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Abstract

This paper proposes an approach to evaluate the loading limits of distribution networks due to increasing EV connections. It

focuses on two parameters: after-diversity maximum demand (ADMD) and maximum daily energy demand (MDED). Using

actual EV charging data from the UK, Monte Carlo simulations generate daily charging profiles, identifying ADMD, MDED,

and seasonal variations. ADMD, MDED, and per-hour maximum EV charging demands are combined with UK residential load

profiles before EV connection. Their maximum demands are assessed against thermal rating limits, establishing the network’s

hosting capacity (HC) for uncontrolled EV charging. To determine the maximum safe number of connected EVs, different

scheduling methods for controlled EV charging are compared, considering per-hour maximum demand values, thermal limits,

and MDED. This defines the network’s HC for fully controlled EV charging. The approach is demonstrated on the IEEE

33-bus test network. Pre-EV residential demands are obtained from a UK MV substation, and ambient data is collected from

a UK Met Office weather station. Results provide a range of network HC values for uncontrolled and controlled EV charging,

representing lower and upper limits. These limits correlate with firm and non-firm network HC concepts and guide optimal

network upgrades for exceeding these limits.
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Abstract: The ongoing electrification of road transportation sector, which is expected to continue to strongly increase over the 
next years, will result in the connection of a significant number of electric vehicle (EV) chargers in LV and MV distribution 
networks, particularly in residential applications with on-board (“slow”) EV chargers. In order to evaluate loading limits of 
existing distribution networks for the maximum number of EV chargers that can be safely connected (commonly denoted as a 
network EV “hosting capacity”, HC), this paper introduces a general approach to determine one commonly used network design 
parameter (after-diversity maximum demand, ADMD) and one new parameter (maximum daily energy demand, MDED), which 
are both obtained from the load profiles of maximum per-hour demands for uncontrolled residential EV charging. The presented 
approach uses actual EV charging data from the UK as the inputs in Monte Carlo simulations to generate daily EV charging 
profiles for arbitrary numbers of EVs, enabling to identify related ADMD, MDED and per-hour maximum demand values, as well 
as their seasonal variations. The assessed ADMD, MDED and hourly maximum EV charging demands for uncontrolled EV charging 
are then combined with available UK residential daily load profiles before the EVs are connected (“pre-EV demands”), where 
their combined coincidental and noncoincidental maximum demands are evaluated against the static thermal rating (STR) and 
dynamic thermal rating (DTR) loading limits of network components (transformers and overhead lines), taking into account 
relevant weather/ambient conditions. This is denoted as a network HC for uncontrolled EV charging. Finally, evaluating the 
resulting per-hour maximum demand values against the STR and DTR loading limits and MDED values, allows to select one 
particular scheduling method for controlled EV charging, which gives the absolute maximum number of EVs that can be safely 
connected in the considered network, i.e., network HC for fully controlled EV charging. The presented approach is illustrated on 
the example of the IEEE 33-bus test network (modelled using typical UK network components), for the pre-EV residential 
demands taken from the recordings at an UK MV substation, and for ambient data taken from an UK Met Office weather station. 
Obtained results allow to evaluate the range of network EV HC values for uncontrolled and controlled EV charging, i.e., lower 
and upper HC limits, which can be correlated with the commonly used allocations of the firm and non-firm network HC, 
respectively. 
 

1.   Introduction and Brief Literature Review 

The strong and widespread uptake of electric vehicles (EVs) 
will result in a substantial increase of demands in distribution 
networks (DNs), particularly in residential applications with 
on-board (“slow”) EV chargers. This new demand from EVs 
is in previous work approached as a significant challenge and 
as an opportunity for realising various demand management 
and balancing services [1–3]. The main concern is related to 
uncontrolled charging of a large number of EVs, which is 
generally assumed to coincide with the peak demand of the 
existing pre-EV loads, therefore likely resulting in network 
overloading. The term EV hosting capacity (HC) is often used 
to denote the maximum number of EVs that can be 
accommodated in a given DN [4]–[6], where impact of EVs 
on the DN is typically determined through the analysis of the 
resulting load profiles, i.e., combined demand of existing pre-
EV loads and EV charging load associated with uncontrolled, 
or in some way controlled charging of EVs [5], [7–10]. 

One commonly used network design parameter for 
assessing the maximum coincidental demand of multiple 
instances of the same/similar type of the loads is after 
diversity maximum demand (ADMD), also known as demand 
factor [11-12]. In case of EVs, the ADMD of EV charging 

loads is their coincidental maximum demand over a given 
period, taking into account diversity of EV demands and 
reflecting the fact that not all EVs will charge simultaneously. 

While there is a large number of studies investigating 
impact of EV charging on DNs, only a few of these performed 
the analysis of EV ADMD values. The previous related work 
often focused only on the mean/average ADMD values, 
without evaluating the full ADMD ranges [13-14], what may 
result in an overestimation of the network EV HC, especially 
considering the likelihood of the higher EV demands than the 
mean ADMD values. 

Research in [15] has quantified the ADMD of EVs in DN 
with multiple charging points, showing that ADMD allows 
for a realistic estimation of EV demands and helps to prevent 
oversizing of network components. However, a typical 
convergence of the ADMD values, i.e., the asymptotic 
ADMD result, which is expected for a sufficiently high 
number of EVs, was not demonstrated. Work in [16] 
considered the ADMD as a coincidence factor for EVs, using 
number of EVs and their charging power and charging energy 
as variables, indicating that ADMD strongly depends on the 
number of EVs, with lower dependency on EV battery 
capacity. However, temporal variations of ADMD and their 
impact on the network were not investigated in more detail. 
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This paper introduces a general approach to determine the 
ADMD of an arbitrary number of EV charging loads, which 
is obtained from the available measurements of uncontrolled 
residential EV charging demands. The paper demonstrates 
that the time at which the peak EV charging demand occurs 
varies with the number of connected EVs, which effectively 
prevents to simply add ADMD-based maximum EV charging 
demand to the peak demand of the pre-EV loads to obtain 
their combined peak demand. Therefore, the loading limits 
and HC of considered DN for the maximum number of EVs 
that can be safely connected are in the paper determined from 
the maximum per-hour demands of uncontrolled residential 
EV charging, while one new energy-based parameter, 
maximum daily energy demand (MDED), is used for the 
evaluation of possible controlled EV charging schemes. 

The IEEE 33-bus test network is used as an example to 
illustrate presented approach for evaluating EV HC in terms 
of the loading limits of network components. This test 
network is modelled using typical UK transformer and 
overhead line (OHL) components. The transformer’s static 
thermal rating (STR) [17-18] is assumed to be its rated power 
(maximum continuous power transfer capacity). As the 
transformer STR does not account for the effects of ambient 
temperature, load variations and other factors that impact its 
operating conditions (i.e., operational temperature limits), the 
paper also uses dynamic thermal rating (DTR) for a more 
accurate evaluation of transformer loading conditions [19-24]. 
To the best of authors’ knowledge, only one paper in existing 
literature considered the DTR of transformers when analysing 
impact of EVs on DN networks, [21], where assumed load 
profiles of 40 EVs are used for the analysis. 

This paper also analyses EV HC with respect to both STR 
and DTR limits of the OHLs in the considered DN [26-27]. 
In a few previous references, [25], [28-29], the DTR of the 
OHLs is used in the analysis with EVs, reporting substantial 
increase of the EVs that can be connected without violating 
thermal limits. However, these studies did not consider the 
aggregate impact and diversity of EV charging profiles.  

Two general approaches can be used to manage increased 
EV charging demands, as reviewed in [2], [30–32]. The first 
is to increase network loading capacity by upgrading the 
network. However, this can be expensive and may not always 
be feasible. The second approach is to implement some 
demand management scheme, i.e., to control and shift the EV 
charging load from peak demand period to off-peak hours, 
which is in this paper denoted as a controlled EV charging 
(term EV scheduling is also used in existing literature). It 
should be noted that there is a very high number of possible 
scheduling schemes for controlled EV charging, which 
further increases with the increase of the EVs that should be 
charged (it is basically a combinatorial problem, with the 
scheduling of the target number of EVs within the available 
time periods and based on the required EV demand). 

In terms of a large number of possible scheduling schemes 
for controlled EV charging, there is a significant previous 
work on optimal EV charging, e.g., in [29], where 
optimisation of EV charging considered voltage constraints, 
or in [30], where stochastic optimisation considered 
uncertainty of EV arrival and departure times and available 
renewable energy sources, or in [31], where charging of EVs 
in parking lots also considered available renewable energy 
sources, or in [2] and [32], where metaheuristic methods were 
implemented for optimal scheduling of EV charging. 

Instead of evaluating a very large number of possible 
scheduling methods, this paper presents a simple and robust 
energy-based approach, which is derived from the ADMD 
analysis and gives the absolute maximum number of EVs that 
can be safely connected in the considered network with 
known or assumed pre-EV load profiles, and assuming full 
control of EV charging. This can be approached as the 
maximum non-firm HC, or upper HC limit, while the HC 
limit for the uncontrolled EV charging can be approached as 
a firm HC, or lower HC limit, representing fully uncontrolled 
EV charging.  

The main contributions of this paper are: 

 Establishment of a general approach for assessing 
actual daily load profiles and envelope of maximum 
hourly demands for the uncontrolled EV charging load 
(including Level 1 and Level 2 EV chargers). 

 Evaluation of conventional (single) ADMD value and 
hourly ADMD values for arbitrary number of EVs 
under uncontrolled EV charging. 

 Formulation of a simple and robust methodology, 
which uses one new indicator, maximum daily energy 
demand (MDED), to identify maximum number of 
EVs that can be connected under fully controlled EV 
charging. 

 Introduction of a new methodology for determining 
combined DTR limits of transformers and OHLs. 

 Evaluation of the EV HC allocations for uncontrolled 
EV charging (firm HC) and fully controlled EV 
charging (non-firm HC) based on the STR limits and 
coincidental and noncoincidental DTR limits, as well 
as combined total pre-EV and EV charging demands. 

2.   Input Data for the Analysis: Existing (Pre-EV) 
Demands and EV Charging Demands 

2.1 Existing Load Data (Pre-EV Demand) 

Typical variations in loading conditions before the EVs are 
connected (i.e., “pre-EV demands”) are identified from hourly 
recordings of power demands of a residential Scottish MV 
distribution substation, available for a period from 2007-2012 
[33]. Fig. 1 shows normalised six-year daily load profiles 
(light blue curves), with absolute maximum demand occurring 
at 19:00 hours (1 p.u. value), indicated by a red square. Fig. 1 
also shows other hourly maximum demands of interest: 
envelope of maximum demands at each hour (red dashed line 
with red “x” symbols), hourly demands on the day of 
maximum demand (dotted dark blue line) and two daily load 
profiles coinciding with the days of maximum EV charger 
demands for Level 1 and Level 2 chargers (see next sections), 
indicated with black solid circles and black hollow squares. 

 
Fig. 1 Hourly pre-EV load profiles (six years of recording). 
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2.2 EV Load Data (Uncontrolled EV Charging) 

The measured EV demands were sampled from a field trial in 
[34], spanning from 2014-2015 and representing uncontrolled 
EV charging. In this trial, all EVs were of the same type, [35], 
featuring battery capacity of 24 kWh and on-board Level 1 
single-phase charger with a rating of 3.5 kW (1 p.u. power for 
Level 1 charging) and a near-unity power factor. 

The EVs selected for the analysis are those for which 
hourly charging demands were continuously recorded for an 
entire year and for which related time and date stamps were 
available. This resulted in the selection of around 200 EVs, 
representing the EVs with the highest occurrences of 
charging events between June 2014 and July 2015 (with all 
EVs having a plug-in factor of at least 30 %). As it was 
observed that some EVs had demands exceeding 3.5 kW, 
which was likely due to voltage-dependency of their power 
demands, the EVs with up to 10% higher demands (i.e., up to 
3.85 kW, or 1.1 p.u.) were also included in the analysis. The 
EV charging data are presented in the form of time series, 
comprising 24 hourly values for each day, and 365 daily 
profiles over the course of a year.  

To assess the impact of a newer Level 2 on-board 7 kW 
EV charger in the same type of EV, which was also upgraded 
with a 48-kWh battery charger, it is assumed that all EVs will 
travel the same distances under the identical conditions 
throughout the year (requiring the same amounts of energy 
from the battery for the same journeys), therefore resulting in 
around 50% shorter charging times for EVs equipped with 
Level 2 chargers, compared to EVs with Level 1 chargers. 

3.   Daily Load Profiles, ADMD and MDED values 
for Uncontrolled EV Charging 

3.1 Generation of Daily Load Profiles for Arbitrary 
Number of EVs 

After selecting 200 EVs with hourly recordings available for 
a whole year, Monte Carlo simulation (MCS) approach is used 
to generate aggregate coincidental demands (daily load 
profiles) of the pre-specified number of EVs, where each 
charging event for each EV from the available dataset is 
considered independently. In that way, recorded individual 
daily EV charging profiles of a specified number of EVs, 
denoted as N, over a one-year period (365 days) are randomly 
combined, summed up for each day and normalised using a 
base of 3.5 kW as 1 p.u. for Level 1 EV chargers, while a base 
of 7 kW is used for Level 2 EV chargers. The MCS runs are 
repeated 1000 times, typically resulting in the standard 
deviation error below 0.1% [16]. 

In cases where the number of EVs exceeds the available 
200 recorded EV charging profiles, resampling with 
replacement is implemented, assuming homogeneity among 
the available EV charging demands. 

Fig. 2 and Fig. 3 illustrate generation of daily EV charging 
load profiles, for N = 1; 10; 100; and 1000 EVs with Level 1 
and Level 2 EV chargers, respectively (the highest 1% load 
profiles from the 1000 MCS runs are shown in both figures). 
The light-blue curves represent individual daily EV charging 
profiles, from which following characteristic demands and 
load profiles can be identified: a) absolute maximum 
coincidental demand (corresponding to a conventional single 
ADMD value), b) envelope of maximum demands for each 
hour of the day (i.e., “hourly ADMD” values, corresponding 
to noncoincidental hourly maximum demands), c) load 
profile for a day of the maximum EV demand (when ADMD 
is reached), and d) EV charging load profile coincidental with 
the day of maximum pre-EV demand (see previous section). 

 
a) 1 EV 

 
b) 10 EVs 

 
c) 100 EVs 

 
d) 1000 EVs 

Fig. 2 Hourly EV Charging Profiles and ADMD for 1, 10, 
100 and 1000 EVs with Level 1 chargers 

 
a) 1 EV 
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b) 10 EVs 

 
c) 100 EVs 

 
d) 1000EVs 

Fig. 3 Hourly EV Charging Profiles and ADMD for 1, 10, 
100 and 1000 EVs with Level 2 chargers 

3.2 Load Profiles of Maximum EV Charging Demands 

As indicated in Fig. 2 and Fig. 3, the MCS-generated load 
profiles allow to extract two characteristic maximum hourly 
EV charging demands: a)  noncoincidental maximum hourly 
values, i.e., envelope of maximum hourly demands at each of 
the 24 hours of the day (indicated by red dashed line and 
symbol “x”), and b) coincidental hourly demands on the day 
the ADMD is reached (on the day of maximum EV charging 
demand, indicated by a dotted dark blue line). Fig. 4 and Fig. 5 
show these as daily load profiles of maximum hourly EV 
charging demands, and daily load profiles for actual days of 
maximum EV charging demands, respectively, plotted as 3D 
graphs for uncontrolled charging of up to 3000 EVs. 
 Fig. 4 and Fig. 5 show that the time of the day at which the 
conventional single ADMD value (the absolute maximum EV 
charging demand) occurs is different for different numbers of 
EVs (indicated with a red dashed line). The time-dependent 
changes of ADMD prevent simple combining of ADMD 
values of EV charging demand and pre-EV load demand, as 
this will give neither the correct maximum combined demand 
(their coincidental peak demand), nor the correct time at which 
it occurs. For example, the time of the peak pre-EV load 
demand is 19:00 hours, while the time of the peak demand of 
EV charging load changes in the range 19:00-21:00 hours, 
depending on the number of EVs and use of Level 1 or Level 2 
type of the charger. 

 
a) Level 1 EV chargers 

 
b) Level 2 EV chargers) 

Fig. 4 Load profiles of maximum hourly EV charging demands 
 

 
a) Level 1 EV chargers 

 
b) Level 2 EV chargers) 

Fig. 5 Load profiles for actual days of maximum EV charging 
demands 
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3.3 Conventional ADMD and Hourly ADMD Values 

After the MCS-based daily load profiles are generated, Fig. 2- 
Fig. 5, various values of ADMD can be identified, including: 
minimum, 1st percentile, 5th percentile, 25th percentile, mean 
(50th percentile), 75th percentile, 90th percentile, 95th 
percentile, 99th percentile, and maximum ADMD values. The 
analysis is conducted separately for Level 1 and Level 2 EV 
chargers, and for the numbers of aggregated EVs varied in 
groups of N=1; 5; 10; 50; 100; 200; 1000; 2000; and 3000. 

The ADMD value for a specific number of EVs can be 
expressed as follows: 

 𝐴𝐷𝑀𝐷୲→୘,୒,୫→୑ = 𝑚𝑎𝑥 ቂ
ଵ

ே
∑ (𝑃ா௏(௧,௡,௠)

ே
௡ୀଵ ቃ 

where: 𝐴𝐷𝑀𝐷୲→୘,୒,୫→୑, is the ADMD of combinations of N 
EVs, with 𝑛 ∈ 𝑁 in ranges from 𝑁 = 1; 5; 10; 50; 100; 200; 
1000; 2000; and 3000, for a given period, t to T = 365 days, 
with the 24-hourly step intervals in each day. The intermediate 
ADMD values are summed up and averaged over observations 
at time t, considering the specified number of EV 
combinations, N. The MCS runs are repeated for samples 
m→M, where M is equal to 1000. 

Fig.6a and Fig.6b (left) show the ADMD results, where 
light-blue lines represent 1000 ADMD values obtained from 
1000 MCS runs. For a single EV (N=1), its ADMD will 
always be at its maximum charging demand, which, as 
discussed previously, is set at 1.1 p.u. Different numbers of 
EVs result in varying ranges of ADMD values, with wider 
ranges observed for the combinations roughly below 100 
EVs. For example, random combinations of 10 Level 1 EV 
chargers return a range of 0.4 p.u.-0.9 p.u. between the 
minimum and maximum ADMD values. As the number of 
EVs increases, the ranges of ADMD values narrow down, 
"converging" towards the asymptotic ADMD value for the 

maximum number of EVs considered (3000). The ADMD 
curves for different numbers of EVs are plotted as 
interpolated nonlinear fits, based on calculated values for 
varying EV numbers, N. 

It can be further observed that the ADMD values for 
Level 2 EV charging (ranging from 0.21 p.u. to 0.25 p.u. for 
3000 EVs) are lower than the ADMD values for Level 1 EV 
charging (ranging from 0.28 p.u. to 0.35 p.u. for 3000 EVs). 
This difference is attributed to the shorter duration of 
charging and therefore lower coincidence of charging events 
for EVs with Level 2 chargers, as they require half of the 
charging time for Level 1 EV chargers (assuming same trips 
and same energy from the EV batteries for these trips). This 
can also be seen in the magnified inset plots in Fig. 6 (left). 

However, while the ADMD plots in Fig. 6a and Fig. 6b 
(left) show relatively small differences in per-unit values, it 
is important to note that the difference in base values between 
Level 1 and Level 2 EV chargers results in substantial 
differences in absolute demand values. For instance, the 
differences between the mean and maximum values for 3000 
EVs with Level 1 and Level 2 chargers are 284 kW and 
525 kW, respectively. Finally, it can be clearly seen that the 
use of the mean ADMD values to represent the maximum 
coincidental demands from EV chargers could significantly 
underestimate possible demand (and therefore impact) of EV 
charging load, suggesting that the absolute maximum ADMD 
values, or sufficiently high percentile values (e.g., 99th or 95th 
percentiles) should be used. 

Fig. 6a and Fig. 6b (right) show the maximum hourly EV 
charging demands from which single conventional ADMD 
values, indicated by red-dashed lines, can be seen as a “side 
view” from the Y-axis, while the remaining values give 
“hourly ADMD values” for up to 3000 EVs. 

 
a) Level 1 EV chargers  

 
b) Level 2 EV chargers 

Fig.6 The ADMD percentile values (left) and hourly maximum EV charging demands (right) for up to 3000 EVs
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3.4 Deriving kW Demand from Per-Unit ADMD Values 

When the ADMD is known for a given number of EVs, N, 
the corresponding coincidental maximum power demand in 
kW, 𝑃N,max, can be determined as: 

 𝑃୒,୫ୟ୶ =  𝐴𝐷𝑀𝐷୲→୘,୒,୫ୟ୶ ∙ 𝑁 ∙ 𝐿 

where: 𝐴𝐷𝑀𝐷t→T,N,max, is the maximum (100th percentile) 
ADMD for a given period t to T, 𝑁 is the number of EVs, and 
𝐿 is the charging level (Level 1 or Level 2). Fig. 7 depicts the 
changes of the EV maximum active power demand (in kW) 
based on the number of connected EVs, which is highly non-
linear for the first 100 EVs and then increases almost linearly 
(as the corresponding ADMD values in Fig. 6 converge). 

 
Fig. 7 𝑃ே,௠௔௫   for Level 1 and Level 2 EV chargers 

3.5 Maximum Daily Energy Demand (MDED) 

 
a) Level 1 EV chargers    b) Level 2 EV chargers 

Fig. 8 Maximum daily energy demand (MDED) values 

Although it is highly unlikely that the uncontrolled EV 
charging will be allowed for any significant number of 
connected EVs, the uncontrolled EV charging reveals one 
very important information: the energy required for charging, 
which should be provided regardless of what EV scheduling 
(or EV demand shifting) scheme will be implemented. In 
other words, it is assumed that the uncontrolled EV charging 
truly reflects the actual energy demand of EV owners/users 
for charging their EV batteries, as required for their trips.  

As the presented analysis uses hourly EV charging 
demands, the required maximum daily energy demand 
(MDED) can be simply obtained as the sum of maximum 
hourly power demands from maximum EV charging load 
profiles, for specific number of EVs, as expressed in (3). 

 𝑀𝐷𝐸𝐷୒,୫→୑ = 𝑚𝑎𝑥 ቂ
ଵ

ே
∑ ∑ (𝑃ா௏(௧,௡,௠)

ே
௡ୀଵ

்
௧ ቃ 

where: 𝑀𝐷𝐸𝐷N,m→M, is the maximum daily energy demand 
calculated “per EV”, as illustrated in Fig. 9, and with all 
subscripts as defined in (1). This is similar to ADMD, and 
when maximum daily energy demand should be calculated 
for a specific number of EVs, N, the corresponding value 
𝐸N,max (for the maximum 100th percentile values of demands) 
is calculated from (3) by multiplying MDED with N: 

 𝐸୒,୫ୟ୶ =  𝑀𝐷𝐸𝐷୒,୫ୟ୶ ∙ 𝑁 

where: 𝑀𝐷𝐸𝐷N,max is the maximum/100th percentile 𝑀𝐷𝐸𝐷 
value for a given number of EVs, 𝑁. 

The MDED is introduced in this paper as a new metric, as 
it is a very useful constraint or requirement that should be 
used in specifying optimal scheduling of EV charging 
demands, as shown in the further analysis in Section 6.4. 

 
Fig. 9 MDED values for Level 1 and Level 2 EV chargers 

3.6 Seasonal Variations in ADMD and MDED Values 

As the ambient conditions (e.g., temperature, length of the 
day, etc.) vary in different seasons, it is likely that the ADMD 
and MDED values will exhibit seasonal variations. Fig. 10 
illustrates the variations in ADMD values in four seasons in 
the UK (obtained from uncontrolled EV charging data from a 
UK field trial), where the highest ADMD is in winter, 
followed by autumn and spring, while the lowest ADMD is 
in summer. This is expected, as the EV batteries will 
additionally discharge in winter, due to the lower ambient 
temperatures and heating of the interior of the EVs, as well as 
use of EV headlights due to the shorter daylight hours [36]. 
Fig. 11 shows corresponding seasonal variations of the 
MDED values, which are similar to the ADMD variations. 

The increased EV charging demand in the UK in winter 
coincides with the peak of the typical residential UK pre-EV 
demand, but it should be noted that there may be different 
relationships in other countries, e.g., in countries with hot 
climate, where the peak pre-EV demand occurs in summer. 
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a) Level 1 EV chargers    b) Level 2 EV chargers 

Fig. 10 Seasonal variations of ADMD values for Level 1 (left) and Level 2 (right) EV chargers. 

 
a) Level 1 EV chargers    b) Level 2 EV chargers 

Fig. 11 Seasonal variations of MDED values for Level 1 (left) and Level 2 (right) EV chargers

3.7 Combined Demand of Pre-EV Load and EV 
Charging Load 

The previous sections presented analysis of uncontrolled EV 
charging demands in residential applications, for arbitrary 
number of EVs with Level 1 and Level 2 on-board (“slow”) 
chargers. The analysis allowed to evaluate maximum hourly 
EV charging demands in form of daily load profiles, from 
which commonly used conventional single ADMD value 
(with corresponding percentiles) and “hourly ADMD” values 
are identified, together with the related MDED values. 
 As also discussed, two sets of results are obtained during 
the evaluation of the maximum demands for uncontrolled EV 
charging: a) noncoincidental maximum hourly values, 
represented by the envelope of maximum hourly demands, 
and b) coincidental hourly demands on the day of peak EV 
charging load, when ADMD is reached, as shown in Fig. 4 and 
Fig. 5. An obvious question is which of these two sets of 
maximum EV charging demands should be used for assessing 
the combined maximum demand when additional EV load is 
connected together with the existing pre-EV load? 
 The most conservative approach would be to use the 
envelope of hourly maximum demands for both pre-EV load 
and EV charging load (or some high percentile values of 
these). Fig. 1 indicates that there are small differences between 
the envelope of hourly maximum demands and hourly 
demands on the day of peak pre-EV load (i.e., day of peak 
demand also features the highest hourly demands). Fig. 4 and 
Fig. 5, however, indicate larger differences between the 
envelope of the noncoincidental (not on the same day) 
maximum hourly demands and coincidental hourly demands 
on the day of the peak EV charging load. Although this result 
is expected, as the EV charging demand cannot be consistently 
high throughout the all hours of the day, this does not exclude 
the possibility of a (close to) maximum hourly EV charging 
demand at a specific hour occurring at any given day, 

including the day on which pre-EV demand at that hour is also 
maximum, or close to the maximum values. Therefore, even 
if a more detailed probabilistic analysis of the coincidence of 
the demands of the pre-EV load and EV charging load is 
performed on available datasets, the most conservative 
approach would be to assume that the maximum EV charging 
demand at any specific hour could occur when the pre-EV 
demand at that hour is also at the maximum value. 

Accordingly, for assessing the maximum combined total 
demand, which is the primary objective of both the ADMD 
analysis and network EV HC evaluation, this paper suggests 
three following approaches: 

1) The use of the envelopes of noncoincidental hourly 
maximum demands for both pre-EV load and EV 
charging load (the most conservative approach), 
illustrated in Fig. 12 with red dashed lines with “x” 
symbols. The example shown is for 3000 EVs with 
Level 1 and 2 chargers, where 1 p.u. corresponds to 
the maximum demand of the pre-EV load of 
3.72 MW, representing 1785 residential customers. 

2) The use of the combined total coincidental demand, 
where the day of the maximum pre-EV demand is 
selected first, and then the corresponding hourly EV 
charging demands on that day are added, indicated by 
a black dashed lines with hollow squares in Fig. 12. 
The corresponding day of EV charging demand is the 
one with maximum demands from 1000 MCS runs. 

3) The use of the combined total coincidental demand, 
where the day of the maximum EV charging demand 
is selected first (maximum from 1000 MCS runs), and 
then the corresponding hourly pre-EV demands on 
that day are added (the same calendar day, but with 
the maximum demand from available 6 years of data), 
indicated by a dotted dark-blue line in Fig. 12. 
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a) Level 1 

 
b) Level 2 

Fig. 12 Combined pre-EV demand and demand of 3000 EVs 

4.  Test Network, Transformer and OHL Data  

The network used for the analysis is the IEEE 33-bus network 
from [37], Fig. 13, with the base voltage modified to 11 kV, 
in order to allow for the modelling of typical UK network 
components. The total active/reactive power demands of pre-
EV load are 3.72 MW / 2.3 MVAr. All buses, except Bus 1, 
are available for the connection of EVs. The OHL (Table 1) is 
a 6/1 single layer aluminium conductor steel reinforced 
(ACSR) Type P for all feeders, with STR of 80 ℃ and 382 A, 
corresponding to 6.84-7.71MVA (for ±10% voltage variations 
from nominal value) [38]. The substation transformer (Table 2) 
is a 6.3 MVA ONAN (oil natural, air natural) type, with 
35/10.5 kV voltages and OLTC control [37]. The nameplate 
rated MVA of transformer is considered as its STR limit. 

Table 1 Parameters of modelled OHL [38] 

Normal Thermal Ratings a (A)   390 
Overall Diameter (mm)  14.31 
DC Resistance at 25°C (Ohms/km)  0.2618 
AC Resistance at 25°C (Ohms/km)  0.2697 
AC Resistance at 75°C (Ohms/km)  0.3829 

a. Ambient temperature of 35°C, solar irradiance of 0 W/𝑚ଶ, wind speed 
of 0.6 m/s, and attacking angle of 90 ° 

Table 2 Parameters of modelled transformer [39] 
Rated MVA/ STR (MVA) 6.3 
Cooling type ONAN 
No-load losses (kW) 4.5 
Load losses rated (kW) 36.7 
Winding HST rise at rate power (℃) 65 
Max. ambient temperature (℃) 45 
Height b (m) 1.62 
Length (m) 4.1 
Width (m) 2.6 
Thickness of transformer side wall (m) 0.01 
Number of radiators c (-) 5  
Radiator area (𝒎𝟐) 22.05 

b. Transport height is used to eliminate the height of the bushing of the 
transformer 

c. Five active radiators and one radiator in reserve 

 
Fig. 13 The IEEE 33-bus test distribution network 

5. Ambient Conditions and DTR Calculations 

5.1 Weather Data 

The required inputs to determine hourly DTRs of OHL and 
transformer are weather data, which are extracted from [40]. 
Fig. 14 shows hourly variations in ambient conditions for a 
location in the UK over a six-year period (2007-2012). The 
absolute highest and lowest values, along with corresponding 
hourly maximum and minimum values, are indicated, which 
will serve as input parameters for determining the minimum 
DTRs of the network components. For the ambient conditions 
coincidental with the days of maximum EV charging 
demands and pre-EV load demands, the corresponding daily 
ambient parameters are also plotted and indicated in Fig. 14. 

 
a) temperature variations 

 
b) wind speed variations 

 
c) normalised wind direction (0° to 90°) variations 
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d) solar irradiance variations 

Fig. 14 Ambient conditions over six years (UK location) 

5.2 DTR of Overhead Line (OHL) 

Thermal balance equations outlined in [41] are used to 
calculate the changes in loading limits, i.e., dynamic thermal 
rating (DTR) of the considered OHL(further details in [42]), 
with weather conditions from the previous section.  

It should be noted that the OHL loading limits are 
typically given as the maximum allowed currents, i.e., in 
amps (A), while thermal limits for transformers are typically 
given in MVA. Therefore, the upper and lower MVA limits 
of OHL can be obtained from the upper and lower limits for 

the allowed voltage variations. Accordingly, the OHL DTRs 
in MVA in Table 3 are listed for nominal voltage of 1 p.u., 
but also for lower value of 0.9 p.u. and upper value of 1.1 p.u. 

For the EV HC analysis, two seasonal STR values, one 
noncoincidental absolute minimum DTR value, and two 
coincidental minimum hourly DTR values are used, as shown 
in Table 3. The Absolute minimum DTR is the lowest 
possible value of DTR derived from the noncoincidental 
combination of the worst ambient conditions (highest 
temperature and solar irradiance, and lowest wind speed). 
The STR values for summer and winter are typically given by 
the DN operators (DNOs), as e.g., in [43]. For minimum 
hourly DTR values, weather data are further searched in 
summer and in winter, to identify coincidental (i.e., actual 
simultaneously recorded weather conditions for which) the 
minimum DTR values in two seasons are obtained. Finally, 
the calculated minimum DTR values in Table 3 are “relaxed” 
by taking 1st and 5th percentile values, as the minimum 
coincidental DTRs may have a (very) low probability. 
However, this is shown for illustration only, and relaxed DTR 
values for both OHL and transformer are not used for the EV 
HC analysis in this paper. Also, 1 p.u. voltage is used for the 
calculation of the OHL DTR limits in MVA. 

Table 3: The STR and DTR limits and ambient conditions for considered OHL. 

OHL Parameters and Limits Abs. Min DTR STR Summer STR Winter Min DTR Summer Min DTR Winter 
1st Percentile 

DTR 

5th Percentile 

DTR 

Temperature (℃) 23.0 14 4 20.8 4.6 11.7 5.9 

Wind Speed (m/s) 0 0.5 0.5 4.6 0.8 8.1 2.0 

Wind Att. Angle (º) 0 12 12 6.5 1 37 74 

Solar Irr. ( 𝑾/𝒎𝟐) 882 0 0 852 157 1 0 

0.9 p.u.  (MVA) 4.82 6.17 6.56 4.98 6.42 7.19 8.42 

1 p.u.  (MVA) 5.35 6.85 7.29 5.53 7.13 7.99 9.3 

1.1 p.u. (MVA) 5.89 7.53 8.02 6.08 7.84 8.79 10.29 

The daily variations of DTR values (with 1-hour steps) for 
the considered OHL (Table 1) are plotted in Fig. 15 for 
ambient conditions from Fig. 14. The absolute minimum 
DTR is marked with a red-square and it can be seen that the 
minimum hourly DTRs in both seasons are not coincidental 
with the maximum pre-EV demand and day of maximum EV 
charging demands (for both Levels 1 and 2 chargers). The 
minimum summer hourly DTR values (red line “x” symbol) 
are lower than STR values (green-dotted line) only during the 
mid-day, while minimum hourly DTRs in winter (blue dotted 
line with diamond symbol) is roughly equal to the winter STR. 

5.3 DTR of Transformer 

The thermal rating of the transformer depends on the hot spot 
temperature (HST) limit, which can be calculated as defined 
in [19]. To determine the DTR of the transformer, it is 
essential to be consistent with the definition of the DTR of the 
OHL (see previous section), i.e., the DTR of the transformer 
should be calculated for the steady state operating conditions 
and thermal equilibrium state. The presented analysis assumes 
that the HST of the transformer with thermally upgraded 
insulation will not exceed 110℃ (98℃ for transformer with 
non-thermally upgraded insulation) for average 24-hour 
ambient temperature of 30℃ and under continuous loading 
with full rated power. The summary of the calculated DTR and 
STR values for considered transformer is given in Table 4. 

Fig. 16 shows the daily variations of transformer DTR 
values, where the minimum hourly DTRs in summer and 
winter are always higher than the STR (green-dotted-line), 
indicating that the STR is a more conservative limit. Similar 
to OHL limits, the minimum DTR values are not coincidental 
with neither EV charging demand, nor with pre-EV demand. 

Table 4: The STR and DTR limits and ambient conditions for 
considered transformer. 
Transf. Parameters 

and Limits 
STR 

Min DTR 
Summer 

Min DTR 
Winter 

1st Perc. 
DTR 

5th Perc. 
DTR 

Temperature (℃) / 23.0 12.6 18.0 15.8 
1 p.u. (MVA) 6.30 6.68 7.27 6.93 7.05 

 
Fig. 15 The STR and variations of DTR values (OHL) 
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Fig. 16 The STR and variations of DTR values (transformer) 

 
a) Combined MVA limits for 1 p.u. voltage 

 
b) Combined MVA limits for 0.9 p.u. voltage 

 
c) Combined MVA limits for 1.1 p.u. voltage 

Fig. 17 Combined transformer-OHL minimum DTR limits 

5.4 Combined Transformer-OHL Minimum DTR Limits 

Fig. 17 illustrates the results for the combined OHL and 
transformer hourly minimum DTR limits, with absolute 
minimum DTR values indicated by a red hollow square, as 
well as the STR and minimum seasonal DTR limits. 

It can be seen from Fig. 17a, where OHL MVA limits are 
calculated for 1 p.u. voltage, that absolute minimum DTR 
value is constrained by the OHL, rather than transformer. If 

the STR values are used, the loading limit is constrained by 
the transformer, not by the OHL STRs in both summer and 
winter (6.3 MVA for transformer vs 6.85 MVA and 
7.29 MVA for OHL). The minimum hourly DTR values (red 
dashed line with “x” symbol) are predominantly limited by 
the OHL, but for some hours are very close to minimum 
transformer DTRs. 

However, Fig. 17b and Fig. 17c show the OHL loading 
limits in MVA for lower and upper allowed voltages of 
0.9 p.u. and 1.1 p.u., respectively, illustrating that based on 
the loading conditions, voltage drops in the network and 
applied voltage regulation/control functionalities, the 
minimum DTR of transformer may be the constraining 
loading limit, not the minimum DTR of the OHL (Fig. 17c). 
The analysis in the further text assumes 1 p.u. voltage and 
uses combined OHL-transformer MVA limits from Fig. 17a 
for the evaluation of the network EV HC. 

6.   Considered Case Studies and HC Allocations 

6.1 Considered EV Penetration Levels and Mixes 

The presented analysis assumes that all busses, except Bus 1, 
are available for connecting EVs, and that both pre-EV load 
and newly connected EV charging load are proportionally 
distributed at all buses. The ADMD of residential pre-EV 
load is taken from [44], where it is given as 2.27 kW per 
household (for one residential customer). The network HC is 
evaluated with respect to the maximum expected EV 
penetration, assuming that all petrol/diesel cars are replaced 
with EVs, where the figure of 1.68 EVs per household is 
adopted based on [45]. For the selected network with specified 
pre-EV demands, this gives the maximum number of EVs as: 

 𝑁ு௢௨௦௘௛௢௟ௗ =  
௉೟೚೟ೌ೗_೛ೝ೐షಶೇ

ଶ.ଶ଻
 

 𝑁ா௏ =  𝑁ு௢௨௦௘௛௢௟ௗ௦ ∙ 1.68 

where: 𝑁ு௢௨௦௘௛௢௟ௗ௦  is the total number of households in the 
network, 𝑃 ௧௢௧௔௟_௣௥௘ିா௏  is the maximum pre-EV charging 
demand in kW, and 𝑁ா௏  is the total number of EVs in the 
network. For the considered network and pre-EV demand, the 
total number of EVs is around 2750 for 168% EV penetration 
(i.e., 1.68 EVs per household). The EVs are distributed 
proportionally in the network based on the given active power 
demands at individual buses of IEEE 33-bus network in [37]:  

 𝑛௜,ா௏ =  
ଵ.଺଼ ா௏

ு௢௨௦௘௛௢௟
∙

ଵ

ଶ.ଶ଻

ு௢௨௦௘௛௢௟ௗ

௞௪
∙ 𝑝௜,୲୭୲ୟ୪_୮୰ୣିா௏ 

where: 𝑛௜,ா௏ is the number of EVs at bus, 𝑖 and 𝑝௜,௣௧௢௧௔௟_௥௘ିா௏ 
is the total pre-EV demand at bus, 𝑖 in kW, [37] . 

Additionally, analysis is performed for all EVs equipped 
with Level 1 on-board chargers, for all EVs equipped with 
Level 2 on-board chargers, and for EVs equipped with mixes 
of Level 1 and 2 on-board chargers, as shown in Table 5. 

Table 5: Different mixes of EVs with Level 1 & 2 chargers 
Scenario Level 1 Level 2  

Level 1 100% 0% 

Mix 1 80% 20% 

Mix 2 60% 40% 

Mix 3 40% 60% 

Mix 4 20% 80% 

Level 2 0% 100% 
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6.2 Network Constraints 

The analysis of the combined total demands of pre-EV load 
and EV charging load from the previous section does not take 
into account active and reactive power losses in the network. 
Although these losses can be estimated and added to the total 
combined demands (typically, losses in DNs are 5%-10% of 
the supplied total demands), a more accurate and common 
way to calculate losses is to perform standard power flow 
analysis. In this paper, steady state three-phase ac power flow 
is carried out using [46], with relevant constraints described 
in (8-17). The two main network components that are of most 
interest is substation transformer at Bus 1 and the highest 
loaded line from Bus 1 to Bus 2 (Fig. 13). 

 𝑃௜ାଵ,௧
௟ = 𝑃௜,௧

௟ − 𝑖
൬௉೔,೟

೗ మ
ାொ೔,೟

೗ మ
൰

௏೔,೟
మ − 𝑝௜ାଵ,௧ (8) 

 𝑄௜ାଵ,௧
௟ = 𝑄௜,௧

௟ − 𝑥௜

൬௉೔,೟
೗ మ

ାொ೔,೟
೗ మ

൰

௏೔,೟
మ − 𝑞௜ାଵ,௧ (9) 

 𝑉௜ାଵ,௧
ଶ = 𝑉௜,௧

ଶ −
ଶቀ௥೔௉೔,೟

೗ ା௫೔ொ೔,೟
೗ ቁ

௏೔,೟
+ (𝑟௜

ଶ + 𝑥௜
ଶ) 

൬௉೔,೟
೗ మ

ାொ೔,೟
೗ మ

൰

௏೔,೟
మ     (10) 

 𝑝௜,௧ = 𝑃௜,௧
ௗ + 𝑃௜,௧

ா௏  (11) 
 𝑞௜,௛ = 𝑄௜,௧

ௗ  (12) 
 𝑉௠௜௡ < 𝑉௜,௧ < 𝑉௠௔௫   (13) 
 𝑡𝑎𝑝௠௜௡ < 𝑡𝑎𝑝௧ < 𝑡𝑎𝑝௠௔௫   (14) 

 𝑆௟,௧
(௜,௝)

≤  𝑆𝑇𝑅௟   (15) 

 𝑆௟,௧
(௜,௝)

≤  𝐷𝑇𝑅௟,௧ (16) 

 ൫𝑃௟,௜,௝൯
ଶ

 +  ൫𝑄௟௜௝൯
ଶ

 ≤  ൫𝑆௟,௠௔௫൯
ଶ
 (17) 

∀𝑖 ∈ 𝑁௜ , ∀𝑡 ∈ 𝑇, ∀𝑙𝜖𝐿  

 Equation (8) and (9) describe the active and reactive power 
flows in line l , from bus i to bus i+1; equation (10) shows the 
voltage at bus i  and its adjacent bus, bus i+1; 𝑃௜,௧

௟  and 𝑄௜,௧
௟  are 

active and reactive load flow of line, l from bus 𝑖 to bus 𝑖 + 1 
at time 𝑡; 𝑃௜,௧

ௗ  and 𝑄௜,௧
ௗ  are the active and reactive pre-EV load 

demands at bus 𝑖; 𝑃௜,௧
ா௏ is EV active power demand at bus 𝑖; 

𝑝௜,௧ and 𝑞௜,௧ are power injections at bus 𝑖; 𝑉௜,௧ is the voltage of 
bus 𝑖; 𝑟௜ and 𝑥௜ are series impedance of branch from bus 𝑖 to 
bus 𝑖 + 1; 𝑡𝑎𝑝௧  in (14) is the tap position at time, t 

The tap position is set to change when undervoltage occurs. 
The voltage upper limit 𝑉௠௔௫ is set to be 1.1 p.u., while the 
lower limit 𝑉௠௜௡ is 0.9 p.u in (13). Equations (13-17) represent 
inequality constraints determined by technical limits of 
distribution networks. Equation (14) provides limits of on-
load tap setting of the 33/11kV transformer and equation (13) 
give the limits on bus voltages. Equations (15-16) correspond 

to the apparent power, 𝑆௟,௧
(௜,௝ ௢௥ ௝,௜)

 and power flow constraints 
for each branch, where 𝑆𝑇𝑅௟  or 𝐷𝑇𝑅௟,௧  limits of the branch 
(OHL or transformer) from bus 𝑖 to bus 𝑖 + 1 at time, t. 

 

6.3 Uncontrolled EV Charging  

The analysis of the network EV HC is conducted in two 
stages: first for uncontrolled EV charging, and then for (fully) 
controlled EV charging. Each stage is further divided into 
noncoincidental and coincidental cases, based on the loading 
limits of network components and combined total demands 
of pre-EV load and EV charging load. 
 
 

The uncontrolled EV charging demand is analysed using 
the hourly ADMD values, as previously described, helping to 
identify daily load profiles as the envelope of maximum 
hourly demands for arbitrary number of uncontrolled EVs. 
This approach enables to calculate HC (i.e., the number of 
EVs that can be accommodated for uncontrolled EV charging) 
based on the difference between available loading/thermal 
limit and maximum pre-EV demand. 

For controlled EV charging, it is assumed that all 
uncontrolled EV demands can be shifted and fully adjusted 
(e.g., by the DNO, or by the aggregator) from any time of the 
day at which they occur, to any other available/suitable time 
of the day, as necessary or suitable in terms of available 
loading capacity between the applied STR or DTR limit and 
pre-EV demand. This is described next. 

6.4 Controlled EV Charging: Maximum Number of EVs 
that Can Be Connected Based on MDED values 

Fig. 18 shows the day of the maximum pre-EV demand and 
STR limit, where the green-shaded area denotes available 
capacity for connecting new loads without overloading the 
network. Accordingly, if a new EV charger demand can be 
controlled to completely fits in the green areas, this will 
determine the maximum possible number of EVs that can be 
connected in this network (some “safety margin” can be 
added, e.g. up to 90% of the STR limit). As the green area is 
equivalent to the amount of energy in MVAh that can be 
safely supplied, the newly introduced MDED indicator can be 
used to directly calculate number of EVs that can be 
connected assuming full control of their charging. 

 
Fig. 18 Fully controlled EV scheduling (for maximum number 
of EVs) on a day of maximum pre-EV demand, STR limit 

As an example, Fig. 19 further illustrates how 
uncontrolled EV charging, resulting in network overloading, 
can be controlled, in order to allow for the connection of the 
same number of EVs, but with shifted demand for charging. 

 
Fig. 19 Illustration of scheduling maximum EV demand 
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The scheduling the highest possible number of EVs that 
can be connected for given pre-EV demand and applied 
STR/DTR limits is achieved when available capacity/area 
𝐴௔௩௔௜௟ is used (“filled in”) with controlled EV charging daily 
energy demand, so that the loading of network components is 
exactly at their STR/DTR limits at all times, t to T. The 
“available area” and “overloaded area” are defined as: 

𝐴௔௩௔௜௟ = ∑ 𝑆௔௩௔௜௟౪
்
௧ 

where: 𝑆௔௩௔௜௟೟
 is the available capacity (e.g., minimum of the 

combined OHL and transformer loading limits) at any given 
time, t, in MVA, and the 𝑆௢௩௘௥௟௢௔ௗ೟

 is the amount of 
overloading above the available MVA capacity at any given 
time, t, 𝑆௔௩௔௜௟೟

 

 𝑆௔௩௔௜௟೟
= 𝑆𝑇𝑅 −  𝑆௣௥௘ିா௏೟

   (19) 

 𝑆௔௩௔௜௟೟,஽்ோ = 𝐷𝑇𝑅௧ −  𝑆௣௥௘ିா ೟
       (20) 

where: 𝑆௣௥௘ିா ೟
 is the pre-EV demand in MVA at a time, t. 

Equations (19) and (20) show that both STR and 𝐷𝑇𝑅௧  limits 
can be used. 

The objective of this EV scheduling is to find the amount 
of daily maximum EV energy demand, 𝐸ே,௠௔௫ , that will 
exactly fill-in the available capacity 𝐴௔௩௔௜௟ . For every time of 
the day, t to T, the corresponding available active power for 
EV connection, 𝑃௔௩௔௜௟೟

, is derived from its available apparent 
power 𝑆௔௩௔௜௟𝑡

, as expressed in (21), and summed throughout 
the day: 

∑ 𝑃௔௩௔௜௟೟
்
௧ =  ට∑ 𝑆௔௩௔௜௟೟

்
௧

ଶ
− ∑ 𝑄௣௥௘ିா௏೟

்
௧

ଶ
− ∑ 𝑃௣௥௘ିா௏೟

்
௧

  (21) 

Afterwards, 𝑃௔௩௔௜௟𝑡→𝑇
 is proportionally distributed in the 

network according to (7), taking into account corresponding 
active power losses, 𝑃𝑙𝑜𝑠𝑠𝑒𝑠𝑡→𝑇

 and reactive power losses, 
𝑄𝑙𝑜𝑠𝑠𝑒𝑠𝑡→𝑇

, which are obtained from power flow analysis with 
given number of EVs: 

∑ 𝑃௔௩௔௜௟೟
்
௧ =

 ට∑ 𝑆௔௩௔௜௟೟
்
௧

ଶ
− (∑ 𝑄௣௥௘ିா௏೟

+ ∑ 𝑄௟௢௦௦௘௦೟
்
௧ )்

௧
ଶ

−

(∑ 𝑃௣௥௘ିா௏೟
்
௧   ∑ 𝑃௟௢௦௦௘௦೟

்
௧ )  (22) 

The calculated sum of hourly available active powers for 
EV connection throughout the day ∑ 𝑃௔௩௔௜௟೟

்
௧  is the 

maximum daily energy available for EV charging, 𝐸ே,௔௩௔௜௟: 

 𝐸ே,௔௩௔௜௟ =  ∑ 𝑃௔௩௔௜௟೟,೙೐ೢ
்
௧  (23) 

After maximum daily energy available for EV charging, 
𝐸ே,௔௩௔௜௟  is obtained, the corresponding number of EVs that 
can be connected can be simply taken from the MDED plot 
in Fig. 9. For example, if 𝐸ே,௔௩௔௜௟  = 30,000 kWh is available, 
that would allow to connect around 2800 EVs with Level 1 
chargers, and around 2000 EVs with Level 2 chargers, 
assuming that they are fully controlled, as described here. 

7.   Results 

Once the thermal/loading limits of network components have 
been determined and combined demands of pre-EV load and 
EV charging load (for specified number of EVs) are 
established, the HC of the network can be assessed. The 
analysis assumes that the uncontrolled EV charging 

represents the allocation of “firm HC”, while controlled EV 
charging represents the allocation of “non-firm HC”. The HC 
cases for uncontrolled and controlled EVs are defined as 
follows. 
Noncoincidental (NC) Cases: 
 Noncoincidental Absolute Minimum HC: Absolute 

maximum EV charging demand is combined with the 
absolute maximum pre-EV demand, for both STR and 
absolute minimum noncoincidental DTR limits. 

 Noncoincidental Hourly Minimum HC: Envelope of 
maximum hourly EV charging demand is combined with 
the envelope of maximum hourly pre-EV demands, using 
STR or hourly minimum DTR limits. 

Coincidental Cases: 
 Coincidental Minimum HC: Day of maximum EV 

charging demand is combined with the coincidental 
hourly pre-EV demands, using STR or hourly minimum 
DTR limits. 

7.1 Uncontrolled EV Charging: Firm EV HC 

The numbers of EVs that can be connected for uncontrolled 
EV charging (firm EV HC) are plotted in Fig.19a. These cases 
are summarized as follows: 
 Abs. NC DTR Min - Maximum EV demand combined 

with NC maximum pre-EV demand with Abs. Minimum 
DTR (red- coloured bar-plot) 

 NC STR Min - Maximum EV demand combined with 
NC maximum pre-EV demand using STR limit (pink- 
coloured bar-plot) 

 NC Winter DTR Min - Maximum Winter EV demand 
combined with NC maximum pre-EV winter demand 
using Hourly Minimum Winter DTR limits (green-
coloured bar-plot) 

 NC Summer DTR Min - Maximum Summer EV demand 
combined with NC maximum summer pre-EV demand 
using Hourly Minimum Summer DTR limits (green-
coloured bar-plot) 

 Coincidental Winter DTR Min - Maximum EV demand 
combined with coincidental pre-EV Winter demand 
using Hourly Minimum Winter DTR limit (purple-
coloured bar-plot). 

 Coincidental Summer DTR Min - Maximum EV demand 
combined with coincidental pre-EV Summer demand 
using Hourly Minimum Summer DTR limit (purple-
coloured bar-plot). 

The result in Fig. 20a clearly shows that the network EV 
HC is dependent on the levels of charging, with Level 1 EV 
chargers having higher EV HC. As the charger mixes change 
towards Level 2, a reduction of firm EV HC values can be 
noticed in all scenarios. 

The results for “Abs. NC DTR Min” case are too 
conservative and unrealistic, as the related weather and 
loading conditions have extremely low probability, if any, to 
occur. However, if there are no detailed weather data except 
maximum/minimum measurements, and if there are no 
detailed recordings of loading conditions except peak 
demands, this may be the only network EV HC that can be 
calculated.  Comparing firm EV HC results for STR and DTR 
limits, the STR limit (transformer rated MVA) also did not 
occur in analysis, and it may be also too conservative. 

When considering DTR limits in each season, although 
the combined lower limits of summer DTR is much lower 
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(Fig. 17), the EV charger demand in the UK in summer is 
lower than in the winter (Fig. 11). On the other hand, the 
increase in EV demand during winter is more pronounced 
than the change in the minimum seasonal DTR. Therefore, 
the NC seasonal DTR is more than doubled for summer in 
every scenario, compared to winter.  

The coincidental analysis of DTR is more realistic, and 
shows an increase in network EV HC compared to results for 
NC cases. If coincidental EV charger demands and pre-EV 
demands are used, the actual combined total demand is much 
lower than the NC total combined demands, resulting in 
higher network EV HC (with a higher EV HC in summer). 
The NC summer DTR scenario can host more EVs than the 
coincidental winter DTR scenario. For these reasons, it is 
important for DNOs to carefully examine opportunities 

offered by the higher DTR limits of network components in 
winter, as well as the lower EV charger load and pre-EV load 
in summer in devising optimal control schemes. In addition, 
types and mixes of EV charger types (Level a or Level 2) that 
are to be supplied, should be also monitored. 

7.2 Controlled EV Charging: Non-Firm EV HC 

The network EV HC results for controlled EV charging (non-
firm HC) are plotted in Fig. 20b. For all cases, significant 
increase in EV HC is observed across all cases. Although the 
trend remains the same as the uncontrolled EV charging, 
there is even more significant increase in EV HC in summer, 
as the decrease of EV charging demands in summer are 
more pronounced than decrease in DTR limits. 

.  

 
a) distribution network HC for uncontrolled EV charging (noncoincidental and coincidental cases) 

 
b) distribution network HC for controlled EV charging (noncoincidental and coincidental cases) 

Fig.20 Network EV HC results: a) firm EV HC (uncontrolled EV charging), and b) non-firm HC (controlled EV charging) 

8.   Conclusions 

This paper presented a simple yet robust methodology to 
determine the range of HC of distribution networks for 
controlled and uncontrolled residential EV charging, using 
both static and dynamic thermal ratings (STRs and DTRs) of 
network components. In order to produce realistic results of 
the analysis, the methodology is illustrated using UK-based 
uncontrolled EV charging load profiles and typical UK 
residential pre-EV demands, as well as weather data from a 
UK weather station. However, the presented methodology 
can be easily applied to other countries/locations/climates by 
providing required corresponding data. For example, in a 
country with a hot climate, where peak annual demand occurs 
in summer (e.g., due to electric cooling loads), coinciding 
with the minimum DTR values, the HC for EV charging may 

be significantly lower than in a country with cold climate, 
where the peak annual demand occurs in winter (e.g. in the 
UK, due to electric heating loads). The EV charging demands 
may be also different in summer and in winter (additional 
discharging of EV batteries for cooling/air-conditioning).  

The presented methodology allows to evaluate one 
commonly used network design parameter, ADMD, but also 
introduces per-hour ADMD values and MDED as the new 
and useful parameters for evaluating network EV HC for 
uncontrolled and controlled (scheduled) EV charging. In 
particular, the MDED allows to directly calculate the 
maximum number of EVs that can be safely connected 
(without overloading network components) in fully 
controlled EV charging mode, based on the available network 
supply capacity (difference between the applied thermal 
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limits and pre-EV load profile on the day of maximum 
demand). 

The presented results for uncontrolled EV charging are 
obtained by applying probabilistic Monte Carlo simulations 
on the available EV charging data from a UK field trial. Both 
Level 1 (older) and Level 2 (newer) EV chargers are included 
in the analysis, as well as their mixes. A direct comparison of 
obtained daily EV charging profiles with typical UK 
residential load profiles (pre-EV load) confirmed that their 
respective maximum demands occur at different times of the 
day, suggesting that conventional (single) ADMD values 
cannot be used for the correct evaluation of the impact of 
increasing number of EVs on LV and MV networks. Instead 
of the single ADMD value, hourly ADMD values, obtained 
from the maximum EV charging demands, should be 
combined with hourly maximum pre-EV load demands for 
assessing total maximum demands. 

Amongst a large number of all possible EV charging 
control schemes, the presented analysis introduces one 
particular EV scheduling strategy, which calculates the 
maximum number of EVs that can be hosted in a given 
network, with given pre-EV load demand and given loading 
limit of network components. Similar analysis could be done 
for analysing effects and impact of the anticipated 
electrification of heating, e.g., replacement of natural gas 
heating with heat pumps and other electric thermal loads. 
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