathcal{F}(0, m] \to [0, \infty)$ and f are nondecreasing functions, and $s\mathcal{F}(s) = \max\{f(s)^{p^-}, f(s)^{p^+}\}$ for $s \in (0, m]$ we have

$$\begin{split} u^{k+1}(t) &= S(t)u_0 + \int_0^t S(t-\sigma)h(\sigma)[f(u^k(\sigma))]^{p(x)} d\sigma \\ &\leq S(t)u_0 + \int_0^t h(\sigma)S(t-\sigma)[f((1+\beta)S(\sigma)u_0)]^{p(x)} d\sigma \\ &\leq S(t)u_0 + \int_0^t h(\sigma)S(t-\sigma)[f(S(\sigma)v_0)]^{p(x)} d\sigma \\ &\leq S(t)u_0 + \int_0^t h(\sigma)S(t-\sigma) \max\{[f(S(\sigma)v_0)]^{p^-}, [f(S(\sigma)v_0)]^{p^+}\}d\sigma \\ &= S(t)u_0 + \int_0^t h(\sigma)S(t-\sigma)F(S(\sigma)v_0)S(\sigma)v_0d\sigma \\ &\leq S(t)u_0 + S(t)v_0 \int_0^t h(\sigma)F(||S(\sigma)v_0||_{\infty}) d\sigma \\ &\leq S(t)u_0 + (1+\beta)S(t)u_0 \frac{\beta}{\beta+1} = (1+\beta)S(t)u_0. \end{split}$$

Hence, claim (18) holds for k + 1.

On the other hand, using again induction on k, it is possible to that $u^{k+1} \le u^k$ for all $k \in \mathbb{N}$. Thus, from monotone convergence theorem and estimate (18), we conclude that $u = \lim u_n$ is a global solution of (1).

Proof of Theorem 3 (ii) We argue by contradiction and assume that there exists a global solution $u \in C([0, \infty), C_0(\Omega))$ of problem (1) with initial condition $u_0 \neq 0$, that is

$$u(t) = S(t)u_0 + \int_0^t S(t-\sigma)h(\sigma)[f(u(\sigma))]^{p(x)} d\sigma$$

for $t \ge 0$. Let 0 < t < s. Then,

$$S(s-t)u(t) = S(s)u_0 + \int_0^t h(\sigma)S(s-\sigma)[f(u(\sigma))]^{p(x)} d\sigma.$$
(19)

Set $\Phi(t) = S(s)u_0 + \int_0^t h(\sigma)S(s-\sigma)[f(u(\sigma))]^{p(x)} d\sigma$, for $t \in [0, s]$. Then

$$\Phi'(t) = h(t)S(s-t)[f(u(t))]^{p(x)}$$

and from Lemma 2

$$S(s-t)[f(u(t))]^{p(x)} = \int_{\Omega} K_{\Omega}(x, y; s-t)[f(u(t, y))]^{p(y)} dy$$

$$\geq 2^{-p^{+}} \min\left\{ \frac{[S(s-t)f(u(t))]^{p^{-}}}{a(s-t,x)^{p^{-}-1}}, \frac{[S(s-t)f(u(t))]^{p^{+}}}{a(s-t,x)^{p^{+}-1}} \right\},$$

where K_{Ω} is the Dirichlet heat kernel on Ω and $a(s-t, x) = \int_{\Omega} K_{\Omega}(x, y; s-t) dy$. Since $K_{\Omega}(x, y; s-t) \leq K_{\mathbb{R}^{N}}(x, y; s-t)$, ^{23, Lemma 7}, we conclude that $a(s-t, x) \leq 1$. Thus, since $p^{-} \geq 1$, f is nondecreasing, inequality (9) and (19) we obtain

$$\Phi'(t) \ge 2^{-p^+} h(t) \min \left\{ [S(s-t)f(u(t))]^{p^-}, [S(s-t)f(u(t))]^{p^+} \right\}$$

$$\ge 2^{-p^+} h(t) \min \left\{ [f(S(s-t)u(t))]^{p^+}, [f(S(s-t)u(t))]^{p^-} \right\}$$

$$= 2^{-p^+} h(t) \min \left\{ [f(\Phi(t))]^{p^+}, [f(\Phi(t))]^{p^-} \right\}.$$
(20)

Set $g_2(t) = \min\{[f(t)]^{p^-}, [f(t)]^{p^+}\}$ for all $t \ge 0$. Then, by (20) we have $\Phi'(t) \ge 2^{-p^+}h(t)g_2(\Phi(t))$. Defining $G(t) = \int_t^{+\infty} \frac{d\sigma}{g_2(\sigma)}$ for t > 0 we obtain $[G(\Phi(t))]' = -\frac{\Phi'(t)}{g_2(\Phi(t))} \le -2^{-p^+}h(t)$, for 0 < t < s. Note that condition (5) guarantees that the function *G* is well defined.

Integrating, from 0 to s, we obtain

$$-G(S(s)u_0) \leq \int_{G(\Phi(s))} \frac{d\sigma}{g_2(\sigma)} - \int_{G(\Phi(0))} \frac{d\sigma}{g_2(\sigma)}$$

= $G(\Phi(s)) - G(\Phi(0))$
 $\leq -2^{-p^+} \int_0^s h(\sigma) d\sigma$

which is equivalent to $2^{-p^+} \int_0^s h(\sigma) d\sigma \le G([S(s)u_0])$. Since G is decreasing and the left hand does not depend on x, we conclude that

$$2^{-p^+} \int_0^s h(\sigma) d\sigma \le G(\|S(s)u_0\|_{\infty})$$

which contradicts condition (10).

5 | CONCLUSIONS

We deal with the parabolic problem $u_t - \Delta u = h(t)F(x, u)$ in $\Omega \times (0, T)$, where Ω is a smooth domain (bounded or unbounded), $F(x, u) = f(u)^{p(x)}$, with $f \in C[0, \infty)$ non-decreasing, $h \in C(0, \infty)$ and $p \in C(\Omega)$ with $0 < p^- \le p(x) \le p^+$. We assume that $u_0 \in C_0(\Omega), u_0 \ge 0$ and consider only non-negative solutions.

Under the assumption $\int_{\tau}^{\infty} \frac{d\sigma}{\max\{f(\sigma)^{p^{-}}, f(\sigma)^{p^{+}}\}} = \infty$ we show that all the solutions non-negative are global. Moreover, we establish some conditions to get positive solutions in the case that $u_0 = 0$, extending the results of the classical case $F(x, t) = t^q$ with 0 < q < 1. When $\int_{\tau}^{\infty} \frac{d\sigma}{\min\{f(\sigma)^{p^{-}}, f(\sigma)^{p^{+}}\}} < \infty$ we obtain blow up solutions and we use this result to improve a result established in⁹.

Global existence is obtained for small initial data assuming that $\int_0^\infty h(\sigma)\mathcal{F}(\|S(\sigma)v_0\|_\infty)d\sigma < 1$ for some $v_0 \in C_0(\Omega), v_0 \neq 0$, where $\mathcal{F}(s) = \max\{f(s)^{p^+}, f(s)^{p^-}\}/s$ defined on a small interval (0, m).

ACKNOWLEDGMENTS

Ricardo Castillo was supported by the ANID-FONDECYT project No. 11220152. Miguel Loayza was partially supported by CAPES-PRINT, 88881.311964/2018-01, MATHAMSUD, 88881.520205/2020-01, 21-MATH-03.

Conflict of interest

This work does not have any conflicts of interest.

9

References

- 1. R. Aboulaich, D. Meskine, and A. Souissi. New diffusion models in image processing. Comput. Math. Appl., 56 (2008), 874-882.
- 2. J. Aguirre and M. Escobedo. A Cauchy problem for $u_t \Delta u = u^p$ with 0 . Asymptotic behaviour of solutions. Ann. Fac. Sci. Toulouse Math. 8 (1986), No. 2, 175-203.
- S. Antontsev and J. Rodrigues. On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006) (1) 19-36.
- Bai, X.L., Zheng, S.N., Wang, W., Critical exponent for parabolic system with time-weighted sources in bounded domain. J. Funct. Anal. 265 (2013), 941-952.
- E. Bollt, R. Chartrand, S. Esedoğlu, P. Schultz, and K. Vixie, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion. Adv. Comput. Math., 31 (2009), 1-3, 61-85.
- T. Cazenave, A. Haraux, An Introduction to Semilinear Evolution Equations. Transl. by Yvan Martel. Revised ed., Oxford Lecture Series in Mathematics and its Applications, vol. 13, Clarendon Press, Oxford, 1998.
- R. Castillo, M. Loayza, On the critical exponent for some semilinear reaction-diffusion systems on general domains, J. Math. Anal. Appl. 428 (2015) 1117-1134.
- R. Castillo, M. Loayza and C. S. Paixão, Global and nonglobal existence for a strongly coupled parabolic system on a general domain, J. Differential Equations, 261 (2016) 3344-3365.
- 9. R. Castillo and M. Loayza, A semilinear parabolic problem with variable reaction on a general domain, Comput. Math. Appl. 74 (2017), (3), 351-359.
- R. Castillo, M. Loayza, Global existence and blowup for a coupled parabolic system with time-weighted sources on a general domain, Z. Angew. Math. Phys. 70 (2019) 16.
- 11. M. Escobedo and M. A. Herrero. A uniqueness result for a semilinear reaction-diffusion system. Proceedings of the American Mathematical Society, v. 112, (1991), 175-185.
- 12. L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, in: Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.
- 13. Li, Fengjie; Liu, Bingchen. Asymptotic analysis for blow-up solutions in parabolic equations involving variable exponents. Applicable Analysis, 92, 2013, n. 4, 651-664.
- R. Ferreira, A. de Pablo, M. Pérez-Llanos, J.D. Rossi, Critical exponents for a semilinear parabolic equation with variable reaction, Proc. Roy. Soc. Edinburgh Sect. A 142 (05) (2012) 1027-1042.
- 15. S. Kaplan. On the growth of solutions of quasi-linear parabolic equations. Comm. Pure Appl. Math., 16 (1963), (3), 305-330.
- R. Laister, J.C. Robinson, M. Sierżega and A. Vidal-López. A complete characterization of local existence of semilinear heat equations in Lebesgue spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1519-1538.
- 17. R. Laister, J. C. Robinson, and M. Sierżega. A necessary and sufficient condition for uniqueness of the trivial solution in semilinear parabolic equations. J. Differential Equations 262 (2017), 10, 4979-4987.
- M. Loayza and C. S. da Paixão, Existence and non-existence of global solutions for a semilinear heat equation on a general domain, Electron. J. Differential Equations, (2014), 1-9.
- 19. P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Ration. Mech. Anal. 109 (1990), 63-71.
- 20. A. de Pablo and J. L. Vázquez, Traveling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.

- 21. P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal. 71 (2009), 1049-1058.
- 22. M. Růžička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.
- 23. M. Van den Berg, A Gaussian lower bound for the Dirichlet heat kernel. Bulletin of the London Mathematical Society, 24 (1992), (5), 475-477.
- 24. F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math., v. 38, (1981), 29-40.