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Abstract: Effective target assignment plays a crucial role in maximizing the efficiency and success 

of cooperative air combat involving multiple UAVs in complex and dynamic environments. 

Accurate target threat assessment is essential for successful target assignment. This study proposes 

a threat assessment method that considers multiple threat factors of UAV targets and introduces an 

uncertain information representation technique using interval-valued intuitionistic fuzzy number. 

To achieve the fusion of multi-moment target information, weights are assigned to the time series 

using the normal distribution method. Furthermore, a weight optimization model is presented to 

integrate the threat factor weights obtained through the AHP method and the entropy method. For 

solving the multi-weapon multi-target assignment problem, a target assignment method based on 

the VNS-IBPSO algorithm is introduced. This method improves upon the limitations of the BPSO 

algorithm, such as limited local search capability and premature convergence, by combining 

variable neighborhood search (VNS) and an improved binary particle swarm optimization algorithm 

(IBPSO). The effectiveness of the proposed method is validated through simulation experiments, 

which demonstrate its ability to quickly and accurately complete target assignment tasks. This 

method provides an effective solution for the coordination task allocation of multi-UAV cooperative 

air combat.  
Key words: multi-weapon multi-target assignment, threat assessment, interval-valued intuitionistic 

fuzzy number, weight optimization model, VNS-IBPSO 

1 Introduction 

With the rapid development of artificial intelligence and UAV technology, multi-UAV 

cooperative air combat has gradually become an important development trend of future war. It can 

not only improve combat efficiency and reduce combat losses, but also reduce casualties, and has 

broad application prospects. Air combat decision making is the key for UAVs to win in air combat[1], 

and is a dynamic process that changes with the battlefield environment, requiring real-time 

adjustments to maximize the effectiveness of cooperative operations based on external interference 

and various internal uncertainties[2]. In this process, as the core components of the air combat 

decision system, target threat assessment and weapon target assignment are key technologies that 

affect the ultimate operational effectiveness. 

In a multi-UAV cooperative air combat scenario, target threat assessment refers to the 

evaluation of the combat power elements of both sides based on their situational information, and 

thus the overall battlefield posture. Accurate and reasonable target threat assessment results provide 

an important basis for subsequent operational decisions, such as weapon target assignment, 

cooperative maneuver decisions and equipment configuration. Several research methods have been 

used in the past to address this problem. For example, Hierarchical analysis method(AHP)[3, 4, 5], 

fuzzy sets theory[6, 7], TOPSIS method[8, 9] and multiple attribute decision making[10, 11] and so on. 

However, the above methods do not take into account the effects of changes in air combat situational 
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information. Therefore, some methods for processing situational information under dynamic 

conditions have been proposed. For instance, Feng et al.[12] proposed an improved generalized 

intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Wang et 

al.[13] used dynamic Bayesian network inference to estimate the target threat at different time slices. 

Zhang et al.[14] obtained time series weights by a Poisson distribution method based on multiple 

target posture data. However, these methods do not account for the uncertainty of air combat 

situational information. The complexity of target threat assessment is mainly reflected in two aspects. 

On the one hand, due to the need to use multi-sensors to detect the threat factor information of 

enemy UAVs, the information obtained by different sensors has errors due to their own performance 

limitations and external environmental influences, and it is difficult to use accurate values to 

represent. On the other hand, with the continuous improvement of the stealth performance of the 

UAV target, it is difficult for us to capture all the performance parameters of the enemy target[15]. 

As a result, the target situational information is time-varying, uncertain and incomplete, which is 

manifested as mixed situational information. How to reasonably characterize and process the mixed 

situational information in a dynamic and complex environment is the main content of this study. 

Weapon target assignment problem is a typical combinatorial optimization problem, and has 

been proved to be an NP-complete problem[16]. There are two main types of algorithms to solve this: 

exact solution algorithm and approximation solution algorithm. The accurate solution algorithms 

include branch and bound method[17, 18], Hungarian algorithm[19, 20, 21], auction algorithm[22] and so 

on. These algorithms can compute the exact optimal solution, have strong interpretability and are 

easy to implement. However, its limitation is that it is difficult to solve large-scale WTA problems. 

It is necessary to design corresponding accurate mathematical models according to specific 

problems, and the solving steps are cumbersome. The approximate solution algorithms include rule-

based heuristics[23], LaGrange relaxation methods[24], metaheuristics[25], and machine learning 

algorithms[26, 27, 28]. Among them, the heuristic intelligent optimization algorithm is most widely 

used to solve the WTA problem, a large number of research applications verify the good 

optimization effect of the heuristic algorithm in this problem. Including genetic algorithm(GA)[29], 

particle swarm optimization(PSO)[30], artificial bee colony algorithm(ABC)[31], ant colony 

optimization algorithm(ACO)[32], grey wolf optimization algorithm(GWO)[33] and hybrid intelligent 

search algorithm[34], etc. The advantage of this kind of algorithm is that the algorithm framework is 

easy to implement, can search the solution space in a wide range, and can solve large-scale problems. 

However, its limitation is that the algorithm takes a long time to solve, the performance is not stable 

enough, and it easily falls into a local optimum. 

Multi-UAV cooperative air combat is one of the typical operational forms of weapon target 

assignment problem applications, which belongs to the multi-weapon multi-target assignment 

problem and is a higher dimensional problem with more criterion. Zhen et al.[35] proposed an 

improved cooperative target assignment scheme based on a contract network protocol for target 

attack mission of heterogeneous UAV swarm. Xing et al.[36] proposed a self-organized offense–

defense confrontation decision-making algorithm for a dynamic swarm versus swarm UAV combat 

problem. Song et al.[37] established a realistic UAV-target assignment model and proposed a 

differential evolution algorithm. They also developed the corresponding gene coding method, which 

solved the two special situations of the UAV not performing the mission and the target not being 

attacked. Different UAVs can carry different weapons and have different attack capabilities. The 

focus of this study is on how to reasonably match and utilize different types of weapon resources to 

ensure maximum combat benefit at minimum cost, and how to quickly and accurately find the 

optimal allocation scheme through intelligent optimization algorithms. 



In this study, to solve the UAVs target threat assessment and multi-weapon multi-target 

assignment (MWMTA) problem for cooperative UAV operations in the context of over-the-horizon 

attack. In terms of threat assessment. A UAV target threat assessment model is constructed, 

representative threat factors are selected, and interval-valued intuitionistic fuzzy number 

characterization is used to address the uncertainty and incompleteness in the threat factor 

information; For the time-varying nature of the enemy posture, time series weights are generated 

based on the normal cumulative distribution to fuse multi-moment posture information. At the same 

time, an indicator weight optimization model integrating AHP method and entropy weight method 

is proposed, and the subjective and objective weight characteristics are comprehensively considered; 

An evaluation process based on dynamic interval-valued intuitionistic fuzzy multi-attribute decision 

is given, and the effectiveness and rationality of this method is verified by simulation. Regarding 

the MWMTA problem, the global utility function is calculated based on the threat posture indicator 

parameters of enemy UAVs relative to our UAVs and the destructive effectiveness of our UAV 

weapon resources on enemy UAVs. A MWMTA model is constructed based on the global utility 

function; The update strategy of BPSO is analyzed in depth, and the reason why BPSO has strong 

global exploration capability and lacks local exploration capability is found based on the formula 

derivation. By improving the update strategy of the BPSO and introducing the VNS operator, the 

search capability of BPSO is improved; Through simulation analysis and comparative experiments, 

it is proved that the VNS-IBPSO algorithm has good stability, rapidity and convergence, and can 

solve the multi-UAV cooperative air combat target assignment problem in complex dynamic 

environment quickly and accurately. 

The rest of this article is organized as follows. In the second section, the multi-UAV cooperative 

air combat target threat assessment and MWMTA problems are described and modeled, and the 

uncertain information representation method is introduced. In the third section, a time-series 

weighting model and a threat indicator weighting optimization model are proposed, and a specific 

threat assessment process is given. In the fourth section, an innovative VNS-IBPSO algorithm is 

proposed. In the fifth section, simulations are performed to verify the effectiveness of our proposed 

algorithm. Finally, conclusions are given in the sixth section. 

2 Problem description and modeling 

A brief description of a multi-UAV coordinated air combat scenario is given. To simplify the 

problem, it is reasonable to assume that enemy target situational information has been obtained 

through the search phase. Assume that the number of our UAVs is m and number of enemy UAVs 

is n. The total number of weapon resources carried by all UAVs is q and weapon resources carried 

by each UAV is  , 1,2,...,iq i m  . Our UAVs continuously obtain K time slices of situational 

information, time set is noted as  1 2, , , kt t t t= .Considering the threat factors of the enemy target 

and establishing threat assessment model. Through the proposed threat assessment method, the 

dynamic threat assessment of the enemy UAV target is carried out. After obtaining the 

comprehensive threat assessment value, the next weapon target allocation can be carried out. A list 

of key symbols used hereafter is provided in Table 1. 

Table 1. Symbol Definitions 

Symbol Definitions 

m  The number of our UAVs 
n  The number of enemy UAVs 

q  The number of our weapons 

s  The number of threat evaluation factors 



iq  The number of weapons carried by each UAV 

jq  The number of weapons assigned to each UAV 

kt  Moment 
kt  

q nU   Weapon target assignment matrix 

q nQ   Target damage probability matrix 

q nV   The comprehensive threat assessment matrix of enemy UAVs to our UAVs 

k

i

tR  Target situational information matrix obtained by 
thi  UAV in moment 

kt  

kjp  The damage probability of our 
thk  weapon to the thj enemy target 

ijS  The threat assessment value of the thj  enemy UAV to our 
thi  UAV 

jlo  The 
thl  threat factor value of the thj  enemy UAV 

Based on the above parameter information, the UAV cooperative air combat decision making 

flow is shown in Figure 1. Among them, the following key issues need to be addressed. 

 

Figure 1 Multi-UAV cooperative air combat decision making flow 

2.1 Selection of threat assessment factor for UAV targets 



When conducting target threat assessment, the selection of threat assessment factor from target 

situational information should be considered first. Generally, it includes static threat assessment 

factor and dynamic threat assessment factor. Among them, the static threat assessment factor reflects 

the static attributes of the enemy UAV, such as target maneuverability, electronic countermeasure 

capability, combat radius, etc. which is generally a fixed value. The dynamic threat assessment 

factor mainly refers to the target motion situation information, which reflects the relative motion 

state of the enemy and our UAV, such as relative angle, speed, height, distance and so on. According 

to the actual characteristics of UAV cooperative air combat, the threat assessment factors are 

selected as follows. 

1. Speed threat factor 

The radial velocity of the enemy UAV target is selected as the Speed threat factor, and the near 

direction is positive and the far direction is negative. The faster the radial velocity of the UAV is, 

the stronger the maneuverability is, and the greater the offensive advantage is. At the same time, the 

faster the speed can make the UAV get rid of the target or complete the pursuit of the target. It 

belongs to benefit-oriented factor. 

2. Height threat factor 

The target height refers to the vertical nearest distance between the target height plane of the 

enemy UAV and our UAV. The UAV at a higher altitude will occupy a more favorable attack position, 

and the corresponding weapon load can also obtain higher kinetic energy through the conversion of 

potential energy. Therefore, the higher target, the greater threat to us. It belongs to benefit-oriented 

factor. 

3. Distance threat factor 

The target distance refers to the projection distance on the horizontal plane of the connection 

between the both sides. Usually, the closer the enemy UAV's target distance is, the more obvious 

the attack intention to us, the shorter defense time is, and the greater threat to us is. It belongs to 

cost-oriented factor. 

4. Angle threat factor 

The target angle threat can be described by the target entry angle. The target entry angle refers 

to the angle between the connecting line between the target and our UAV and target UAV speed 

direction. The smaller the entry angle is, the more obvious the target attack intention is and the 

greater the threat to us. It belongs to cost-oriented factor. 

5. RCS threat factor  

The enemy 's stealth performance is directly related to whether it is detected by airborne sensors. 

The smaller the radar cross section (RCS), the better the enemy 's stealth performance, the smaller 

the probability of being detected by airborne radar, and the greater the threat to us. It belongs to 

cost-oriented factor. 

6. Type threat factor 

The threat degree of different UAV types is different. In this study, the UAV targets types are 

considered according to the combat function, which can be divided into four categories: attack UAV, 

interference UAV, scout UAV and bait UAV.  

2.2 Description of mixed situational information in treat assessment. 

In a complex dynamic environment, due to the difficulty of data collection, the diversity of 

target behaviors, and the conflict of intelligence information, the target situational information is 

uncertain and incomplete. The use of fixed numerical forms to describe such uncertain information 



in threat assessment may lead to inaccurate, oversimplified and misleading assessment results, 

which may affect the effectiveness of subsequent decision-making. Therefore, use interval-valued 

number, intuitionistic fuzzy number, exact number, categorical variables and other data forms to 

generate mixed situational information, so as to characterize the uncertainty and incompleteness of 

target situational information. Target situational information matrix obtained by thi  UAV in 

moment kt  is 
k

i

t jl n s
R o


 =   ,    1,2, , , 1,2, ,j n l s  . The thl  threat factor value of the thj  

enemy UAV is jlo ,the representation of jlo  are as follows:  

1. Interval number representation 

Considering the detection error of the airborne sensor, the error is set to be  .Then it can be 

expressed by interval number: ,jl jl jl      , the upper limit of it is jl jlo = −  , the lower limit 

of it is jl jlo = +  . jlo  is the initial attribute value detected by the airborne sensor. 

2. Intuitionistic fuzzy number representation 

Considering that there are omissions or intelligence conflicts in the collection process of target 

situational information. Then it can be expressed by intuitionistic fuzzy number: , ,jl jl jl jl   =  

with jl   is membership degree and jl   is non-membership degree, 1jl jl jl  = − −   is the 

hesitancy degree. They calculated as follows: 

If it belongs to benefit-oriented factor: 
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If it belongs to cost-oriented factor: 
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(2) 

3. Classification variable representation 

When the threat factor value is a categorical variable, it is usually described by linguistic 

variables such as ' very high ', ' high ', ' general ', and ' low ' based on domain knowledge. It needs 

to be transformed into the corresponding intuitionistic fuzzy number. The threat factor values 

corresponding to different types of UAV targets are shown in Table 2.  

Table 2 The threat factor quantification value corresponding to different types of UAV 

Target type linguistic variables  intuitionistic fuzzy number 

Attack UAV very high (0.90.0.05) 

Interference UAV high (0.75,0.10) 

Scout UAV general (0.50,0.25) 

Bait UAV low (0.25,0.20) 

4. Interval-valued intuitionistic fuzzy number representation 

Interval-valued number can be regarded as a special fuzzy number. In order to facilitate the 

subsequent calculation, when threat factor values are described as intuitionistic fuzzy number, it can 

be transformed into interval-valued intuitionistic fuzzy number: ,1k k k

jl jl

t t t

jl   = −
  . 

Based on the above processing, the uncertain target situational information in complex 

dynamic environment can be reasonably represented for subsequent target dynamic threat 

assessment. The specific threat assessment model and procedure are described in Section 3. 

2.3 Construction of multi-weapon and multi-target allocation model 



In this work, we assumed that all missions that were assigned would be finished simultaneously. 

This assumption could be divided into several assumptions, which are listed below. 

Assumption 1: Assume that there is no time consumption for a UAV when conducting 

assignment. It means that every UAV could start and finish assignment simultaneously. 

Assumption 2: Assume that the MWMTA problem would only be solved once and all assign 

operations would be started right after the allocation solved. 

Assumption 3: Each UAV can use any number of weapon resource it carries to attack a target. 

Every weapon must be assigned to targets and each weapon can only attack one target. 

Assumption 4: The damage probability between the thk  missile to the thj  target is already 

known and is labeled as kjp  . The threat value of the thj   target against our thi   UAV is also 

calculated beforehand through the threat assessment. 

Denote kjx  as the decision variable of the thk  weapon assigned to the thj  target. When 

1kjx =  , represent the thk   weapon assigned to the thj   target. When 0kjx =  , then means no 

assign. Based on the principle of the minimum threat of enemy UAVs to our UAVs and the 

maximum operational efficiency of weapon resources, the global utility function is established: 
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( )

1 1 1

1 1

min 1

max 1 1
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(3) 

Where F  denotes the minimum threat value of enemy residual targets, and E  denotes the 

destruction of enemy UAV target with the greatest probability. 

The constraint condition is 
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 (4) 

Where, constraint 1 denotes that a weapon can only be assigned to a UAV target individually. 

Constraint 2 denotes that up to jq  weapons can be assigned to attack thj  target. Constrains 3 

indicates that the max number of weapons can be used is q .  

The multi-objective optimization problem is simplified into a single-objective optimization 

problem by linear weighting method. The penalty function method is used to deal with the 

constraints. Therefore, the improved objective function model is 
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Where M  is a penalty factor of the penalty function, it is mainly used to punish the error that one 

weapon resource attacks more than one target at the same time in the solution space.  

3 Interval-valued intuitionistic fuzzy Multi-Attribute Decision Making-based 

dynamic threat assessment  

3.1 Timing weighting model 



The situation information of air combat will change dynamically with time. The result of threat 

assessment is most affected by the situation information of air combat at the current moment. The 

closer the situation data is to the current moment, the more important it is. However, only relying 

on the data at the current moment for assessment and ignoring the implicit influence of historical 

information will lead to the narrow limitation of the assessment results, and the degree of rationality 

will be greatly reduced. Therefore, it is necessary to deeply analyze the relationship between air 

combat situation and threat assessment at multiple consecutive moments. A time series weight 

calculation model based on normal cumulative distribution is established, and the cumulative 

distribution function algorithm of normal distribution is used to analyze the time weight sequence. 

The normal cumulative distribution function as  
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The special function based on the error function is expressed as 
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Where K  is the number of continuous moments. k  denotes the mean value of the set K  and 

K  denotes the std value of the set K  , they refer to 
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Based on the cumulative distribution function of normal distribution, the weight of time series is 

calculated. 
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(10) 

Where, ( )kt  is the weight of kt . 

3.2 Threat factor weight optimization model  

The AHP method based on subjective expert experience and the entropy method based on 

objective data characteristics，they reflect the weight of target threat attributes from different aspects. 

Therefore, we expect to find an optimal threat factor weighting method to combine the above two 

weighting methods. Assume that the weight obtained by AHP is 
1 2

ˆ ˆ ˆ ˆ ˆ, ,..., ,...
T

l sw w w w w =    , 

 1,2,...,l s  .The weight obtained by entropy method is 
1 2, ,..., ,...,

T

l sw w w w w =    , 

 1,2,...,l s .The objective function of threat factor weight optimization model is  
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The constraint condition is 
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Where   is the preference coefficient, when the expert experience is more accurate and reliable, 

take a larger value, otherwise take a smaller value. In this article, take 0.5 = . 

3.3 Procedure of the dynamic threat assessment 

In summary, the decision-making process of threat assessment based on dynamic intuitionistic 

fuzzy multi-attribute decision making is shown in Figure 2.  

 

Figure 2 Flow of dynamic threat assessment 

The specific steps are as follows: 

Step 1: Based on the mixed situational information processing method in Section 2.2, the threat 

assessment model is constructed, and the decision matrix of target situational information at the 

moment is established as k

k jl

t

t
n s

R o


 =
  .  

Step 2: According to equation (6) to equation (10), combined with the time series weight model, 

the multi-time weighted dynamic decision matrix is constructed by integrating the multi-time target 

situational information. 
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Step 3: Since the entropy method needs accurate value to calculate the objective weight, the 

continuous ordered weighted average operator method is used to transform the interval-valued 

intuitionistic fuzzy number to accurate value according to follow equations 

 ( )
( )

1

0
1 1jl jl jl jl

d y
h v y v dy

dy


 = − − − −

   (14) 

Where ( )y  is a monotone increasing function in  0,1 . Generally, ( ) , 0ty y t =  . So as to  

 1

1
k

jl jlt

jl

v t
h

t

− + 
=

+
 (15) 

Where t  is inversely proportional to the degree of risk aversion of decision makers. 

Step 4: Calculate the weight of threat factors based on AHP method as 
1 2

ˆ ˆ ˆ ˆ, ,...,
T

sw w w w =   . 

Calculate the weight of threat factors based on entropy method as 
1 2, ,..., k

T
t

sw w w w =   . 

Step 5: According to equation (11) to equation (12), calculate the optimal weight of threat 

factors based on threat factor weight optimization model as 
1 2, ,...,

T

sW w w w =   . 

Step 6: Calculate the threat assessment value of the enemy UAVs to our thi  UAV according 

to follow equation 
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 (16) 



Step 7: The above threat assessment process is carried out for all UAVs, and the comprehensive 

threat assessment matrix of the enemy UAVs to our UAVs can be obtained. 
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Where ijS  denotes the threat assessment value of the thj  enemy UAV to thi  our UAV. 

4.VNS-BPSO algorithm for MWMTA problem 

The MWMTA problem is a typical nonlinear combinatorial optimization problem. With the 

increase of the types and quantities of weapons and targets, the number of solutions will increase 

exponentially. The intelligent optimization algorithm can find the optimal solution quickly and 

accurately for the case of large scale and complex constraints. In this section, VBS-IBPSO 

optimization algorithm is proposed to realize coordinated target assignment under Complex 

dynamic environment. 

4.1 Concept of BPSO 

Binary Particle Swarm Optimization (BPSO) is proposed by J．Kennedy and R.C. Eberhart in 

the year of 1997, make the PSO algorithm can solve the discrete combinatorial optimization 

problem[38].  

Using the q n  variables in the weapon target assignment matrix as the solution space, the 

dimension of it is d , d q n=  . Denote idX  as one origin solution with the initial velocity idV , 

idX  is binary encoded, as shown in figure 3. 

 
Figure 3 binary codes of 

idX  

The update rule for the thi  particle is expressed as follows: 

 ( ) ( )1 1 2 2id id id id id idV V rand pbest X rand gbest X = +   − +   −  (18) 

 ( ) ( )
1

1 exp( )id idS V V
−

= + −  (19) 

 ( )

( )

1

0

id

id

id

rand S V
X

rand S V

 
= 


 (20) 

Where idpbest  denotes individual optimal particle position, idgbest  denotes global optimal 

particle position. 1  and 2  are the coefficient of particle learning from idpbest  and idgbest . S  

is the sigmoid function [39] and rand  is a random number between 0 to 1. 

The rule in equation (19) to (20) transform the summation relationship between velocity and 

position into a mapping relationship. This means the greater the speed, the higher the probability of 

the position to take 1. 

4.2 The improved BPSO 

In the BPSO algorithm, each iteration of the particle is mainly to change its binary sequence. 

The concept of probability of the bit changing is proposed in Ref. [38], assume that a bit of binary 

codes is 0, then the probability it changes into 1 is ( )idS V . Identically, if it is 1 originally then the 

probability it changes into 0 is ( )1 idS V− . The probability of the bit changing is: 



 ( ) ( ) ( )( )p 1id idS V S V = −  (21) 

Substitute equation (19) into equation (21): 

 
( )

2

1 1
p

1 exp( ) 1 exp( )id idV V

 
 = −  

+ − + − 
 (22) 

According to equation (21), the correlation between the particle speed idV  and ( )p   is shown 

as Figure 4. 

It can be seen from the figure that when the idV  is 0, the bit change rate is the largest, and the 

maximum value is 0.25. In the BPSO algorithm, the update of particles is related to the individual 

optimal position and the global optimal position. When the particle velocity approaches 0, the 

probability of bit changing is 0.25, it means when the particle reaches the optimal point, it still has 

25% probability of jumping. Therefore, although the BPSO algorithm has a strong global search 

ability, it cannot converge to the global optimal position, the randomness of the BPSO becomes 

stronger with the iteration of the algorithm and the local search ability becomes weaker with the 

iteration. 

Considering the intrinsic logical relationship of the update rules in the PSO algorithm and 

drawing on the probability-based mapping rules in BPSO. Here we propose an improved BPSO 

update strategy: 
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Where the Trans  function is as follows:  
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1 0

( ) 0 0

id id

id id id
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if rand S V V

Trans V if rand S V V

X if rand S V

 


=  
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＆

＆  (24) 

The difference between IBPSO and BPSO is the modification of function Trans  and ( )idS V . 

The correlation between the particle speed idV  and ( )p   after the change of function is shown 

as Figure 5. The probability of bit changing tend to 0 when the particle velocity tends to 0. Moreover, 

when the particle velocity is positive, the binary bit value can only be changed to 1. Otherwise, the 

binary bit value can only be changed to 0. This method makes it easier for the particle swarm to 

approach the global optimal particle, and improves the local search ability of the BPSO algorithm. 

  
Figure 4 Bit change rate of BPSO Figure 5 Bit change rate of IBPSO 

4.3 Variable Neighborhood Search Operator  



The basic principle of the variable neighborhood search algorithm (VNS) is to obtain a wider 

search range by changing the neighborhood structure of multiple historical solutions within a local 

range[40]. That is, in the case of the same initial solution, the algorithm can expand a wider search 

space and has a more superior ability to jump out of the ' premature trap '. Therefore, On the basis 

of IBPSO, the variable neighborhood search operator is introduced to further improve its local 

search ability. The specific flow is shown in Figure 6. 

 

Figure 6 Flow of the variable neighborhood search 

The core of VNS is the design of neighborhood search operation. In this section, three different 

neighborhood operations are designed for MWMTA, as follows: 

1. Swap operation 

Suppose that in the MWMTA problem, the individual optimal solution of the current particle 

has been found by the IBPSO algorithm, and the values of the first and second positions in the 

solution space are swapped by the swap operation to obtain its neighborhood solution by arbitrarily 

choosing two positions in the solution space. The specific operation is shown in the Figure 7. 

2. Reverse operation 

Suppose the current particle individual optimal solution has been obtained, arbitrarily choose 

two positions in the solution space and, reverse all values between the first position and the first 

position by the reversal operation to reverse the ordering. The specific operation is shown in the 

Figure 8. 

3. Insert operation 

If the value of the former is smaller than the latter, the value of the former is inserted after the 

latter. Conversely, the value at the latter position is inserted after the former to obtain its 

neighborhood solution. The specific operation is shown in the Figure 9. 



 
Figure 7 Swap operation 

 
Figure 8 Reverse operation 

 
Figure 9 Insert operation 

4.4 Implementation of VNS-IBPSO 

The pseudocode of VBS-IBPSO is shown in the Table 3. The hyperparameters that need to be 

set in advance include particle swarms, popsize , maximum number of IBPSO iterations, maxiter , 

learning coefficient factors 1  and 2 . maximum number of VND iterations maxk . 

Table 3 The pseudocode of VBS-IBPSO 

Procedure VNS-IBPSO 

Initialize the hyperparameters 

For each particle i  

  Generate the position 
idX  and velocity 

idV  

  Calculate its fitness 

  Set 
id idpbest X=  

End for 

  ( )arg maxid id
i

gbest Fit X=  

While iter Maxiter  

  For  i = 1 to popsize  

  Update the velocity and position of particle i  

  Perform constraint processing on particles that do not satisfy the constraint 

  Calculate its new fitness 

  The new particle is 
idX   

If ( ) ( )id idFit X Fit pbest   

  
id idpbest X =  



If ( ) ( )id idFit X Fit gbest   

  
id idgbest X =  

  For 1k =  to 
maxk  

  Perform VNS operator on 
idpbest  to get the local optimal value 

  The new particle is 
idX   

  If ( ) ( )id idFit X Fit pbest   

    
id idpbest X =  

  If ( ) ( )id idFit X Fit gbest   

    
id idgbest X =  

1iter iter= +  

End while 

Record and print process data 

End procedure 

The function Fit  is the fitness function according to equation (3). The main steps of IBPSO 

are explained as follows: 

Step 1: Initialize the particle swarms including its population, maximum number of iterations, 

speed range of particle，and learning coefficient. Then calculate the fitness value of each particle 

and record idpbest  and idgbest . 

Step 2: Update the particle swarms according to equation (23) and equation (24). Perform 

constraint processing on particles that do not satisfy the constraint and calculate the fitness value of 

new particle. 

Step 3: Compare the updated fitness value of the particle with the historical optimal fitness 

value of idpbest . If the former is better than the latter, update the idpbest  and further compare its 

value with the value of idgbest . After comparison, determine whether the current particle has fully 

updated; if the update is complete, go to step 4, otherwise update the next particle. 

Step 4: Denote 1k = ， Perform VNS operation on idpbest  and obtain the neighborhood 

solution idX  . Perform constraint processing on it and calculate updated fitness value. 

Step5：Compare the updated fitness value of the particle with the historical optimal fitness 

value of idpbest . If the former is better than the latter, update the idpbest  and further compare its 

value with the value of idgbest . After comparison, determine whether the current particle has fully 

updated; if the update is complete, then continue to search within the local search range of the next 

neighborhood solution until maxk k= . 

Step 6: If the number of iterations reaches its maximum value, then return idgbest  and exit 

the algorithm. Otherwise, the iterative process of updating in the next round is started again from 

the first particle. 

5 Simulation results and analysis 

5.1 Simulation of target threat assessment 

Assume that after the target search and tracking identification phase, it is known that the enemy 

UAV cluster consists of 6 UAVs, marked as  1 2 3 4 5 6, , , , ,T T T T T T T= . Our side is composed of 4 

UAVs, marked as  1 2 3 4, , ,T =     .Take 1  as an example, the target situational information 

of 1t ， 2t ， 3t   moments are obtained as multi-attribute decision information for target threat 

assessment. Based on the interval-valued intuitionistic fuzzy number for its representation, as shown 

in the Table 4 to Table 5.  

Table 4 target situation index at 
1t  



Target 
Evaluation Indicators 

Speed/(m·s-1) 
Height
/(m) 

Distance/  

(m) 
Entry  

Angle/(◦ ) RCS/(m2 ) Type 

1 [0.38,0.41] 350 3320 [0.43,0.64] 0.16 [0.90,0.95] 

2 [0.39,0.42] 344 1720 [0.37.0.58] 0.15 [0.90,0.95] 

3 [0.38,0.43] 310 2955 [0.27,0.50] 0.13 [0.90,0.95] 

4 [0.38,0.43] 400 3600 [0.16,0.36] 0.02 [0.25,0.8] 

5 [0.39,0.43] 305 3200 [0.32,0.70] 0.05 [0.5,0.75] 

6 [0.39,0.43] 440 4800 [0.16,0.64] 0.07 [0.75,0.90] 

Table 5 target situation index at 
2t  

Target 
Evaluation Indicators 

Speed/(m·s-1) 
Height
/(m) 

Distance/  

(m) 
Entry  

Angle/(◦ ) RCS/(m2 ) Type 

1 [0.38,0.41 362 3270 [0.43,0.64] 0.16 [0.90,0.95] 

2 [0.39,0.42] 355 1805 [0.36.0.57] 0.15 [0.90,0.95] 

3 [0.38,0.43] 330 3005 [0.27,0.50] 0.13 [0.90,0.95] 

4 [0.38,0.43] 405 3705 [0.16,0.36] 0.02 [0.25,0.8] 

5 [0.39,0.43] 295 3200 [0.32,0.70] 0.05 [0.5,0.75] 

6 [0.39,0.43] 420 4800 [0.17,0.63] 0.07 [0.75,0.90] 

Table 6 target situation index at 
3t  

Target 
Evaluation Indicators 

Speed/(m·s-1) 
Height
/(m) 

Distance/  

(m) 
Entry  

Angle/(◦ ) RCS/(m2 ) Type 

1 [0.39,0.42] 345 3100 [0.43,0.64] 0.16 [0.90,0.95] 

2 [0.39,0.42] 350 2000 [0.37.0.58] 0.15 [0.90,0.95] 

3 [0.38,0.43] 320 3200 [0.27,0.50] 0.13 [0.90,0.95] 

4 [0.36,0.45] 415 3840 [0.15,0.37] 0.04 [0.25,0.8] 

5 [0.39,0.43] 305 3210 [0.32,0.70] 0.08 [0.5,0.75] 

6 [0.37,0.45] 435 4500 [0.16,0.64] 0.05 [0.75,0.90] 

According to equation (6) to equation (10), he time series weights are calculated:  

( )1 0.070t = , ( )2 0.333t = , ( )3 0.597t =  

According to equation (11) to equation (12), the optimal threat factor weights are obtained: 

 0.174 0.033 0.126 0.326 0.208 0.133
T

W =  

According to equation (15), multi-Moment Weighted Dynamic Decision Matrix are determined: 

1

0.183 0.167 0.165 0.209 0.286 0.195

0.187 0.164 0.091 0.185 0.232 0.195

0.125 0.152 0.152 0.150 0.232 0.195

0.125 0.187 0.187 0.101 0.036 0.110

0.190 0.136 0.162 0.199 0.089 0.132

0.190 0.194 0.243 0.156 0.125 0.173

R

 
 
 
 
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 


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



 

According to equation (16), the combined threat value of enemy UAVs to 
1  is determined as  

 1 0.488 0.426 0.400 0.278 0.342 0.414V =  

The above threat assessment process is carried out for each of our UAVs, the comprehensive 

threat assessment value of enemy UAVs to our UAVs is obtained. The specific values are shown in 

Table 6. 

5.2 Simulation of MWMTA 

After completing the threat assessment of the enemy UAV targets, the multi-weapon multi-

target assignment phase is entered. Assume that each UAV carries 2 weapons and the number of 



weapon resources to attack the same target is at most 2. Using the VNS-IBPSO algorithm to solve 

the MWMTA problem, the number of initial particle swarms is set to 500, the initial times are set to 

200, learning coefficients are set to 0.8 and 0.9, the number of VNS operations is set to 30. The 

target threat of 6 enemy UAVs to our 4 UAVs and the damage probability of our 8 weapons to 6 

enemy UAVs are given in Tables 7 and Table 8. 

Table 7 The comprehensive threat assessment matrix of enemy UAVs to our UAVs 

Targets 
Target threat 

1 2 3 4 5 6 

1 0.488 0.426 0.400 0.278 0.342 0.414 

2 0.254 0.203 0.252 0.601 0.275 0.482 

3 0.195 0.341 0.235 0.371 0.164 0.335 

4 0.614 0.109 0.631 0.484 0.292 0.195 

Table 8 The damage probability of our weapons to the enemy UAVs 

Weapons 
Hit rate 

1 2 3 4 5 6 

1 0.29 0.92 0.23 0.89 0.14 0.72 

2 0.49 0.82 0.41 0.10 0.51 0.37 

3 0.33 0.46 0.39 0.90 0.43 0.30 

4 0.12 0.38 0.52 0.26 0.71 0.41 

5 0.22 0.15 0.44 0.29 0.21 0.13 

6 0.61 0.95 0.76 0.32 0.24 0.19 

7 0.44 0.56 0.16 0.22 0.88 0.17 

8 0.81 0.42 0.35 0.43 0.77 0.90 

To verify the rationality of the algorithm, the VNS-IBPSO was compared with the origin BPSO, 

the improved BPSO, hybrid genetic algorithm[34], the curve of the optimal fitness value, the 

expected value of operational effectiveness and the expected value of residual target threat are given 

in Figure 10 to 12. 

 

Figure 10 The expected value of the optimal fitness 



 

Figure 11 The expected value of operational effectiveness 

 

Figure 12 The expected value of residual target threat 

In our experiment, the expected value of operational effectiveness is required to be as large as 

possible and the expected value of residual target threat is required to be as small as possible. It can 

be seen that the VNS-IBPSO algorithm is the first to reach convergence among the four algorithms 

and achieves optimal results on both fronts. After the 11th iterations, the VNS-IBPSO algorithm 

calculates the optimal fitness value is 1.6186, the optimal value of the residual target threat 

expectation is 1.2306 and the optimal value of operational effectiveness expectation is 5.1104. The 

weapon target assignment matrix obtained from the solution is:  

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

q nU 

 
 
 
 
 
 =
 
 
 
 
 
  

 

It can be seen that the weapon target assignment scheme is as follows: weapon 8 attacks 

target 1, weapon 2 attacks target 2, weapon 5 and 6 attack target 3, weapon 3 attacks target 4, 

weapon 7 attacks target 5, and weapon 1 and 4 attack target 6. 

5.3 Comparative analysis 



For further analysis, 100 Monte Carlo simulation experiments were conducted for each of the 

four algorithms to solve this MWMTA problem. The variation curves of the optimal fitness values 

and the statistical analysis of the algorithm performance are obtained, as shown in Figure 13 to 

Figure 14 and Table 9. 

  

Figure 13 BPSO algorithm results Figure 14 IBPSO algorithm results 

  

Figure 15 Hybrid GA algorithm results Figure 16 VNS-IBPSO algorithm results 

Table 9 Algorithm performance statistics analysis 

Algorithm The best value The worst value Average Variance Average convergence time /s 

BPSO 2.5598 3.6563 3.0625 0.0659 5.52 

IBPSO 1.6186 2.6649 1.8025 0.0363 6.86 

Hybrid-GA 1.6186 1.9763 1.6717 0.0047 4.66 

VNS-IBPSO 1.6186 1.6361 1.6251 0.0001 4.08 

The performance comparison of the four algorithms for 100 simulations is as follows: 

(1) In terms of the solution quality of the algorithms, it can be seen that the optimal fitness 

values obtained by VNS-IBPSO for solving the MWMTA problem are the same as those obtained 

by Hybrid-GA and IBPSO algorithms, which also indicates the validity of the solution results. The 

difference is that the mean and variance of the VNS-IBSO solution results are much smaller than 

those of the other three algorithms, indicating that the solution obtained by using VNS-IBPSO is 

the most stable. 

(2) In terms of the convergence rate of the algorithm, it can be seen from Figure 13 to 16 and 

Table 8 that the convergence rate of the VNS-IBPSO algorithm is significantly better than the other 

three algorithms, which is because the VNS-IBPSO algorithm takes into account the balance of 

global search and local search ability during each round of iteration, which effectively suppresses 

the occurrence of immature convergence and improves the solution effectiveness of the algorithm. 



(3) In terms of the time performance of the algorithm, it can be seen that VNS-IBPSO is able 

to find the optimal feasible solution in the shortest time when solving the same problem because the 

solution quality and convergence rate of VNS-IBPSO are better than the other three algorithms. 

The simulations are implemented in a MATLAB environment, and the main configuration of 

the computer is Win 10, Intel Core i9-11900H, 2.50GHz CPU and 16 GB RAM.  

6 Conclusion 

In the context of multi-UAVs cooperative air combat, this study investigates the problem of 

target threat assessment and MWMTA in a complex dynamic environment. In target threat 

assessment, a representation method based on interval-valued intuitionistic fuzzy number is 

proposed for the uncertainty and incompleteness of target situational information. A time-series 

weight generation model is proposed to solve the problem of dynamically matching attribute 

parameters and weights for multi-moment information fusion. Furthermore, an optimal weighting 

method is proposed. This method organically integrates the weights obtained by the AHP method 

and the entropy method. In the MWMTA problem, the global utility function is constructed by 

minimization of the threat to our UAVs and maximization of the operational effectiveness of our 

weapons, a target assignment model is established. Then, a VNS-IBPSO algorithm is proposed that 

combines an improved BPSO update strategy and a VNS operator. This algorithm overcomes the 

shortcomings of the original BPSO algorithm in terms of poor local search capability and a tendency 

to premature convergence. Finally, a complete execution process for target threat assessment and 

target assignment is given. The experimental results justify the decision scheme. 
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