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ABSTRACT

This paper proposes a new distribution named "The Generalized Alpha Power
Exponentiated Inverse Exponential (GAPEIEx for short) distribution" with four
parameters, from which one (1) scale and three (3) shape parameters and the statis-
tical properties such as Survival function, Hazard function, Quantile function, 𝑟𝑡ℎ
Moment, Rényi Entropy, and Order Statistics of the new distribution are derived. The
method of maximum likelihood estimation (MLE) is used to estimate the parameters
of the distribution. The performance of the estimators is assessed through simula-
tion, which shows that the maximum likelihood method works well in estimating the
parameters.
The GAPEIEx distribution was applied to simulated and real data in order to access
the flexibility and adaptability of the distribution, and it happens to perform better
than its submodels.

KEYWORDS:
Generalized Alpha Power, Exponentiated Inverse Exponential, Inverse Exponential, Maximum Likeli-
hood estimation

1 INTRODUCTION

Finding an appropriate statistical model to handle practical problems is one of the main challenges in statistics. Probability
distributions are used to model real-life phenomena that are characterized by uncertainty and are dangerous to human life.
Since real-life occurrences are intricate and challenging to model using conventional distributions, the majority of probability
distributions have been created. As a result, probability distributions are statistically modified, and in recent years’ statisticians
have given these distributions more attention. The reason behind the modification of distributions is that the traditional ones
cannot handle more than one of the data characteristics, such as heavy tails (left or right), skewness, kurtosis, monotonic, and
non-monotonic failure rates. Data with these features requires distributions that are more adaptable than conventional ones. This
is due to a single shape parameter in the cumulative distribution function (CDF) and probability density function (PDF) of the
traditional distributions and families of distributions. Examples of such distributions are the Exponential distribution, the Lind-
ley distribution, the Poisson distribution, the Rayleigh distribution, the Gull Alpha Power Family, and the Alpha Power Family.

According to1, incorporating additional parameters into established probability distributions increased both their applica-
bility to actual occurrences and their precision in defining the distribution’s tail shape.2 as the inventor of the exponentiated

0Abbreviations: GAPEIEx, Generalized Alpha Power Exponentiated Inverse Exponential; GF, Generalized Family; GAPF, Generalized Alpha Power Family; APF,
Alpha Power Family; EIEx, Exponentiated Inverse Exponential; Sf, Survival function; Hf, Hazard function; APIEx, Alpha Power Inverse Exponential; APEIEx, Alpha
Power Exponentiated Inverse Exponential; GAPIEx, Generalized Alpha Power Inverse Exponential; 𝑄(𝜂), Quantile function; CDF, Cumulative Distri bution Function;
PDF, Probability Density Function; AB, Average Bias; RMSE, Root Mean Square Error; MLE, Maximum Likelihood Estimator
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family technique.3,4 and5 as the pioneers of model modification.

Many researchers have employed traditional distributions and families by extending the distributions and families with addi-
tional parameter(s) so that one can model real-life and simulated data. This is possible due to the pioneers of adding parameter(s)
in a distribution(s), exponentiated families, and model modification.

The Inverse Weibull Inverse Exponential distribution was proposed by6, the Alpha Power Exponentiated Inverse Rayleigh
distribution by7, the modified Rayleigh distribution for modeling COVID-19 mortality rates by8, the Kumaraswamy-Gull
Alpha Power Rayleigh distribution with it’s properties and application to HIV/AIDS data by9, the Gull-Alpha Power Weibull
distribution with applications to real and simulated data by10, the Generalized Exponential distribution by11,12, and13, the
two-parameter Inverse Exponential distribution with a decreasing failure rate by14, a new family of generalized distributions
based on Alpha Power Transformation with application to cancer data by15, on the Exponentiated Generalized Exponentiated
Exponential distribution with Properties and Application by16, the Exponentiated Generalized Class of distributions by17 and
many more.

An extremely innovative and approachable generalized alpha power exponentiated inverse exponential distribution is pre-
sented in this paper. We describe the new distribution’s development process and its submodels in Section 2; The statistical
features of the proposed distribution are shown in Section 3; the MLEs of the parameters are derived in Sections 4 and 5 through
simulation; the proposed distribution is applied to real data in Section 6; and the conclusions are given in Section 7.

2 DEVELOPMENT OF THE GAPEIEX DISTRIBUTION

2.1 Generalized Family (GF) of distribution
If 𝑋 is a random variable, the CDF and PDF of the generalized family of distribution is given respectively as;

𝐹𝐺𝐹 (𝑥) =
(

𝑀(𝑥)
)𝑏

; if 𝑥, 𝑏 > 0 (1)

the corresponding PDF is; 𝑓𝐺𝐹 (𝑥) =
𝑑
𝑑𝑥

(

𝐹𝐺𝐹 (𝑥)
)

𝑓𝐺𝐹 (𝑥) = 𝑏𝑚(𝑥)
(

𝑀(𝑥)
)𝑏−1

; if 𝑥, 𝑏 > 0 (2)

where 𝑏 > 0 is a shape parameter

2.2 Alpha Power Family (APF) of distribution
Since 𝑋 is a continuous random variable and 𝛼 is a shape parameter with CDF, 𝑀(𝑥) and PDF, 𝑚(𝑥), the Alpha Power transform
is define by7 as,

𝑀(𝑥) =

{

𝛼𝐺(𝑥)−1
𝛼−1

; if 𝑥, 𝛼 > 0, 𝛼 ≠ 1
0 ; otherwise

(3)

From equation (3) the corresponding PDF is; 𝑚(𝑥) = 𝑑
𝑑𝑥

(

𝑀(𝑥)
)

𝑚(𝑥) =

{

(

log(𝛼)
𝛼−1

)

𝛼𝐺(𝑥)𝑔(𝑥) ; if 𝑥, 𝛼 > 0, 𝛼 ≠ 1

0 ; otherwise
(4)

2.3 Generalized Alpha Power Family (GAPF) of distribution
In order to find the generalized alpha power family of distribution, substitute equation (3) into (1) and equations (3) & (4) into
equation (2) respectively;
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CDF; 𝐹𝐺𝐴𝑃𝐹 (𝑥) =

{

(𝛼 − 1)−𝑏
(

𝛼𝐺(𝑥) − 1
)𝑏 ; if 𝑥, 𝛼, 𝑏 > 0, 𝛼 ≠ 1

0 ; otherwise
(5)

PDF; 𝑓𝐺𝐴𝑃𝐹 (𝑥) =

{

𝑏 log(𝛼)(𝛼 − 1)−𝑏𝑔(𝑥)𝛼𝐺(𝑥) (𝛼𝐺(𝑥) − 1
)𝑏−1 ; if 𝑥, 𝛼, 𝑏 > 0, 𝛼 ≠ 1

0 ; otherwise
(6)

2.4 Exponentiated Inverse Exponential (EIEx) distribution
The exponentiated inverse exponential distribution is define as,

𝐺(𝑥) =

{

𝑒−
𝑎𝑘
𝑥 ; if 𝑥, 𝑎, 𝑘 > 0

0 ; otherwise
(7)

From equation (7) the corresponding PDF is;

𝑔(𝑥) = 𝑑
𝑑𝑥

(

𝐺𝐼𝐸𝑥(𝑥)
)𝑎

= 𝑎𝑔𝐼𝐸𝑥(𝑥)
(

𝐺𝐼𝐸𝑥(𝑥)
)𝑎−1

𝑔(𝑥) =

{

𝑎𝑘
𝑥2

(

𝑒−
𝑎𝑘
𝑥

)

; if 𝑥, 𝑎, 𝑘 > 0

0 ; otherwise
(8)

2.5 The GAPEIEx distribution
The Exponentiated Inverse Exponential distribution is used as the baseline distribution in this special example of the General-
ized Alpha Power Family of distributions, which has three shape parameters and one scale parameter.

Hence, in order to find the CDF and PDF of the GAPEIEx distribution, substitute equation (7) into equation (5) and equations
(7) and (8) into equation (6);

CDF: 𝐹𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) =

⎧

⎪

⎨

⎪

⎩

(𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏
; if 𝑥, 𝛼, 𝑎, 𝑏, 𝑘 > 0, 𝛼 ≠ 1

0 ; otherwise
(9)

The corresponding PDF of equation (9) is given as,

𝑓𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜙𝑥−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1
; if 𝑥, 𝛼, 𝑎, 𝑏, 𝑘 > 0, 𝛼 ≠ 1

0 ; otherwise
(10)

where 𝜙 = 𝑎𝑏𝑘 log(𝛼)(𝛼 − 1)−𝑏

The following formulae may be use to describe the survival function (Sf) and hazard function (Hf) of the GAPEIEx distribution
respectively;

𝑆𝑓 = 1 − 𝐹𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥)

= 1 −

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

𝛼 − 1

)𝑏

; 𝛼, 𝑎, 𝑏, 𝑘 > 0, 𝛼 ≠ 1
(11)
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and
𝐻𝑓 =

𝑓𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥)
𝑆𝑓

=
𝑎𝑏𝑘 log(𝛼)𝑥−2𝑒−

𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1

(𝛼 − 1)𝑏 −
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏 ; 𝛼, 𝑎, 𝑏, 𝑘 > 0
(12)

2.6 Submodels of GAPEIEx distribution
There are several well-known submodels of the GAPEIEx distribution. We set a parameter or parameters in the CDF and PDF
of the GAPEIEx distribution to one in order to find these submodels.

1. At 𝑎 = 𝑏 = 1, the CDF and PDF of the GAPEIEx distribution in equation (9) and equation (10) will reduces to Alpha
Power Inverse Exponential (APIEx) distribution.

𝐹𝐴𝑃𝐼𝐸𝑥(𝑥) = (𝛼 − 1)−1
(

𝛼𝑒−
𝑘
𝑥 − 1

)

𝑓𝐴𝑃𝐼𝐸𝑥(𝑥) = 𝑘 log(𝛼)(𝛼 − 1)−1𝑥−2𝑒−
𝑘
𝑥 𝛼𝑒−

𝑘
𝑥 ; if 𝑥, 𝛼, 𝑘 > 0, 𝛼 ≠ 1

2. At 𝑏 = 1, the CDF and PDF of the GAPEIEx distribution in equation (9) and equation (10) will reduces to Alpha Power
Exponentiated Inverse Exponential (APEIEx) distribution.

𝐹𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) = (𝛼 − 1)−1
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)

𝑓𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) = 𝑎𝑘 log(𝛼)(𝛼 − 1)−1𝑥−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥 ; if 𝑥, 𝛼, 𝑎, 𝑘 > 0, 𝛼 ≠ 1

3. At 𝑎 = 1, the CDF and PDF of the GAPEIEx distribution in equation (9) and equation (10) will reduces to Generalized
Alpha Power Inverse Exponential (GAPIEx) distribution.

𝐹𝐺𝐴𝑃𝐼𝐸𝑥(𝑥) = (𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑘
𝑥 − 1

)𝑏

𝑓𝐺𝐴𝑃𝐼𝐸𝑥(𝑥) = 𝑏𝑘 log(𝛼)(𝛼 − 1)−𝑏𝑥−2𝑒−
𝑘
𝑥 𝛼𝑒−

𝑘
𝑥

(

𝛼𝑒−
𝑘
𝑥 − 1

)𝑏−1

; if 𝑥, 𝛼, 𝑏, 𝑘 > 0, 𝛼 ≠ 1

TABLE 1 Summary of submodels of the GAPEIEx distribution.

Submodels Parameters
𝛼 𝑎 𝑏 𝑘

APIEx Distribution 𝛼 1 1 𝑘
APEIEx Distribution 𝛼 𝑎 1 𝑘
GAPIEx Distribution 𝛼 1 𝑏 𝑘

A reversed J-shape, a J-shape, a right-skewed with a heavy tail and high kurtosis, a left-skewed, a unimodal, decreasing,
decrease-increase-decrease, a bathtub, and an inverted bathtub shape are just a few examples of the different GAPEIEx distri-
bution PDF and hazard function shapes shown in Figures 1 and 2. The GAPEIEx PDF distribution and hazard function have
shapes that can model a range of data, thanks to their unique characteristics.
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FIGURE 1 The PDF of the GAPEIEx distribution.
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3 STATISTICAL PROPERTIES

The derived statistical characteristics, graphs, and numerical values of the GAPEIEx distribution will be displayed in this section.

3.1 Quantile function [𝑄(𝜂)]
Since 𝐹𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) is the CDF of the GAPEIEx distribution, it 𝑄(𝜂) is the inverse of equation (9), and it is defined on the unit
interval 𝜂 ∈ (0, 1).

Hence the 𝑄(𝜂) of the GAPEIEx distribution is;

𝑄(𝜂) = −𝑎𝑘

log

{

log
(

𝜂
1
𝑏 (𝛼−1)+1

)

log(𝛼)

}

; 𝛼, 𝑎, 𝑏, 𝑘 > 0 (13)

Proof:
Let 𝐹𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) = 𝜂, where 𝜂 ∈ (0, 1) is the probability value, now we solve for 𝑥;

𝜂 = (𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏

𝛼𝑒−
𝑎𝑘
𝑥 − 1 = 𝜂

1
𝑏 (𝛼 − 1)

𝛼𝑒−
𝑎𝑘
𝑥 = 𝜂

1
𝑏 (𝛼 − 1) + 1

𝑒−
𝑎𝑘
𝑥 log(𝛼) = log

(

𝜂
1
𝑏 (𝛼 − 1) + 1

)

𝑒−
𝑎𝑘
𝑥 =

log
(

𝜂
1
𝑏 (𝛼 − 1) + 1

)

log(𝛼)

−𝑎𝑘
𝑥

= log

{ log
(

𝜂
1
𝑏 (𝛼 − 1) + 1

)

log(𝛼)

}

𝑥 = −𝑎𝑘

log

{

log
(

𝜂
1
𝑏 (𝛼−1)+1

)

log(𝛼)

}

The Median of the GAPEIEx distribution is at the point where 𝜂 = 1
2

𝑄
(

1
2

)

= −𝑎𝑘

log

{

log

(

(

1
2

)
1
𝑏 (𝛼−1)+1

)

log(𝛼)

}

; 𝛼, 𝑎, 𝑏, 𝑘 > 0 (14)

Using equation (13) the random variables/numbers of the GAPEIEx distribution can be simulated using;

𝑥𝜂 =
−𝑎𝑘

log

{

log
(

𝜂
1
𝑏 (𝛼−1)+1

)

log(𝛼)

}

;where 𝜂 ∈ (0, 1), 𝛼, 𝑎, 𝑏, 𝑘 > 0 (15)

Table 2, displays the quantile values for selected parameter values. It is obvious that the quantile values rise in proportion to
the probability value (𝜂).
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TABLE 2 Quantile Values of the GAPEIEx distribution.

𝜂 (𝛼, 𝑎, 𝑏, 𝑘 = 1.05, 0.05, 5.5, 0.9) (𝛼, 𝑎, 𝑏, 𝑘 = 1.05, 0.05, 3.5, 0.8)
0.1 0.10965 0.06190
0.2 0.15707 0.08871
0.3 0.21012 0.11871
0.4 0.27624 0.15610
0.5 0.36533 0.20649
0.6 0.49590 0.28034
0.7 0.71044 0.40170
0.8 1.13589 0.64235
0.9 2.40631 1.36097

3.2 𝑟𝑡ℎ moments
The 𝑟𝑡ℎ moments of the GAPEIEx distribution is define as;

𝜇𝑟 = 𝐸(𝑋𝑟) =

∞

∫
0

𝑥𝑟𝑓𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥)𝑑𝑥 (16)

By replacing 𝑓𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) in equation (16) with equation (10), the 𝑟𝑡ℎ moments is given as;

𝜇𝑟 = 𝜙
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)

{ ∞

∫
0

𝑥𝑟−2𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗

𝑑𝑥

}

(17)

where 𝜙 = 𝑎𝑏𝑘(𝛼 − 1)−𝑏 log(𝛼)

Proof;

𝜇𝑟 = 𝐸(𝑋𝑟) =

∞

∫
0

𝑥𝑟𝑓𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥)𝑑𝑥

=

∞

∫
0

𝑥𝑟𝜙𝑥−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1

𝑑𝑥

= 𝜙

∞

∫
0

𝑥𝑟−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1

𝑑𝑥

Using the generalized binomial expansion on
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1
where 𝑏 > 0;

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1

=
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−1−𝑗

𝜇𝑟 = 𝜙

∞

∫
0

𝑥𝑟−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−1−𝑗

𝑑𝑥

= 𝜙
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)

{ ∞

∫
0

𝑥𝑟−2𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗

𝑑𝑥

}

where 𝜙 = 𝑎𝑏𝑘(𝛼 − 1)−𝑏 log(𝛼)
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3.2.1 Mean [𝐸(𝑋)]
The Mean of equation (17) is at 𝑟 = 1;

𝐸(𝑋) = 𝜙
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)

{ ∞

∫
0

𝑥−1𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗

𝑑𝑥

}

3.2.2 Variance [𝑉 𝑎𝑟(𝑋)]
Form the traditional definition of variance of a random variable 𝑋;

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))2

From equation (17),

𝑉 𝑎𝑟(𝑋) = 𝜙
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)

{ ∞

∫
0

𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗

𝑑𝑥

}

−

{

𝜙
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)

⎛

⎜

⎜

⎝

∞

∫
0

𝑥−1𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗

𝑑𝑥
⎞

⎟

⎟

⎠

}2

3.2.3 Coefficient of Variation [𝐶𝑉 ]
The CV is define as the Standard Deviation (SD) divided by the Mean [𝐸(𝑋)].

𝐶𝑉 =

√

𝑉 𝑎𝑟(𝑋)
𝐸(𝑋)

=

√

𝜙
∑𝑏−1

𝑗=0(−1)𝑗
(𝑏−1

𝑗

)

(

∫ ∞
0 𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥
)𝑏−𝑗

𝑑𝑥
)

−
(

∏

(𝑥)
)2

𝜙
∑𝑏−1

𝑗=0(−1)𝑗
(𝑏−1

𝑗

)

(

∫ ∞
0 𝑥−1𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥
)𝑏−𝑗

𝑑𝑥
)

where,
∏

(𝑥) = 𝜙
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)

⎛

⎜

⎜

⎝

∞

∫
0

𝑥−1𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗

𝑑𝑥
⎞

⎟

⎟

⎠

3.2.4 Bowley (Galton) Skewness (𝐵𝑠)
𝐵𝑠 =

𝑄1 +𝑄3 − 2𝑄2

𝑄3 −𝑄1
where 𝑄 is the quantile function.

3.2.5 Moors Kurtosis (𝑀𝑘)
𝑀𝑘 =

𝑄(0.875) +𝑄(0.375) − [𝑄(0.625) +𝑄(0.125)]
𝑄(0.75) −𝑄(0.25)

where 𝑄 is the quantile function

The additional parameters (𝛼, 𝑎) clearly have an impact on the Skewness and Kurtosis of the GAPEIEx distribution as seen
in Figures 3 & 4. This demonstrates the flexibility of the GAPEIEx distribution and the importance of the extra parameters.
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FIGURE 3 Plot for the GAPEIEx Bowley Skewness with fixed (𝑏, 𝑘 = 0.3, 0.2)
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FIGURE 4 Plot for the GAPEIEx Moors Kurtosis with fixed (𝑏, 𝑘 = 0.3, 0.2)

3.3 Rényi Entropy
The Rényi Entropy of the GAPEIEx distribution for a random variable 𝑋 is define as;

𝑅𝛿(𝑋) = 1
1 − 𝛿

log

{

𝜙𝛿
𝑏−1
∑

𝑗=0

(

(−1)𝑗
(

𝑏 − 1
𝑗

))𝛿
∞

∫
0

[

𝑥−2𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗
]𝛿

𝑑𝑥

}

(18)
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where 𝜙 = 𝑎𝑏𝑘(𝛼 − 1)−𝑏 log(𝛼)

Proof;

From; 𝑅𝛿(𝑋) = 1
1 − 𝛿

log
⎛

⎜

⎜

⎝

∞

∫
0

𝑓 𝛿
𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥)𝑑𝑥

⎞

⎟

⎟

⎠

; if 𝛿(≠ 1) > 0 (19)

where 𝛿 is the order

By replacing 𝑓𝐺𝐴𝑃𝐸𝐼𝐸𝑥(𝑥) in equation (19) with equation (10), the Rényi Entropy is given as;

𝑅𝛿(𝑋) = 1
1 − 𝛿

log

⎧

⎪

⎨

⎪

⎩

∞

∫
0

(

𝜙𝑥−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1
)𝛿

𝑑𝑥

⎫

⎪

⎬

⎪

⎭

From,
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1

=
𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−1−𝑗

𝑅𝛿(𝑋) = 1
1 − 𝛿

log

⎧

⎪

⎨

⎪

⎩

∞

∫
0

(

𝜙𝑥−2𝑒−
𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

𝑏−1
∑

𝑗=0
(−1)𝑗

(

𝑏 − 1
𝑗

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−1−𝑗
)𝛿

𝑑𝑥

⎫

⎪

⎬

⎪

⎭

= 1
1 − 𝛿

log

{

𝜙𝛿
𝑏−1
∑

𝑗=0

(

(−1)𝑗
(

𝑏 − 1
𝑗

))𝛿
∞

∫
0

[

𝑥−2𝑒−
𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑗
]𝛿

𝑑𝑥

}

3.4 Order Statistics
If 𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛 denote the random sample of size 𝑛 from the GAPEIEx distribution, hence 𝑋(1) ⩽ 𝑋(2) ⩽ 𝑋(3) ⩽ ... ⩽ 𝑋(𝑛)
will be the order statistics of a distribution.

The 𝑙𝑡ℎ order statistics is define as;

𝑓𝑋(𝑙)
(𝑥) = 𝑛!

(𝑙 − 1)!(𝑛 − 𝑙)!
𝑓 (𝑥)

(

𝐹 (𝑥)
)𝑙−1(

1 − 𝐹 (𝑥)
)𝑛−𝑙

Using the generalized binomial expansion for
(

1 − 𝐹 (𝑥)
)𝑛−𝑙

,

Hence,
(

1 − 𝐹 (𝑥)
)𝑛−𝑙

=
𝑛−𝑙
∑

𝑡=0

(

𝑛 − 𝑙
𝑡

)

(1)𝑛−𝑙−𝑡
(

−𝐹 (𝑥)
)𝑡

=
𝑛−𝑙
∑

𝑡=0
(−1)𝑡

(

𝑛 − 𝑙
𝑡

)(

𝐹 (𝑥)
)𝑡

Hence the 𝑙𝑡ℎ order statistics is;

𝑓𝑋(𝑙)
(𝑥) = 𝑛!

(𝑙 − 1)!(𝑛 − 𝑙)!
𝑓 (𝑥)

(

𝐹 (𝑥)
)𝑙−1 𝑛−𝑙

∑

𝑡=0
(−1)𝑡

(

𝑛 − 𝑙
𝑡

)(

𝐹 (𝑥)
)𝑡

= 𝑛!
(𝑙 − 1)!(𝑛 − 𝑙)!

𝑛−𝑙
∑

𝑡=0
(−1)𝑡

(

𝑛 − 𝑙
𝑡

)

𝑓 (𝑥)
(

𝐹 (𝑥)
)𝑙−1+𝑡

(20)

where 𝑙 = 1 is the 𝑙𝑡ℎ minimum, and 𝑙 = 𝑛 is the 𝑙𝑡ℎ maximum order statistics of the distribution.

3.4.1 𝑙𝑡ℎ minimum order statistics

𝑓𝑋(1)
(𝑥) = 𝑛𝜙𝑥−2𝑒−

𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1 𝑛−1
∑

𝑡=0
(−1)𝑡

(

𝑛 − 1
𝑡

)

{

(𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏
}𝑡
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Using binomial expansion;
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1

=
𝑏−1
∑

ℎ=0
(−1)ℎ

(

𝑏 − 1
ℎ

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−1−ℎ

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏

=
𝑏
∑

𝑔=0
(−1)𝑔

(

𝑏
𝑔

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑔

(21)

𝑓𝑋(1)
(𝑥) = 𝑛𝜙𝑥−2𝑒−

𝑎𝑘
𝑥

𝑛−1
∑

𝑡=0

𝑏−1
∑

ℎ=0
(−1)𝑡+ℎ

(

𝑛 − 1
𝑡

)(

𝑏 − 1
ℎ

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−ℎ
{ 𝑏

∑

𝑔=0
(−1)𝑔

(

𝑏
𝑔

)

(𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑔
}𝑡

(22)

3.4.2 𝑙𝑡ℎ maximum order statistics

𝑓𝑋(𝑛)
(𝑥) = 𝑛𝜙𝑥−2𝑒−

𝑎𝑘
𝑥 𝛼𝑒−

𝑎𝑘
𝑥

(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏−1
(

(𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑎𝑘
𝑥 − 1

)𝑏
)𝑛−1

from equation (21);

𝑓𝑋(𝑛)
(𝑥) = 𝑛𝜙𝑥−2𝑒−

𝑎𝑘
𝑥

𝑏−1
∑

ℎ=0
(−1)ℎ

(

𝑏 − 1
ℎ

)(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−ℎ
{ 𝑏

∑

𝑔=0
(−1)𝑔

(

𝑏
𝑔

)

(𝛼 − 1)−𝑏
(

𝛼𝑒−
𝑎𝑘
𝑥

)𝑏−𝑔
}𝑛−1

(23)

where 𝜙 = 𝑎𝑏𝑘(𝛼 − 1)−𝑏 log(𝛼)

4 PARAMETERS ESTIMATION

To find the MLEs of the GAPEIEx distribution parameters, we make use of the log-likelihood function of the distribution.

To find the MLEs of the GAPEIEx distribution use equation (10)

𝐿 = ln𝐿
(

𝑥; 𝜆
)

= ln
( 𝑛
∏

𝑖=1
𝑓 (𝑥𝑖; 𝜆)

)

;where 𝜆 ∈ (𝛼, 𝑎, 𝑏, 𝑘) > 0

= 𝑛 ln(𝑎) + 𝑛 ln(𝑏) + 𝑛 ln(𝑘) − 𝑛𝑏 ln(𝛼 − 1) + 𝑛 ln (log(𝛼)) − 2
𝑛
∑

𝑖=1
ln(𝑥𝑖) − 𝑎𝑘

𝑛
∑

𝑖=1
𝑥−1𝑖

+ ln(𝛼)
𝑛
∑

𝑖=1
𝑒−

𝑎𝑘
𝑥𝑖 + (𝑏 − 1) ln

(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)

(24)

The parameters 𝑎, 𝑏, 𝑘,& 𝛼, the MLEs 𝑎, �̂�, �̂�,& 𝛼 are values that maximize the log-likelihood function of (24).
By finding the partial derivatives of the log-likelihood function of in equation (24) with respect to (wrt) each parameter (i.e
𝑎, 𝑏, 𝑘,& 𝛼) and equate to zero, it is given as;

From equation (24), Let

𝛹 = (𝑏 − 1) ln
(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)

Now let find the derivatives of 𝛹 wrt to each parameter.

𝛹 ′
𝑎 =

𝜕𝛹
𝜕𝑎

= 𝜕
𝜕𝑎

[

(𝑏 − 1) ln
(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)]

= 𝑏 − 1

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

[

−𝑘 ln(𝛼)
𝑛
∑

𝑖=1

(

𝑥−1𝑖 𝑒−
𝑎𝑘
𝑥𝑖

)

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖

]
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𝛹 ′
𝑏 =

𝜕𝛹
𝜕𝑏

= 𝜕
𝜕𝑏

[

(𝑏 − 1) ln
(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)]

= ln
(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)

𝛹 ′
𝑘 =

𝜕𝛹
𝜕𝑘

= 𝜕
𝜕𝑘

[

(𝑏 − 1) ln
(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)]

= 𝑏 − 1

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

[

−𝑎 ln(𝛼)
𝑛
∑

𝑖=1

(

𝑥−1𝑖 𝑒−
𝑎𝑘
𝑥𝑖

)

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖

]

𝛹 ′
𝛼 = 𝜕𝛹

𝜕𝛼
= 𝜕

𝜕𝛼

[

(𝑏 − 1) ln
(

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

)]

= 𝑏 − 1

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖 − 1

[

1
𝛼

( 𝑛
∑

𝑖=1
𝑒−

𝑎𝑘
𝑥𝑖

)

𝛼
∑𝑛

𝑖=1 𝑒
− 𝑎𝑘
𝑥𝑖

]

The partial derivatives of 𝐿 wrt the parameters (i.e. 𝛼, 𝑎, 𝑏, 𝑘) and equating each partial derivative to zero are given as:

𝜕𝐿
𝜕𝑎

= 𝑛
𝑎
− 𝑘

𝑛
∑

𝑖=1
𝑥−1𝑖 − 𝑘 ln(𝛼)

𝑛
∑

𝑖=1

(

𝑥−1𝑖 𝑒−
𝑎𝑘
𝑥𝑖

)

+𝛹 ′
𝑎 = 0 (25)

𝜕𝐿
𝜕𝑏

= 𝑛
𝑏
− 𝑛 ln(𝛼 − 1) + 𝛹 ′

𝑏 = 0 (26)

𝜕𝐿
𝜕𝑘

= 𝑛
𝑘
− 𝑎

𝑛
∑

𝑖=1
𝑥−1𝑖 − 𝑎 ln(𝛼)

𝑛
∑

𝑖=1

(

𝑥−1𝑖 𝑒−
𝑎𝑘
𝑥𝑖

)

+𝛹 ′
𝑘 = 0 (27)

𝜕𝐿
𝜕𝛼

= − 𝑛𝑏
𝛼 − 1

+ 𝑛
𝛼 log(𝛼)

+ 1
𝛼

𝑛
∑

𝑖=1
𝑒−

𝑎𝑘
𝑥𝑖 + 𝛹 ′

𝛼 = 0 (28)

Since equations (25) to (28) are not closed-form solutions, a numerical optimization method is required to find their solutions.
In this study, a 2𝑛𝑑 - order optimization algorithm called Broyden-Fletcher-Goldfarb-Shannon (BFGS) will be used to solve
unconstrained nonlinear optimization problems.

This is always the case when solving real-valued optimization problems and an expectation when using many 2𝑛𝑑 - order
methods.

The Hessian matrix of the GAPEIEx distribution is define as;

𝐽−1(𝜆) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕2𝐿
𝜕𝑎2

𝜕2𝐿
𝜕𝑎𝜕𝑏

𝜕2𝐿
𝜕𝑎𝜕𝑘

𝜕2𝐿
𝜕𝑎𝜕𝛼

𝜕2𝐿
𝜕𝑏2

𝜕2𝐿
𝜕𝑏𝜕𝑘

𝜕2𝐿
𝜕𝑏𝜕𝛼

𝜕2𝐿
𝜕𝑘2

𝜕2𝐿
𝜕𝑘𝜕𝛼
𝜕2𝐿
𝜕𝛼2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉 𝑎𝑟(�̂�) 𝐶𝑜𝑣(�̂�, �̂�) 𝐶𝑜𝑣(�̂�, �̂�) 𝐶𝑜𝑣(�̂�, �̂�)
𝑉 𝑎𝑟(�̂�) 𝐶𝑜𝑣(�̂�, �̂�) 𝐶𝑜𝑣(�̂�, �̂�)

𝑉 𝑎𝑟(�̂�) 𝐶𝑜𝑣(�̂�, �̂�)
𝑉 𝑎𝑟(�̂�)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where 𝜆 = (𝑎, 𝑏, 𝑘, 𝛼)′ .
The expressions for terms in the Hessian matrix are available if need arises.

5 SIMULATION STUDY

In this section, a Monte Carlo Simulation Study was conducted to check the behavior of the estimates and Root Mean Square
Errors (RMSEs) of the MLEs for the parameters of the GAPEIEx distribution.

In order to carry out the simulation investigation, equation (15) is used to produce random samples of various lengths using
various parameter values. The simulation study made 1500 replications for the following selected sample sizes: n = 50, 100,
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150,..., 550.

The equation Average Bias (AB), and Root Mean Square Error (RMSE) are define as;

AB = 1
𝑀

𝑀
∑

𝑖=1
(�̂�𝑖 − 𝜑) (29)

and

RMSE =

√

√

√

√
1
𝑀

𝑀
∑

𝑖=1
(�̂�𝑖 − 𝜑)2 (30)

where �̂�𝑖 is the estimator of 𝜑(𝛼, 𝑎, 𝑏, 𝑘), 𝜑(𝛼, 𝑎, 𝑏, 𝑘) is the true value of the parameter being estimated and 𝑀 is the number
of iterations.

The numerical values of the simulation results for the estimations, ABs, and RMSEs are shown in Tables 3 & 4. The esti-
mates approach the starting parameter values as the sample size increases, and the related ABs and RMSEs typically decrease
as the sample size increases, as seen in Table 3. It is evident that variations in sample size have an impact on 𝑎𝑙𝑝ℎ𝑎’s sensitivity.

Similar to Table 3, it is clear in Table 4 that estimates get closer to the initial parameter values as sample size (n) increases,
and the corresponding ABs and RMSEs for decreasing values of 𝛼, 𝑎,&𝑏 and increasing 𝑘 generally decrease as sample size (n)
increases.

This provides a good illustration of how well the maximum likelihood method performs when predicting the parameters from
Tables 3 & 4, respectively.

TABLE 3 The estimates, corresponding ABs, and RMSEs result.

Initial Parameters: 𝛼 = 1.65, 𝑎 = 0.02, 𝑏 = 1.11, 𝑘 = 0.01

n Estimates ABs
𝛼 𝑎 �̂� �̂� 𝛼 𝑎 �̂� �̂�

50 7.01845 0.02142 1.09765 0.01122 5.36845 0.00142 -0.01235 0.00122
100 3.31667 0.02023 1.16093 0.01039 1.66667 0.00023 0.05093 0.00039
150 2.47480 0.02003 1.14010 0.01076 0.82480 0.000029 0.03010 0.00076
200 2.10224 0.01997 1.11911 0.01005 0.45224 -0.000028 0.00911 0.000051
250 1.93604 0.01977 1.13753 0.00992 0.28604 -0.00023 0.02753 -0.000075
300 1.84843 0.01980 1.13343 0.00994 0.19843 -0.00020 0.02343 -0.000055
350 1.77313 0.01999 1.11884 0.01003 0.12313 -0.0000044 0.00884 0.000032
400 1.71418 0.01993 1.11550 0.00996 0.06418 -0.000068 0.00550 -0.000036
450 1.70715 0.01997 1.11161 0.00998 0.05715 -0.000031 0.00161 -0.000021
500 1.68005 0.02001 1.11156 0.00999 0.03005 0.0000078 0.00156 -0.0000085
550 1.67336 0.01998 1.11342 0.01000 0.02336 -0.000022 0.00342 -0.0000044

n RMSEs
𝛼 𝑎 �̂� �̂�

50 33.82066 0.00987 0.63368 0.00784
100 4.95962 0.00705 0.64737 0.00542
150 2.54031 0.00532 0.48980 0.02288
200 1.47891 0.00317 0.35092 0.00157
250 1.04402 0.00268 0.30870 0.00115
300 0.78806 0.00219 0.31941 0.00092
350 0.56682 0.00229 0.22597 0.00238
400 0.38292 0.00105 0.12526 0.00051
450 0.32580 0.00105 0.12268 0.00050
500 0.24293 0.00118 0.10024 0.00041
550 0.23289 0.00124 0.09324 0.00042
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TABLE 4 The estimates, corresponding ABs, and RMSEs result.

Initial Parameters: 𝛼 = 1.60, 𝑎 = 0.01, 𝑏 = 1.10, 𝑘 = 0.02

n Estimates ABs
𝛼 𝑎 �̂� �̂� 𝛼 𝑎 �̂� �̂�

50 7.07877 0.01097 1.10594 0.02168 5.47877 0.00097 0.00594 0.00168
100 3.35248 0.01053 1.12547 0.02049 1.75248 0.00053 0.02547 0.00049
150 2.44775 0.01012 1.11968 0.02004 0.84775 0.00012 0.01968 0.000042
200 2.01743 0.01013 1.10845 0.01999 0.41743 0.00013 0.00845 -0.0000024
250 1.85122 0.00995 1.11859 0.01981 0.25122 -0.000051 0.01859 -0.00019
300 1.75575 0.01019 1.10940 0.01996 0.15575 0.00019 0.00940 -0.000042
350 1.71410 0.00998 1.10602 0.01992 0.11410 -0.000016 0.00602 -0.000080
400 1.65335 0.00999 1.10228 0.01994 0.05335 -0.0000052 0.00228 -0.000056
450 1.64086 0.00999 1.09953 0.01998 0.04086 -0.0000098 -0.00047 -0.000025
500 1.63361 0.00998 1.10430 0.01994 0.03361 -0.000018 0.00430 -0.000060
550 1.61574 0.01000 1.10070 0.02002 0.01573 0.00000085 0.00070 0.000017

n RMSEs
𝛼 𝑎 �̂� �̂�

50 56.83963 0.00600 0.69483 0.02409
100 10.06289 0.00727 0.56179 0.00681
150 5.75429 0.00338 0.46019 0.00429
200 1.59434 0.00257 0.33198 0.00362
250 0.89836 0.00113 0.26692 0.00238
300 0.63495 0.00539 0.21434 0.00306
350 0.53876 0.00066 0.21079 0.00164
400 0.33757 0.00046 0.11150 0.00111
450 0.28209 0.00029 0.09249 0.00081
500 0.26682 0.00035 0.10071 0.00083
550 0.16464 0.00045 0.05996 0.00113

6 DATA APPLICATION

In this section, the adaptability of the GAPEIEx distribution is accessed by comparing the distribution and its well-known
submodels using real data sets. Such submodels are the IEx distribution by18, the Exponentiated Inverse Exponential (EIEx) dis-
tribution, the Alpha Power Inverse Exponential (APIEx) distribution by19, the Alpha Power Exponentiated Inverse Exponential
(APEIEx) distribution (New distribution), and the Generalized Alpha Power Inverse Exponential (GAPIEx) distribution (New
distribution).

6.1 Data Set 1: Sierra Leone Covid-19 Daily Reported New Cases
Table 5, consist of Covid-19 daily reported new cases data set in Sierra Leone retrived from20.

TABLE 5 Sierra Leone Covid-19 Daily Reported New Cases.

3 15 1 1 1 11 18 19 34 5 15 48 86 160 72 92
81 50 65 41 48 40 44 30 23 43 6 7 32 7 13 16
13 2 14 4 5 5 12 6 3 14 1 3 1 3 7 1
2 2 1 9 1 10 2 2 7 2 1 1 1 1

Table 6, consist of the summary statistics of Sierra Leone Covid-19 daily reported new cases. The value of skewness is positive
(i.e. data set 1 is skewed to the right), the value of the kurtosis is > 3 (i.e. data set 1 is Leptokurtic), and data set 1 is unimodal
(i.e. one mode).
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TABLE 6 Summary Statistics of Sierra Leone Covid-19 Data.

N Max. Min. Mean Median Mode SD CV Skewness Kurtosis
62 160 1 20.37 7 1 29.33 1.44 2.52 7.98

For data set 1, the TTT-transform plot displays a convex below the 450 line and four outliers in the boxplot as illustrated in
Figure 5.
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FIGURE 5 The TTT-transform plot and the Boxplot of Data Set 1.

The MLEs for the model parameters and related standard errors, which are displayed in brackets, are found in Table 7. The
bulk of the fitted distributions were significant at the 5% level because the standard error test reveals that the values of the
parameter standard errors are < 1

2
the parameter value.

TABLE 7 The MLEs and the Standard Error (in parentheses) for Data Set 1.

Distribution 𝛼 𝑎 �̂� �̂�
GAPEIEx 9.8665(6.2659) 1.7803(0.8715) 0.3173(0.1121) 4.0090(1.9625)
GAPIEx 4.2149(2.5693) - 1.0625(0.4568) 1.9704(0.9098)
APEIEx 5.8921(5.2330) 4.5930(6.9039) - 0.4598(0.6911)
APIEx 5.9335(5.0808) - - 2.0903(0.5887)
EIEx - 10.5152(87.8503) - 0.3033(2.5338)
IEx - - - 3.1894(0.4051)

Table 8, displays the goodness-of-fit and 𝑝−𝑣𝑎𝑙𝑢𝑒 results of data set 1 for the GAPEIEx distribution, its submodels, and some
well-known distributions. It’s clear that the GAPEIEx distribution has the lowest 𝐾 − 𝑆, 𝐶𝑉𝑀 , 𝐴∗, and the largest 𝑝 − 𝑣𝑎𝑙𝑢𝑒.
This tells us that the GAPEIEx distribution matched data set 1 better than its submodels, but some of its submodels also fitted
the data.
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TABLE 8 The Goodness-of-fit and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 results for Data Set 1.

Distribution 𝐾 − 𝑆 𝐶𝑉𝑀 𝐴∗ 𝑝 − 𝑣𝑎𝑙𝑢𝑒
GAPEIEx 0.1260 0.1514 1.2922 0.2789
GAPIEx 0.1663 0.1909 1.5164 0.0649
APEIEx 0.1446 0.1859 1.4817 0.1495
APIEx 0.1436 0.1858 1.4811 0.1548
EIEx 0.2021 0.2324 1.7918 0.0126<5%
IEx 0.2021 0.2324 1.7918 0.0126<5%

Table 9, consists of the negative log-likelihood and the information criteria results of data set 1 for the GAPEIEx distribution,
its submodels, and some well-known distributions. It’s clear that the GAPEIEx distribution has the highest −𝐿, and the lowest
𝐴𝐼𝐶 , 𝐴𝐼𝐶𝑐, & 𝐻𝑄𝐼𝐶 . This tells us that the GAPEIEx distribution is a better model for modeling data set 1 than its submodels.

TABLE 9 The −𝐿 and the Information Criteria results for Data Set 1.

Distribution −𝐿 𝐴𝐼𝐶 𝐴𝐼𝐶𝑐 𝐻𝑄𝐼𝐶
GAPEIEx 237.7817 483.5633 484.2651 486.9040
GAPIEx 241.4361 488.8721 489.2859 491.3776
APEIEx 241.0246 488.0493 488.4631 490.5548
APIEx 241.0280 486.0560 486.2594 487.7263
EIEx 244.0435 492.0869 492.2903 493.7573
IEx 244.0435 490.0869 490.1536 490.9221

From Figure 6, it’s clear that the GAPEIEx distribution provides a better fit to the COVID-19 daily reported new cases data
set in Sierra Leone (i.e., data set 1) than its submodels.
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FIGURE 6 The Fitted densities plot of Data Set 1.
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6.2 Data Set 2: United Kingdom Covid-19 Mortality Rates Data
Table 10, consist of Covid-19 mortality rates data set in the United Kingdom used by21.

TABLE 10 United Kingdom Covid-19 Mortality Rates Data.

0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 0.2079
0.2395 0.2845 0.2992 0.3188 0.3317 0.3446 0.3553 0.3622
0.3926 0.3926 0.4633 0.4690 0.4954 0.5139 0.5696 0.5837
0.6197 0.6365 0.7096 0.7444 0.8590 1.0438 1.0602 1.1305
1.1468 1.1533 1.2260 1.2707 1.4149 1.5709 1.6017 1.6083
1.6324 1.6998 1.8164 1.8392 1.8721 2.1360 2.3987 2.4153
2.5225 2.7087 2.7946 3.3609 3.3715 3.7840 4.1969 4.3451
4.4627 4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 8.2307
9.6315 10.1870 11.1429 11.2019 11.4584 0.2751 0.4110 0.7193
1.3423 1.9844 3.9042 7.4456

Table 11, comprises of the summary statistics of UK COVID-19 mortality rates data. The value of skewness is positive (i.e.,
data set 2 is right-skewed), the value of the kurtosis is <3 (i.e., data set 2 is Platykurtic), and data set 2 is unimodal (i.e., one
mode).

TABLE 11 Summary Statistics of UK Covid-19 Mortality Rates Data.

N Max. Min. Mean Median Mode SD CV Skewness Kurtosis
76 11.46 0.06 2.44 1.25 0.39 2.94 1.21 1.74 2.32

The failure rate of data set 2 is bathtub shape since the TTT-transform plot is first convex below the 450 line and then concave
above the 450 line and have few outliers n the boxplot as shown in Figure 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/
n)

0
2

4
6

8
10

(a) TTT-transform (b) Boxplot

FIGURE 7 The TTT-transform plot and the Boxplot of Data Set 2.
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Table 12, displays the MLEs for the model parameters and associated standard errors (given in brackets). At 5% level of
significance, the standard error test shows that the majority of the fitted distribution values are less than half (< 1

2
) the parameter

value.

TABLE 12 The MLEs and the Standard Error (in parentheses) for Data Set 2.

Distribution 𝛼 𝑎 �̂� �̂�
GAPEIEx 12.4305(11.2936) 0.1340(0.0643) 0.5453(0.6890) 4.4385(2.1099)
GAPIEx 3.6376(1.7413) - 1.0218( 0.4568) 0.3614(0.1733)
APEIEx 1.3176(0.4723) 28.6423(16.2083) - 0.0166(0.0094)
APIEx 7.0379(4.0201) - - 0.3112(0.0625)
EIEx - 0.0882(0.4514) - 5.8455(29.9281)
IEx - - - 0.5154(0.0591)

The goodness-of-fit and p-value results for data set 2 for the GAPEIEx distribution, its submodels, and other well-known
distributions (i.e., the EIEx and IEx distributions) are shown in Table 13. The GAPEIEx distribution clearly has the highest p-
value and the lowest 𝐾 − 𝑆, 𝐶𝑉𝑀 , and 𝐴∗ values. This suggests that the GAPEIEx distribution fits data set 2 better than its
submodels, despite the fact that some of them also do, with the exception of the APEIEx, EIEx, and IEx distributions.

TABLE 13 The Goodness-of-fit and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 results for Data Set 2.

Distribution 𝐾 − 𝑆 𝐶𝑉𝑀 𝐴∗ 𝑝 − 𝑣𝑎𝑙𝑢𝑒
GAPEIEx 0.0749 0.0917 0.6458 0.7868
GAPIEx 0.1379 0.1361 0.9199 0.1110
APEIEx 0.1799 0.1803 1.2102 0.0146 <5%
APIEx 0.1181 0.1215 0.8150 0.2393
EIEx 0.1893 0.1976 1.3183 0.0086 <5%
IEx 0.1893 0.1976 1.3183 0.0086 <5%

Table 14, displays the negative log-likelihood and the information criteria results of data set 2 for the GAPEIEx distribution,
its submodels, and some well-known distributions. It’s clear that the GAPEIEx distribution is the best model for modeling data
set 2 than its submodels since it has the highest −𝐿 and the lowest 𝐴𝐼𝐶 , 𝐴𝐼𝐶𝑐, & 𝐻𝑄𝐼𝐶 .

TABLE 14 The −𝐿 and the Information Criteria results for Data Set 2.

Distribution −𝐿 𝐴𝐼𝐶 𝐴𝐼𝐶𝑐 𝐻𝑄𝐼𝐶
GAPEIEx 140.0126 288.0252 288.7886 291.9511
GAPIEx 144.8443 295.6886 296.0220 298.4830
APEIEx 148.2166 302.4331 302.7665 305.2276
APIEx 143.7749 291.5498 291.7141 293.4127
EIEx 149.6024 303.2048 303.3692 305.0678
IEx 149.6024 301.2048 301.2589 302.1363

From Figure 8, it’s clear that the GAPEIEx distribution provides a better fit to the COVID-19 mortality rates data set in the
United Kingdom (i.e., data set 2) than its submodels.
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FIGURE 8 The Fitted densities plot of Data Set 2.

6.3 Concluding Remarks in Relation to Data Application
1. In relation to the data sets in Tables 5 & 10, we can see that the GAPEIEx distribution provides the highest p-values,

lowest Goodness-of-fit, Negative log-likelihood, and Information Criteria compared to its submodels and some well-
known distributions.

2. When data set 1 is fitted into Figure 6 and data set 2 is fitted into Figure 8, the GAPEIEx distribution seems to outperform
its submodels.

3. The EIEx and the IEx distributions fit data set 1 poorly, as shown in Table 8, because their p-values are <5%.

4. From Table 13, the APEIEx, the EIEx, and the IEx distribution give a poor fitting as their p-values are <5% for data set 2..

5. Last but not least, it is clear from the data application that the GAPEIEx distribution outperformed its submodels.

7 CONCLUSIONS

The Inverse Exponential distribution has no shape parameter, and it’s exponentially bounded for not modeling data sets that are
characterized by either a bathtub or an inverted bathtub failure rate shape.
This study introduced the Generalized Alpha Power Exponentiated Inverse Exponential distribution, a four-parameter distribu-
tion with three shape parameters and one scale parameter. Several Statistical properties of the distribution (Survival, Hazard,
Quantile function, 𝑟𝑡ℎ moment, Rényi Entropy, and other statistics) are derived.
The estimates, the Average Bias, and the Root Mean Square Error of the parameters of the GAPEIEx distribution were com-
puted, and their performance was assessed through simulations, which clearly shows that the maximum likelihood method works
well in estimating the parameters (i.e., as the sample size (n) goes higher, the estimates go closer to their initial values).
The adaptability of the GAPEIEx distribution is assessed by comparing it to its submodels using two real data sets. At the end
of the application, we found out that the GAPEIEx distribution outperformed its submodels and other well-known distributions.
For further study, the scholar(s) may develop a more adaptable distribution by adding a shape parameter or using the Transmuted
method to the GAPEIEx distribution.
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