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1 Introduction

Let Ω be a smooth bounded domain in the plan. The harmonic Bergman projection is the orthogonal projection
in L2(Ω) onto the closed subspace of harmonic functions (see [5, Chap. 8] and [18]). This operator is known
mainly for playing an important role in complex analysis and operator theory but has also applications in the
field of partial differential equations ([12], [13, Chap. 4]). In fluid dynamics, it appears in the article [17] and
more recently in [14] for the analysis of the Navier-Stokes equations in non-primitive variables (stream function
and vorticity). Indeed, for an incompressible fluid flow, the vorticity field is orthogonal in L2 to the harmonic
functions (see [14] and references therein).

The Bergman projection is a kernel operator but this kernel can be explicitly computed only for particular
geometries (when Ω is a disk or a half plane for instance). From a numerical point of view, the discretization
of the Bergman projection requires the inversion of the mass matrix corresponding to the L2 scalar product
restricted to the subspace of harmonic functions. For this purpose, a discrete basis of harmonic functions in
L2 is needed and an efficient way to construct such a basis consists in using boundary elements and layer
potentials. However, while the theory of layer potentials in H1

ℓoc(R2) is well documented (see the classical book
[4] for instance), little is known on locally square integrable layer potentials. In this paper, we aim to provide a
theoretical framework for this notion. Furthermore, in numerical simulations, functions are usually defined on
a polygonal mesh, so we want to cover this case, which adds a substantial difficulty.

In its classical meaning, the single layer potential maps the Sobolev space H−1/2(Γ ) into H1
ℓoc(R2) (Γ

stands here for a Lipschitz continuous Jordan curve). A natural guess is that the H1
ℓoc regularity could be

lowered to L2
ℓoc by extending the single layer potential to the space H−3/2(Γ ). However the space H3/2(Γ ), and

then also its dual space H−3/2(Γ ) are ill defined on a Lipschitz continuous boundary, any intrinsic definition
of these spaces requiring that the boundary be at least of class C1,1. On the other hand, denoting by γd the
classical Dirichlet trace operator on Γ , the space H3/2(Γ ) = γdH

2
ℓoc(R2), although complex to describe in terms

of Sobolev regularity, is well defined (and coincides with H3/2(Γ ) when Γ is smooth). The main idea of the
paper is to define the single-layer potentials as Laplacians of biharmonic functions in R2 \ Γ , the asymptotic
behavior of the functions being taken into account by introducing an appropriate functional framework based on

1



weighted Sobolev spaces. This approach will prove successful and will allow to extend the single layer potential
to the space H−3/2(Γ ).

Considering the double layer potential, based on similar arguments, it will be extended to H−1/2(Γ ), the
dual space of H1/2(Γ ) = γnH

2
ℓoc(R2), where γn stands for the Neumann trace operator on Γ . It is worth

noticing that H1/2(Γ ) is equal to H1/2(Γ ) when Γ is smooth but this is no longer true as soon as Γ has corners
for instance.

Throughout the paper, we will assume without loss of generality that the logarithmic capacity of Γ is
lower than 1, using translation and dilatation of the coordinates system if necessary (see [16, Page 263] on
this matter). Roughly speaking, we shall prove the following result (that will be rigorously reformulated in
Theorem 4.1 thereafter):

Theorem 1.1. Let Γ be a Lipschitz Jordan curve. Then the single layer potential, considered as an operator
defined on H−1/2(Γ ) valued in L2

ℓoc(R2) extends by density to a bounded operator on H−3/2(Γ ). The double
layer potential, seen as an operator from H1/2(Γ ) into L2

ℓoc(R2) extends by density to a bounded operator on
H−1/2(Γ ).

Denote by Ω− the planar open set enclosed by Γ and by Ω+ its complement in R2. Providing that Γ is a
polygon, we will be able to reach our initial goal (to represent harmonic functions in L2

ℓoc by surface potentials)
by proving (this result is rigorously reformulated later in Corollary 8.1 and Corollary 8.2):

Theorem 1.2. Any harmonic function in L2(Ω−) can be represented by the restriction to Ω− of a single or
a double layer potential as defined in Theorem 1.1. The same conclusion applies for harmonic functions in
L2
ℓoc(Ω

+), assuming additional properties on their asymptotic behaviors.

The remainder of the introduction is devoted to giving the reader an overview of the main steps of the
analysis. As with Theorems 1.1 and 1.2, we do not seek to be rigorous at this stage but simply to give a taste
of the results. For the sake of brevity, we will focus only on the single layer potential.

The first step of the analysis is to extend the notions of Dirichlet and Neumann traces to functions in
L2
ℓoc(R2), harmonic in R2 \ Γ . This task will be carried out in the case where Γ is a curvilinear C1,1 polygon

(i.e. a generalization of the notion of polygon for which the edges are C1,1 curves) and requires the introduction
of the spaces:

H3/2
n (Γ ) =

{
γdu : u ∈ H2

ℓoc(R2), γnu = 0
}

and H1/2
d (Γ ) =

{
γnu : u ∈ H2

ℓoc(R2), γdu = 0
}
.

When Γ is smooth, we simply have H3/2
n (Γ ) = H3/2(Γ ) = H3/2(Γ ) and H1/2

d (Γ ) = H1/2(Γ ) = H1/2(Γ ).
However, all these equalities turn out to be false when Γ is a C1,1 polygon (this is what makes the analysis
tricky). The topologies of which these spaces are provided (and which will be specified thereafter) entail the
continuity and the density of the following inclusions:

H1/2
d (Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) and H3/2

n (Γ ) ⊂ H3/2(Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ).

As usual, we denote by H−3/2
n (Γ ) the dual space of H3/2

n (Γ ) and by H−1/2
d (Γ ) the dual space of H1/2

d (Γ ), using
L2(Γ ) as pivot space. More interesting for our purpose, the inclusions between dual spaces are also continuous
and dense:

L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−1/2
d (Γ ) and L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−3/2(Γ ) ⊂ H−3/2

n (Γ ).

Theorem 1.3. Any function u in L2
ℓoc(R2), harmonic on both sides of Γ admits one-sided Dirichlet traces

(denoted by γ−
d u and γ+

d u) in H−1/2
d (Γ ). The function u admits also one-sided Neumann traces (denoted by

γ−
n u and γ+

n u) in the space H−3/2
n (Γ ). Moreover, the trace operators γ±

d and γ±
n are the extensions by density

of the classical trace operators defined for functions in H1(Ω−) and in H1
ℓoc(Ω

+).

This notion of trace being clarified, we will turn again to the layer potentials and investigate the question
of their Dirichlet and Neumann traces on Γ . Let SΓ : H−1/2(Γ ) −→ H1

ℓoc(R2) be the classical single layer
potential and recall the properties:

γ±
n ◦ SΓ : H−1/2(Γ ) −→ H−1/2(Γ ) and γ+

n ◦ SΓ + γ−
n ◦ SΓ = Id, (1a)
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this latter identity being usually called the “jump relation”. Let now S †
Γ : H−1/2(Γ ) −→ L2

ℓoc(R2) stands for
the extended single layer potential defined in Theorem 1.1. According to Theorem 1.3 we have in this case:

γ±
n ◦ S †

Γ : H−3/2(Γ ) −→ H−3/2
n (Γ ), (1b)

where H−3/2(Γ ) is continuously and densely embedded in H−3/2
n (Γ ) but in general different from H−3/2

n (Γ ),
which suggests that the jump relation is not likely to apply in this case. Surprisingly enough, the relation is
well and truly satisfied. More generally, concerning the traces of the single layer potential, we will establish:

Theorem 1.4. The two one-sided Dirichlet traces on Γ of a single layer potential (as defined in Theorem 1.1)
coincide. The “jump” across Γ of the one-sided Neumann traces of a single layer potential of density q ∈
H−3/2(Γ ) is equal to q.

Actually, we will show that there do exist single layer potentials for which the one-sided Neumann traces

are both in H−3/2
n (Γ ) but not in H−3/2(Γ ), although their difference is in this latter space. This means that

some singular contributions of the normal derivatives cancel out by forming their difference. This notable
phenomenon seems to be typical of the single layer potential on non-smooth boundaries.

The next point we shall discuss in the paper is the solvability of the Dirichlet and Neumann Laplace equations

with boundary data inH−1/2
d (Γ ) andH−3/2

n (Γ ). As for the Laplace equation with Dirichlet boundary conditions
for example, we will prove:

Theorem 1.5. Assume that Γ is a (straight) polygon. For every p ∈ H−1/2
d (Γ ) there exists a function u− ∈

L2(Ω−) harmonic in Ω− such that γ−
d u− = p and there exists a function u+ ∈ L2

ℓoc(Ω
+) (with a suitable

asymptotic behavior), harmonic in Ω+ such that γ+
d u+ = p. There is no uniqueness in general.

The existence of (non zero) harmonic functions in L2 with vanishing Dirichlet data in a domain with corners
has long been known (see for instance [7] where an example of such a function is provided).

At this point, a kind of reciprocal of Theorem 1.4 will still be needed to prove Theorem 1.2. This result can
be stated as follows:

Theorem 1.6. Let u be in L2
ℓoc(R2), harmonic in R2\Γ , with an appropriate asymptotic behavior. If u satisfies

γ−
d u = γ+

d u then q = γ−
n u+ γ+

n u is in H−3/2(Γ ) and u = S †
Γ q.

The proof of Theorem 1.2 now relies on a proper combination of Theorems 1.3, 1.4 and 1.5. Thus, denote
by p the one-sided trace γ−

d u− of a given function u−, harmonic in L2(Ω−). Theorem 1.5 ensures the existence

of a harmonic function u+ in L2
ℓoc(Ω

+) (with an appropriate asymptotic behavior) such that γ+
d u+ = p. Define

q = γ−
n u− + γ+

n u+ (the jump of the Neumann trace) and conclude, applying Theorem 1.6 that S †
Γ q|Ω± = u±.

We shall also provide a negative result, contrasting with what happens for harmonic functions u such that
u|Ω− ∈ H1(Ω−) and u|Ω+ ∈ H1

ℓoc(Ω
+). Indeed, such a function harmonic in R2 \ Γ (and with a suitable

asymptotic behavior) can be represented as the sum of a single and double layer potentials. On the contrary:

Theorem 1.7. There exist functions in L2
ℓoc(R2), harmonic in R2 \ Γ (with a suitable asymptotic behavior)

that cannot be represented as the sum of a single and a double layer potentials.

We will end the article by studying the invertibility of the boundary operators introduced in (1). Recall
that the logarithmic capacity of Γ is assumed to be lower than 1 and define:

H̃−3/2
n (Γ ) =

{
q ∈ H−3/2

n (Γ ) : ⟨⟨q,1Γ ⟩⟩− 3
2 ,

3
2 ,n

= 0
}
,

where ⟨⟨·, ·⟩⟩− 3
2 ,

3
2 ,n

stands for the duality pairing on H−3/2
n (Γ )×H3/2

n (Γ ) that extends the L2 inner product.

Theorem 1.8. The bounded operators γd ◦ S †
Γ : H−3/2(Γ ) −→ H−1/2

d (Γ ), γ−
n ◦ S †

Γ : H−3/2(Γ ) −→ H̃−3/2
n (Γ )

and γ+
n ◦ S †

Γ : H−3/2(Γ ) −→ H−3/2
n (Γ ) are surjective but not injective in general.

The paper is organized as follows: The following section is dedicated to the reminder of some basic notions
about trace operators and surface potentials. The main function spaces on which the analysis is based when
Γ is Lipschitz continuous, are introduced in Section 3. They are used in Section 4 to extend the notion of
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surface potential to square integrable functions. From Section 5 the boundary Γ is assumed to be a C1,1

(curvilenar) polygon. This additional regularity allows the introduction of new function spaces involved in new
trace theorems stated in the next section. The “jump relations” for surface potentials are proved in Section 6.
From Section 7, the analysis focuses on the case where Γ is a straight polygon. Section 7 is dedicated to
solvability issues for the Laplace equation with Dirichlet and Neumann boundary data. Finally, in section 8,
we discuss some transmission problems and address the issue of representing locally square-integrable harmonic
functions as surface potentials. We end the paper with the proof of Theorem 1.8.

For the ease of the reader, the appendix contains a list of the main function spaces and operators.

2 Notations and recalls

Geometric settings

Let Ω− be an open and bounded planar domain whose boundary Γ is a Jordan curve. The (unbounded)
complement of Ω− is denoted by Ω+. In the sequel, we shall consider four levels of regularity for Γ : It will
be either of class C1,1 (referred to as the smooth case), either Lipschitz continuous (see [10, Definition 1.2.1.1]
for a precise definition of this notion), either a C1,1 polygon (see [10, Definition 1.4.5.1]), or simply a classical
(straight) polygon. In either case, the unit tangent vector field τ (oriented counterclockwise) is a.e. well defined
on Γ and the same applies to the outer unit normal vector field n− = −τ⊥ and to the inner normal vector field
n+ = τ⊥ (the superscript ⊥ meaning that the vector is counterclockwise rotated of an angle π/2). To lighten
the notations, we shall sometimes write simply n instead of n−.

Traces on the boundary of a Lipschitz domain

In this subsection, we collect some definitions and properties about the Dirichlet and Neumann trace operators
in the case where Γ is Lipschitz continuous. On the space

DΩ±(R2) =
{
u|Ω± : u ∈ D(R2)

}
,

the one-sided Dirichlet and Neumann trace operators are classically defined by:

γ±
d : DΩ±(R2) −→ L2(Γ )

u 7−→ u|Γ
and

γ±
n : DΩ±(R2) −→ L2(Γ )

u 7−→ ∇u · n±|Γ .
(2)

According to [1, §9.2], when Γ is Lipschitz continuous, the sobolev space Hs(Γ ) is well (invariantly) defined
only for those indices s that belong to [−1, 1] and rephrasing [1, Theorem 9.2.1] (or [16, Theorem 3.38]), we
have:

Theorem 2.1. The one-sided Dirichlet trace operators γ±
d extend by density to bounded operators from Hs+1/2(Ω±)

to Hs(Γ ) for every 0 < s < 1.

According to [15, Theorem 1] we can also state:

Theorem 2.2. The Dirichlet and Neumann trace operators (2) extend by density to bounded operators on
H2(Ω±) (valued in L2(Γ )) and ker γ±

d ∩ ker γ±
n = H2

0 (Ω
±), where we recall that H2

0 (Ω
±) is the closure of

D(Ω±) in H2(Ω±).

The Neumann trace operator can actually be defined on a larger space than H2(Ω±), namely on:

H1(Ω±,∆) =
{
u ∈ H1(Ω±) : ∆u ∈ L2(Ω±)

}
.

Thus, according to [16, Lemma 4.3], for every u ∈ H1(Ω±,∆), there exists a unique gu ∈ H−1/2(Γ ) such that:〈
gu, γ

±
d v
〉
− 1

2 ,
1
2

= (∆u, v)L2(Ω±) − (∇u,∇v)L2(Ω±;R2) for all v ∈ H1(Ω±),

where ⟨·, ·⟩− 1
2 ,

1
2
stands for the duality bracket between the spaces H−1/2(Γ ) and H1/2(Γ ), that extends the

L2 inner product. Since DΩ±(R2) is dense in H1(Ω±,∆) (see [10, Lemma 1.5.3.9]), we are allowed to denote
gu = γ±

n u and we have (see [16, Theorem 4.4] for the Green’s identity):
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Proposition 2.1. The Neumann trace operators γ±
n defined in (2) extend by density to bounded operators from

H1(Ω±,∆) into H−1/2(Γ ). Moreover, the second Green’s identity holds:

(∆u, v)L2(Ω±) − (u,∆v)L2(Ω±) =
〈
γ±
n u, γ±

0 v
〉
− 1

2 ,
1
2

−
〈
γ±
n v, γ±

0 u
〉
− 1

2 ,
1
2

for all u, v ∈ H1(Ω±,∆). (3)

The space H3/2(Ω±,∆) =
{
u ∈ H3/2(Ω±) : ∆u ∈ L2(Ω±)

}
(provided with the graph norm) is a subspace

of H1(Ω±,∆) and according to [9, Lemma 3.2]:

Proposition 2.2. The operators γ±
n : H3/2(Ω±,∆) −→ L2(Γ ) are bounded and onto.

Finally, the following density result will be useful in the sequel:

Proposition 2.3. The spaces γdDΩ±(R2) and γnDΩ±(R2) are dense in L2(Γ ).

The first assertion is proved in [9, page 88] and the second results from Proposition 2.2 and [6, Lemma 3].

Surface potentials on a Lipschitz boundary

A general presentation of the theory of surface potentials on the boundary of a Lipschitz domain can be found
in the book [16], to which we will refer in the following for more details on this subject. For the ease of the
reader, let us recall some basics: The fundamental solution of the Laplace’s equation is defined by:

G(x) = − 1

2π
ln |x| for all x ∈ R2 \ {0}.

The single layer potential is the weakly singular integral operator defined for any q ∈ L2(Γ ) by:

SΓ q(x) =

ˆ
Γ

G(x− y)q(y) dy for all x ∈ R2 \ Γ,

and extended by density to a bounded operator SΓ : H−1/2(Γ ) −→ H1
ℓoc(R2). The double layer potential is

the singular integral operator: DΓ : H1/2(Γ ) −→ H1
ℓoc(R2), defined by:

DΓ p(x) =

ˆ
Γ

∇G(x− y) · n(y)q(y) dy for all x ∈ R2 \ Γ.

The single layer potentiel and the double layer potential both admit one-sided Dirichlet and Neumann traces
on both sides of Γ . In [16] it is proved that the following operators are well defined and bounded:

γ±
d ◦ SΓ : H−1/2(Γ ) −→ H1/2(Γ ) and γ±

d ◦ DΓ : H1/2(Γ ) −→ H1/2(Γ ),

γ±
n ◦ SΓ : H−1/2(Γ ) −→ H−1/2(Γ ) and γ±

n ◦ DΓ : H1/2(Γ ) −→ H−1/2(Γ ).

Moreover γ+
d ◦ SΓ = γ−

d ◦ SΓ (for the single layer potential, one-sided Dirichlet traces on Γ coincide) and
γ+
n ◦ DΓ = −γ−

n ◦ DΓ (for the double layer potential, one-sided Neumann traces on Γ have opposite signs).
To simplify the notation, we shall drop the superscripts + and − when the Dirichlet traces coincide or when
the Neumann traces have opposite signs. Thus, we denote SΓ = γd ◦ SΓ and DΓ = γn ◦ DΓ . The operator
SΓ : H−1/2(Γ ) −→ H1/2(Γ ) is an isomorphism (recall that the logarithmic capacity of Γ is assumed to be lower
than 1, see [16, Theorem 8.6] about this question). The operator DΓ : H1/2(Γ ) −→ H−1/2(Γ ) is Fredholm
of index 0 with a one dimensional kernel spanned by the function 1Γ (the constant function equal to one on

Γ ) and with range H̃−1/2(Γ ) =
{
q ∈ H−1/2(Γ ) : ⟨q,1Γ ⟩− 1

2 ,
1
2
= 0

}
. Introducing H̃1/2(Γ ) =

{
p ∈ H1/2(Γ ) :

(p,1Γ )L2(Γ ) = 0
}
, we deduce that DΓ : H̃1/2(Γ ) −→ H̃−1/2(Γ ) is an isomorphism. The following identities are

usually referred to as the “jump relations” on Γ :

γ+
n ◦ SΓ + γ−

n ◦ SΓ = Id and γ+
d ◦ DΓ − γ−

d ◦ DΓ = Id.

The space A of the affine functions in R2 plays a particular role in the asymptotic behavior of the single layer
potential. Indeed, for |x| large, the single layer potential admits the following asymptotic expansion:

SΓ q(x) = − 1

2π
⟨q,1Γ ⟩− 1

2 ,
1
2
ln |x|+ 1

2π

x1

|x|2
⟨q, y1⟩− 1

2 ,
1
2
+

1

2π

x2

|x|2
⟨q, y2⟩− 1

2 ,
1
2
+ O(1/|x|2). (4a)
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The three first terms in the right hand side are not in L2(R2) while the remainder is. Let A
1
2

S be the three

dimensional subspace of H1/2(Γ ) spanned by the traces of the affine functions. Let A
− 1

2

S = S−1
Γ A

1
2

S (a three
dimensional subspace in H−1/2(Γ )) and define {q1, q2, q3} a basis of this space normalized in such a way that
⟨qj ,SΓ qk⟩− 1

2 ,
1
2
= δj,k (the Kronecker symbol) for every indices j, k ∈ {1, 2, 3}. Notice that SΓ qj is not an affine

function in R2 but there exist affine functions Pj such that SΓ qj |Ω− = Pj |Ω− (j = 1, 2, 3).
Considering now the double layer potential, it can be expanded for |x| large as:

DΓ p(x) = − 1

2π

x1

|x|2
⟨n1, p⟩− 1

2 ,
1
2
− 1

2π

x2

|x|2
⟨n2, p⟩− 1

2 ,
1
2
+ O(1/|x|2), (4b)

where we recall that n = (n1, n2) is the unit normal vector field on Γ directed toward the exterior of Ω−.

Let A
− 1

2

D be the two dimensional subspace of H̃−1/2(Γ ) spanned by n1 and n2. Its preimage by DΓ is a two

dimensional subspace of H̃1/2(Γ ) denoted by A
1
2

D . Let {p1, p2} be a basis of this space normalized in such a
way that ⟨DΓ pj , pk⟩− 1

2 ,
1
2
= δj,k (j, k = 1, 2). As for the single layer potential, the double layer potential DΓ pj

is not an affine function in R2 but there exists an affine function Qj such that DΓ pj |Ω− = Qj |Ω− (for j = 1, 2).
To be complete on the questions of asymptotic behavior of harmonic functions, let us mention a last result

borrowed from [5, Chap. 10, Ex. 1]. Any function v harmonic outside a compact set can be expanded in this
region as:

v(x) =

+∞∑
j=0

pm(x) + q0 ln |x|+
+∞∑
j=0

qm(x)

|x|2m
, (4c)

where q0 ∈ R and, for every integer m, pm, qm are harmonic polynomials on R2 of degree m.
We will mainly rely on the following characterization of the surface potentials in the sequel:

Proposition 2.4. Assume that Γ is Lipschitz continuous. The single layer potential of density q ∈ H−1/2(Γ )
is the unique distribution u ∈ D ′(R2) satisfying:

⟨u,−∆θ⟩D′(R2),D(R2) = ⟨q, γdθ⟩− 1
2 ,

1
2

for all θ ∈ D(R2); (5a)

u(x) = ⟨q,1Γ ⟩− 1
2 ,

1
2
G(x) + o(1) as |x| −→ +∞. (5b)

The double layer potential of density p ∈ H1/2(Γ ) is the unique distribution v ∈ D ′(R2) satisfying:

⟨v,−∆θ⟩D′(R2),D(R2) = ⟨γnθ, p⟩− 1
2 ,

1
2

for all θ ∈ D(R2); (6a)

v(x) = o(1) as |x| −→ +∞. (6b)

Notice that any distribution u satisfying (5a) and any distribution v satisfying (6a) is harmonic in Ω+ so
that, according to the generalization to distributions of Weyl’s lemma, they are C∞ in Ω+ and the asymptotic
conditions (5b) and (6b) make sens.

Proof. Let q be in H−1/2(Γ ). Applying the second Green’s identity (3), we easily verify that the single layer
potential SΓ q satisfies both conditions (5). On the other hand, if u1 and u2 are two distributions satisfying
these conditions, then u = u1 − u2 is a distribution harmonic in the whole plane. According to Weyl’s lemma,
it is C∞ in R2 and since it tends to 0 at infinity, we conclude with Liouville’s theorem that u = 0. The same
arguments apply for the double layer potential.

Since in Proposition 2.4, u = SΓ q and v = DΓ p, it turns out that the distribution u is actually in H1
ℓoc(R2)

while the distribution v is such that v|Ω− ∈ H1(Ω−) and v|Ω+ ∈ H1
ℓoc(Ω

+). Our purpose is now to weaken
the regularity of q and p and to generalize the definition of the single and double layer potentials in order to
represent every function in L2

ℓoc(R2), harmonic in R2 \ Γ with asymptotic behaviors as in (5b) or (6b).

3 Main function spaces

Following an idea of [2, §7], we introduce the weight fonctions ρ and lg:

ρ(x) =
√
1 + |x|2 and lg(x) = ln(2 + |x|2) for all x ∈ R2, (7)
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which enter the definition of the weighted Sobolev space:

W 2(R2) =
{
u ∈ D ′(R2) :

u

ρ2 lg
∈ L2(R2),

1

ρ lg

∂u

∂xj
∈ L2(R2) and

∂2u

∂xj∂xk
∈ L2(R2), ∀ j, k = 1, 2

}
.

Proposition 3.1. The space W 2(R2), provided with its natural norm, enjoys the following properties (borrowed
from [2, Theorem 7.2] for the first and second points and from [2, Theorem 9.6] for the third one):

1. The space D(R2) is dense in W 2(R2);

2. There exists a sequence of cut-off functions (ϕk)k⩾1 in D(R2) such that, for every u ∈ W 2(R2), ϕku −→ u
in W 2(R2);

3. The Laplace operator ∆ : W 2(R2)/A −→ L2(R2) is an isomorphism (we recall that A is the space of the
affine functions in R2).

For p ∈ L2(Γ ), we denote by µ(p) the mean value of p on Γ , i.e. µ(p) = |Γ |−1(1Γ , p)L2(Γ ). The original
idea at this point is to endow the space W 2(R2) with the following inner products (for u, v ∈ W 2(R2)):

(u, v)S = (∆u,∆v)L2(R2) +

3∑
j=1

⟨qj , γdu⟩− 1
2 ,

1
2
⟨qj , γdv⟩− 1

2 ,
1
2

(8a)

(u, v)D = (∆u,∆v)L2(R2) +

2∑
j=1

(pj , γnu)L2(Γ )(pj , γnv)L2(Γ ) + µ(γdu)µ(γdv), (8b)

where the subscripts S and D refer to “single” (layer) and “double” (layer), as it will become clear in the sequel.
The corresponding norms, denoted by ∥ · ∥S and ∥ · ∥D are both equivalent to the natural norm of W 2(R2), the
proof being a straightforward consequence of [2, Corollary 8.4]. It is already worth noting that:

A ⊥ =
{
u ∈ W 2(R2) : (γdu, γdθ) 1

2
= 0 ∀ θ ∈ A

}
in (W 2(R2); ∥ · ∥S),

A ⊥ =
{
u ∈ W 2(R2) : (γnu, γnθ)L2(Γ ) + µ(γdu)µ(γdθ) = 0 ∀ θ ∈ A

}
in (W 2(R2); ∥ · ∥D).

Next, we introduce the boundary spaces:

H3/2(Γ ) = γdW
2(R2) and H1/2(Γ ) = γnW

2(R2). (9)

Since the weight functions (7) do not modify the local properties of the space, we could as well replace the
space W 2(R2) by the space H2

ℓoc(R2) in these definitions. We emphasize that the superscripts 3/2 and 1/2 in
(9) have no other meaning than to recall that H3/2(Γ ) = H3/2(Γ ) and H1/2(Γ ) = H1/2(Γ ) when Γ is smooth.
We introduce as well the closed subspaces of W 2(R2):

W 2
d (R2) = {u ∈ W 2(R2) : γdu = 0} and W 2

n(R2) = {u ∈ W 2(R2) : γnu = 0}.

The images of W 2
d (R2) and W 2

n(R2) by γn and γd respectively are subspaces of H3/2(Γ ) and H1/2(Γ ). We
denote them by:

H3/2
n (Γ ) = γdW

2
n(R2) and H1/2

d (Γ ) = γnW
2
d (R2). (10)

It is well known that when Γ is of class C1,1, the spaces H3/2
n (Γ ) and H3/2(Γ ) coincide, both being equal to

H3/2(Γ ). In the same way, in the smooth case, H1/2
d (Γ ) = H1/2(Γ ) = H1/2(Γ ). This is no longer true however

when Γ is a C1,1 (curvilinear) polygon (and a fortiori when Γ is only Lipschitz continuous) as explained in [8]
where a counterexample is provided. Indeed in this case, a pair of functions (f, g) ∈ H1(Γ )×L2(Γ ) is equal to
the Dirichlet and Neumann traces of a function in H2

ℓoc(R2) if and only if the vector field (∂f/∂τ)τ + gn is in
H1/2(Γ ;R2). This condition implies in particular that the functions f and g have to satisfy some compatibility
conditions at the vortices of the domain (as indicated in [10, Theorem 1.5.2.4]).

For every p ∈ H3/2(Γ ), we define LSd p as the unique fonction in W 2(R2) achieving:

inf
{
∥u∥S : u ∈ W 2(R2), γdu = p

}
. (11)
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Thus LSd p is the orthogonal projection of any preimage of p by γd on the closed subspaceW 2
d (R2)⊥ of (W 2(R2), ∥·

∥S). It is not difficult to verify that for every p ∈ H3/2(Γ ):

∆2(LSd p) = 0 in D ′(R2 \ Γ ) and γd(L
S
d p) = p. (12)

In the same fashion, we define LDd p by replacing the norm ∥ · ∥S with the norm ∥ · ∥D in (11). The function LDd p
verifies both identities (12) as well. This allows us to define two scalar products in H3/2(Γ ):

(p1, p2)
A
3
2
=
(
LAd p1, L

A
d p2

)
A

A ∈ {S,D},

whose associated norms, denoted by ∥ · ∥A3
2

are equivalent. The space H3/2(Γ ) provided with any of these norms

is a Hilbert space. We denote by ΠA
d the orthogonal projection onto W 2

d (R2)⊥ in (W 2(R2), ∥·∥A). The following
identities are obvious:

γd ◦ LAd = Id and LAd ◦ γd = ΠA
d . (13)

The very same procedure can be carried out by replacing the Dirichlet trace operator γd with the Neumann
trace operator γn. This leads us to define for A ∈ {S,D} the operators LAn , the projectors ΠA

n , the scalar
products (·, ·)A1

2

and the norms ∥ · ∥A1
2

in the space H1/2(Γ ). As in (12), the functions LAn q verify:

∆2(LAn q) = 0 in D ′(R2 \ Γ ) and γn(L
A
n q) = q for all q ∈ H 1

2 (Γ ). (14)

By construction, the following operators are isometric for any A ∈ {S,D}:

LAd :
(
H3/2(Γ ), ∥ · ∥A3

2

)
−→

(
W 2

d (R2)⊥, ∥ · ∥A
)
, (15a)

LAn :
(
H1/2(Γ ), ∥ · ∥A1

2

)
−→

(
W 2

n(R2)⊥, ∥ · ∥A
)
. (15b)

The space H3/2(Γ ) is continuously embedded in L2(Γ ) since there exists a constant CΓ > 0 such that:

∥p∥L2(Γ ) = ∥γd ◦ LSd p∥L2(Γ ) ⩽ CΓ ∥LSd p∥W 2(R2) = ∥p∥S3
2

for all p ∈ H3/2(Γ ).

The embedding is also dense (because the space γdD(R2) is densely embedded in L2(Γ ) as claimed in Proposi-
tion 2.3). Identifying L2(Γ ) with its dual space by means of Riesz representation theorem, we obtain a so-called
Gelfand triple of Hilbert spaces (see [14, Appendix A]):

H3/2(Γ ) ⊂ L2(Γ ) ⊂ H−3/2(Γ ), (16a)

in which H−3/2(Γ ) is the dual space of H3/2(Γ ) and L2(Γ ) is the pivot space. Similarly, we define H−1/2(Γ )
the dual space of H1/2(Γ ) and the Gelfand triple:

H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2(Γ ). (16b)

The Gelfand triples (16) justify that the duality brackets ⟨⟨·, ·⟩⟩− 3
2 ,

3
2
(between the spaces H−3/2(Γ ) and H3/2(Γ ))

and ⟨⟨·, ·⟩⟩− 1
2 ,

1
2
(between the spaces H−1/2(Γ ) and H1/2(Γ )) “extend” the L2(Γ ) inner product. Concerning

embedding results, we can also state:

Proposition 3.2. The inclusions H3/2(Γ ) ⊂ H1/2(Γ ) and H1/2(Γ ) ⊂ H−1/2(Γ ) are continuous and dense.

Proof. The first inclusion is proved the same way as the inclusion H3/2(Γ ) ⊂ L2(Γ ). The second inclusion
results from the continuity and the density of the inclusion L2(Γ ) ⊂ H−1/2(Γ ).

It remains to make precise the topologies of the spaces H3/2
n (Γ ) and H1/2

d (Γ ) introduced in (10). For every

p ∈ H3/2
n (Γ ), we define Lnp as the unique fonction in W 2

n(R2) achieving:

inf
{
∥u∥D : u ∈ W 2

n(R2), γdu = p
}
. (17)

Thus Lnp is the orthogonal projection of any preimage in W 2
n(R2) of p by γd on the closed subspace

(
W 2

d (R2)∩
W 2

n(R2)
)⊥

in the space
(
W 2

n(R2), ∥ · ∥D
)
. The function Lnp is biharmonic in R2 \ Γ and satisfies γd(Ln)p = p

and γn(Lnp) = 0. The space H3/2
n (Γ ) is endowed with the inner product:

(p1, p2) 3
2 ,n

=
(
Lnp1,Lnp2

)
D

= (∆Lnp1,∆Lnp2)L2(R2) + µ(p1)µ(p2), for all p1, p2 ∈ H3/2
n (Γ ). (18)
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We denote by ∥ · ∥ 3
2 ,n

the corresponding norm. Similarly, for any q ∈ H1/2
d (Γ ), Ldq stands for the unique

function in W 2
d (R2) achieving:

inf
{
∥u∥S : u ∈ W 2

d (R2), γnu = q
}
. (19)

Thus Ldq is a function biharmonic in R2 \ Γ that satisfies γd(Ldq) = 0 and γn(Ldq) = q. The space H1/2
d (Γ ) is

provided with the scalar product:

(q1, q2) 1
2 ,d

=
(
Ldq1,Ldq2

)
S
= (∆Ldq1,∆Ldq2)L2(R2), for all q1, q2 ∈ H1/2

d (Γ ), (20)

and the corresponding norm is denoted by ∥ · ∥ 1
2 ,d

. The spaces
(
H3/2

n (Γ ), ∥ · ∥ 3
2 ,n

)
and

(
H1/2

d (Γ ), ∥ · ∥ 1
2 ,d

)
are

Hilbert spaces and by construction, the following operators are isometric:

Ln :
(
H3/2

n (Γ ), ∥ · ∥ 3
2 ,n

)
−→

(
Bn(R2), ∥ · ∥D

)
, (21a)

Ld :
(
H1/2

d (Γ ), ∥ · ∥ 1
2 ,d

)
−→

(
Bd(R2), ∥ · ∥S

)
, (21b)

where Bn(R2) =
(
W 2

d (R2)∩W 2
n(R2)

)⊥∩W 2
n(R2) and Bd(R2) =

(
W 2

d (R2)∩W 2
n(R2)

)⊥∩W 2
d (R2). The functions

in Bn(R2) are those in W 2(R2) which are biharmonic in R2 \ Γ with homogeneous Neumann boundary data
and the functions in Bd(R2) are biharmonic in R2 \ Γ with homogeneous Dirichlet boundary data.

4 Square integrable surface potentials

In this section, we still assume that Γ is Lipschitz continuous. To every q ∈ H−3/2(Γ ) (applying Riesz repre-
sentation Theorem), we can associate a unique uq ∈ W 2(R2) such that:(

uq, θ
)
S
= ⟨⟨q, γdθ⟩⟩− 3

2 ,
3
2

for all θ ∈ W 2(R2), (22a)

and we define:

S †
Γ q = −∆uq +

3∑
j=1

⟨qj , γduq⟩− 1
2 ,

1
2
SΓ qj . (22b)

Similarly, to every p ∈ H−1/2(Γ ), we can associate a unique vp ∈ W 2(R2) such that:(
vp, θ

)
D

= ⟨⟨p, γnθ⟩⟩− 1
2 ,

1
2

for all θ ∈ W 2(R2), (23a)

and we define:

D†
Γ p = −∆vp +

2∑
j=1

(pj , γnvp)L2(Γ )DΓ pj . (23b)

The expressions of the functions uq and vq with respect to q and p can be made precise. Considering the Gelfand
triple (16a) and (16b), we can classically (see [14, Appendix A]) define the isometric operators

Td : H3/2(Γ ) −→ H−3/2(Γ )
p 7−→ (p, ·)S3

2

and
Tn : H1/2(Γ ) −→ H−1/2(Γ )

q 7−→ (q, ·)D1
2

. (24)

Lemma 4.1. For every q ∈ H−3/2(Γ ), the function uq defined by (22a) is equal to LSd ◦ T−1
d q. For every

p ∈ H−1/2(Γ ), the function vp defined by (23a) is equal to LDn ◦ T−1
n p. It follows that the applications:

H−3/2(Γ ) −→
(
W 2

d (R2)⊥, ∥ · ∥S
)

q 7−→ uq
and

H−1/2(Γ ) −→
(
W 2

n(R2)⊥, ∥ · ∥D
)

p 7−→ vp,

are isometric and that:

S †
Γ q = −∆LSd ◦ T−1

d q +

3∑
j=1

⟨qj ,T−1
d q⟩− 1

2 ,
1
2
SΓ qj for all q ∈ H−3/2(Γ ), (25a)

D†
Γ p = −∆LDn ◦ T−1

n p+

2∑
j=1

⟨T−1
n p, pj⟩− 1

2 ,
1
2
DΓ pj for all p ∈ H−1/2(Γ ). (25b)
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Proof. Let q ∈ H−3/2(Γ ) and θ ∈ W 2(R2). By definition of the operator Td:

⟨⟨q, γdθ⟩⟩− 3
2 ,

3
2
=
(
T−1
d q, γdθ

)S
3
2

=
(
LSd ◦ T−1

d q, LSd ◦ γdθ
)
S
.

According to (13): (
LSd ◦ T−1

d q, LSd ◦ γdθ
)
S
=
(
LSd ◦ T−1

d q,ΠS
d θ
)
S
=
(
LSd ◦ T−1

d q, θ
)
S
,

which means that uq = LSd ◦ T−1
d q considering (22a). The result concerning vp is proved in the same way.

Theorem 4.1. The linear operators S †
Γ : H−3/2(Γ ) −→ L2

ℓoc(R2) and D†
Γ : H−1/2(Γ ) −→ L2

ℓoc(R2) are bounded
and they satisfy:

– For every q ∈ H−3/2(Γ ):〈
S †

Γ q,−∆θ
〉

D′(R2),D(R2)
= ⟨⟨q, γdθ⟩⟩− 3

2 ,
3
2

for all θ ∈ D(R2); (26a)

S †
Γ q(x) = ⟨⟨q,1Γ ⟩⟩− 3

2 ,
3
2
G(x) + o(1) as |x| −→ +∞; (26b)

– For every p ∈ H−1/2(Γ ):

⟨D†
Γ p,−∆θ⟩D′(R2),D(R2) = ⟨⟨p, γnθ⟩⟩− 1

2 ,
1
2

for all θ ∈ D(R2); (27a)

D†
Γ p(x) = o(1) as |x| −→ +∞. (27b)

The operators S †
Γ and D†

Γ are the extensions by density of the classical single and double layer potentials to the
spaces H−3/2(Γ ) and H−1/2(Γ ) respectively.

Proof. For every q ∈ H−3/2(Γ ), we can rewrite (22a):

(∆uq,∆θ)L2(R2) +

3∑
j=1

⟨qj , γduq⟩− 1
2 ,

1
2
⟨qj , γdθ⟩− 1

2 ,
1
2
= ⟨⟨q, γdθ⟩⟩− 3

2 ,
3
2

for all θ ∈ D(R2).

According to (5a), we can transform the second term in the left and side to obtain:

〈
∆uq −

3∑
j=1

⟨qj , γduq⟩− 1
2 ,

1
2
SΓ qj ,∆θ

〉
D′(R2),D(R2)

= ⟨⟨q, γdθ⟩⟩− 3
2 ,

3
2

for all θ ∈ D(R2),

which is (26a). Let now x be a point in Ω+ and denote by d(x, Γ ) the distance from x to Γ . On the disk
D(x, d(x, Γ )) of center x and radius d(x, Γ ), the function ∆uq is harmonic. It follows that:

∆uq(x) = −S †
Γ q(x) +

3∑
k=1

⟨qk, γduq⟩− 1
2 ,

1
2
SΓ qk(x) =

1

πd(x, Γ )2

ˆ
D(x,d(x,Γ ))

∆uq(y) dy,

from which we deduce that:∣∣∣∣∣S †
Γ q(x)−

3∑
k=1

⟨qk, γduq⟩− 1
2 ,

1
2
SΓ qk(x)

∣∣∣∣∣ ⩽ 1√
πd(x, Γ )

∥∆uq∥L2(R2). (28)

Taking into account the asymptotic expansion (4a), we obtain on the one hand:

3∑
k=1

⟨qk, γduq⟩− 1
2 ,

1
2
SΓ qk(x) =

(
3∑

k=1

⟨qk, γduq⟩− 1
2 ,

1
2
⟨qk,1Γ ⟩− 1

2 ,
1
2

)
G(x) + O(1/|x|). (29a)

On the other hand, equality (22a) with θ = 1R2 yields:

⟨⟨q,1Γ ⟩⟩− 3
2 ,

3
2
=

3∑
k=1

⟨qk, γduq⟩− 1
2 ,

1
2
⟨qk,1Γ ⟩− 1

2 ,
1
2
. (29b)
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Combining both equations (29) with (28) and letting |x| go to +∞, we obtain (26b). The proof of equalities
(27) is similar. The only difficulty consists in noticing that the function vp in (23a) achieves:

min
v∈W 2(R2)

1

2
∥v∥2D − ⟨⟨p, γnv⟩⟩− 1

2 ,
1
2
,

and therefore that µ(vp) = 0.
According to (16a) and Propositions 3.2, all the following inclusions are continuous and dense:

H3/2(Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−3/2(Γ ).

It entails that for every q ∈ H−1/2(Γ ) and p ∈ H3/2(Γ ), we are allowed to write:

⟨⟨q, p⟩⟩− 3
2 ,

3
2
= ⟨q, p⟩− 1

2 ,
1
2
.

Comparing (5) and (26), we conclude that S †
Γ q = SΓ q for every q ∈ H−1/2(Γ ). In the same fashion, we can

prove that D†
Γ p = DΓ p for every p ∈ H1/2(Γ ). It remains only to verify that S †

Γ and D†
Γ are bounded but this

is a straightforward consequence of the expressions (25) in Lemma 4.1.

5 Further function spaces

In this section, we assume that Γ is a C1,1 curvilinear polygon and we denote by Γj its C1,1 edges and by cj its
vertices (j = 1, . . . , N). In the sequel we will need some particular test functions in W 2(R2). Their existence is
asserted in the Lemma below:

Lemma 5.1. 1. Any function θ in W 2(R2) supported in R2 \ {c1, . . . , cN} can be decomposed into a sum of
two functions θd + θn with θd ∈ W 2

d (R2) and θn ∈ W 2
n(R2).

2. For every index k ∈ {1, . . . , N}, there exists a function θ in W 2
n(R2) such that θ(ck) = 1 and θ(cj) = 0

when j ̸= k, j ∈ {1, . . . , N}.

Proof. Addressing the first point of the lemma, we apply [10, Theorem 1.5.2.4] which makes precise the range
of the operator (γ−

d , γ−
n ) defined on the space H2(Ω−). Since, in [1, Theorem 10.4.1], the author proves the

existence of a universal extension operator from H2(Ω−) to H2(R2), the range of (γ−
d , γ−

n ) is the same when
we consider this operator as defined on H2

ℓoc(R2) or on W 2(R2). So let θ be given in W 2(R2) and denote
respectively by fj and gj the restrictions of γ−

d θ and γ−
n θ to the edge Γj (for j ranging from 1 to N). According

to [10, Theorem 1.5.2.8], the pair (fj , gj) belongs to the space H3/2(Γj)×H1/2(Γj) for every index j = 1, . . . , N .
Considering now the pairs (fj , 0) in the same space H3/2(Γj)×H1/2(Γj), they trivially satisfy the compatibility
conditions at the vertices ck described in [10, Theorem 1.5.2.8] since every fonction fj is compactly supported
on Γj . Therefore they belong to the range of (γ−

d , γ−
n ) and there exists a function θn in W 2(R2) such that

γ−
d θn|Γj = γdθn|Γj = fj and γ−

n θn|Γj = γnθn|Γj = 0. We define θd = θ − θn and the former assertion of the
lemma is proved.

The proof of the latter rests roughly on the same arguments. Let k be given in {1, . . . , N} and let f be a
smooth function defined on Γ that vanishes on a neighborhood of every vertex cj when j ̸= k and is constant
in a neighborhood of ck. Denote by fj the restriction of f to Γj (j = 1, . . . , N). The pairs (fj , 0) belong to
H3/2(Γj) × H1/2(Γj) and they trivially satisfy the compatibility conditions at the vertices described in [10,
Theorem 1.5.2.8] (since ∂fj/∂τ vanishes near the vertices), what ensures the existence in W 2(R2) of a preimage
θ by the operator (γd, γn).

Recall that the spaces H3/2
n (Γ ) and H1/2

d (Γ ) are defined in (10). The following result will play an important
role in the rest of the paper:

Theorem 5.1. The space H3/2
n (Γ ) is dense in H3/2(Γ ) and the space H1/2

d (Γ ) is dense in H1/2(Γ ).

Proof. The proofs of both assertions are similar so let us focus on the latter. Using the isometric operator
(15b) and since LDn ◦ γn = ΠD

n , we are led to prove that ΠD
n W 2

d (R2) is dense in ΠD
n W 2(R2) = W 2

n(R2)⊥. This
is equivalent to showing that W 2

d (R2) ⊕ W 2
n(R2) is dense in W 2(R2) or, still equivalently, that W 2

d (R2)⊥ ∩
W 2

n(R2)⊥ = {0} (where both superscripts ⊥ refer to the same scalar product (·, ·)D).
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So, let u be in W 2
d (R2)⊥. Then u = ΠD

d u and therefore:

(u, θ)D =
(
ΠD

d u, θ
)
D

=
(
ΠD

d u,ΠD
d θ
)
D

=
(
LDd ◦ γdu, LDd ◦ γdθ

)
D

= (γdu, γdθ)
D
3
2

for all θ ∈ W 2(R2). (30a)

In the same fashion, assuming that the function u belongs also to W 2
n(R2)⊥ we get:

(u, θ)D = (γnu, γnθ)
D
1
2

for all θ ∈ W 2(R2). (30b)

In addition, u achieves:
inf
{
∥v∥D : v ∈ W 2(R2), γnv = γnu

}
,

and therefore µ(u) = 0. Now, recall that {c1, . . . , cN} are the vertices of the polygon Γ . According to Lemma 5.1,
every function θ in W 2(R2) compactly supported in R2 \ {c1, . . . , cN} can be decomposed into the sum of two
functions θd ∈ W 2

d (R2) and θn ∈ W 2
n(R2). It is easy to verify that both functions can be chosen compactly

supported in R2 \ {c1, . . . , cN}. If follows that for such a function θ, we have:

(u, θ)D = (u, θd)D + (u, θn)D = 0,

where we have used (30a) for the former term in the right hand side and (30b) for the latter. Thus, we have
proved in particular that:

(∆u,∆θ)L2(R2) +

2∑
j=1

(pj , γnu)L2(Γ )(pj , γnθ)L2(Γ ) = 0 for all θ ∈ D(R2 \ {c1, . . . , cN}),

and this can be rewritten, according to (6a) as:

〈
−∆u+

2∑
j=1

(pj , γnu)L2(Γ )DΓ pj ,∆θ
〉

D′(R2),D(R2)
= 0 for all θ ∈ D(R2 \ {c1, . . . , cN}).

This equality means that the function

v = −∆u+

2∑
j=1

(pj , γnu)L2(Γ )DΓ pj , (31)

is harmonic in R2 \{c1, . . . , cN} and the distribution ∆v is supported in the points c1, . . . , cN . According to [11,
Theorem 1.5.3], we deduce that this distribution is a finite linear combination of Dirac measures and derivatives
of Dirac mesures at the points cj (j = 1, . . . , N). Derivatives of Dirac measures must be excluded however since
v is in L2

ℓoc(R2). Finally, v can only take the form:

v = −
n∑

j=1

ϱj
2π

ln | · −cj |+ h, (32)

with ϱj ∈ R and h harmonic in R2. Proceeding as in the proof of Theorem 4.1, we deduce from identity (31) that
v(x) = o(1) as |x| −→ +∞. It follows that

∑n
j=1 ϱj = 0 and h = 0 with Liouville’s theorem. Let k ∈ {1, . . . , N}

be given and let θ be a function in W 2
n(R2) compactly supported such that θ(cj) = 0 for j ̸= k and θ(ck) = 1.

Such a function exists according to Lemma 5.1 and yields, applying Green’s identity (3):

(u, θ)D = (∆u,∆θ)L2(R2) +

2∑
j=1

(pj , γnu)L2(Γ )(pj , γnθ)L2(Γ ) = (v,∆θ)L2(R2).

Using the expression (32) of the function v, we classically obtain that (u, θ)D = ϱk. On the other hand, identity
(30b) leads to (u, θ)D = 0, what completes the proof.

Considering back the Gelfand triples (16), we are allowed to write when Γ is a curvilinear C1,1 polygon:

H3/2
n (Γ ) ⊂ H3/2(Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−3/2(Γ ) ⊂ H−3/2

n (Γ ), (33a)
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where all the inclusions are continuous and dense, L2(Γ ) is the pivot space (i.e. the space identified via Riesz

representation theorem with its dual space) and H−3/2
n (Γ ) is the dual space of H3/2

n (Γ ). In a similar way, we
have also:

H1/2
d (Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−1/2

d (Γ ). (33b)

We denote respectively by ⟨⟨·, ·⟩⟩− 3
2 ,

3
2 ,n

and ⟨⟨·, ·⟩⟩− 1
2 ,

1
2 ,d

the duality pairings on H−3/2
n (Γ ) × H3/2

n (Γ ) and on

H−1/2
d (Γ )×H1/2

d (Γ ) and we introduce the isometric operators, based on the Gelfand triple structure:

Td : H1/2
d (Γ ) −→ H−1/2

d (Γ )
q 7−→ (q, ·) 1

2 ,d
,

and
Tn : H3/2

n (Γ ) −→ H−3/2
n (Γ )

p 7−→ (p, ·) 3
2 ,n

.
(34)

We end this section by defining the closed subspaces of L2(R2) consisting in functions that are harmonic in
Ω+ ∪Ω−:

H 0(R2 \ Γ ) =
{
u ∈ L2(R2) : (u,∆θ)L2(R2) = 0, ∀ θ ∈ D(R2 \ Γ )

}
.

Combining Proposition 3.1 with Theorem 2.2, it follows that:

H 0(R2 \ Γ ) =
{
∆u : u ∈

(
W 2

d (R2) ∩W 2
n(R2)

)⊥}
, (35)

where the superscript ⊥ refers to any of the two scalar products (8) defined on W 2(R2) (both leading to the
same space). We will also consider more regular harmonic functions:

H 1(R2 \ Γ ) =
{
u ∈ L2(R2) : u|Ω+ ∈ H1(Ω+) and u|Ω− ∈ H1(Ω−)

}
.

Proposition 5.1. The space H 1(R2 \ Γ ) is dense in H 0(R2 \ Γ ).

Proof. We introduce the closed subspace of H−1/2(Γ )×H1/2(Γ ):

E(Γ ) =
{
(q, p) ∈ H−1/2(Γ )×H1/2(Γ ) : ⟨q,1Γ ⟩− 1

2 ,
1
2
= 0, ⟨q, yk⟩− 1

2 ,
1
2
− ⟨nk, p⟩− 1

2 ,
1
2
= 0, k = 1, 2

}
.

We claim that:
H 1(R2 \ Γ ) =

{
SΓ q + DΓ p : (q, p) ∈ E(Γ )

}
. (36)

For any (q, p) ∈ E(Γ ), the function u = SΓ q + DΓ p is in H 1(R2 \ Γ ) according to the asymptotic expansions
(4). Reciprocally, let u be in H 1(R2 \ Γ ) and denote q = γ+

n u + γ−
n u and p = γ+

d u − γ−
d u. The function

v = SΓ q + DΓ p − u is harmonic on R2. Since, by hypothesis, u ∈ L2(R2) we can proceed as in the proof of
Proposition 4.1 to show that u(x) = O(1/|x|) for |x| large. Taking into account (4) again, we deduce that:

v(x) = − 1

2π
⟨q,1Γ ⟩− 1

2 ,
1
2
ln |x|+ O(1/|x|) as |x| −→ +∞,

and invoking [5, Theorem 9.10], we conclude that the function v vanishes on R2. It follows that u is equal to
SΓ q + DΓ p and since this function is in L2(R2), the pair (q, p) is in E(Γ ) and identity (36) is proved. We can
now determine the space H 1(R2 \ Γ )⊥ in H 0(R2 \ Γ ). Let w be in H 0(R2 \ Γ ) such that:

(w, u)L2(R2) = 0 for all u ∈ H 1(R2 \ Γ ),

or equivalently: (
w,SΓ q + DΓ p

)
L2(R2)

= 0 for all (q, p) ∈ E(Γ ).

From (35), we know that there exists a function v ∈
(
W 2

d (R2) ∩ W 2
n(R2)

)⊥
such that w = ∆v. Following

Proposition 3.1, D(R2) is a dense subspace in W 2(R2) so let (vk)k⩾0 be a sequence in D(R2) that converges to
v in W 2(R2). For every k ⩾ 0 we can apply the second Green’s formula (3) to obtain:

⟨γnvk, p⟩− 1
2 ,

1
2
− ⟨q, γdvk⟩− 1

2 ,
1
2
=
(
−∆vk,SΓ q + DΓ p

)
L2(R2)

.

Letting k go to +∞, it comes:

⟨γnv, p⟩− 1
2 ,

1
2
− ⟨q, γdv⟩− 1

2 ,
1
2
=
(
−∆v,SΓ q + DΓ p

)
L2(R2)

= 0,
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and since the inclusions H1/2(Γ ) ⊂ H−1/2(Γ ) and H−1/2(Γ ) ⊂ H−3/2(Γ ) are dense (see (33)), we deduce that:

⟨⟨p, γnv⟩⟩− 1
2 ,

1
2
− ⟨⟨q, γdv⟩⟩− 3

2 ,
3
2
= 0, (37a)

for every (q, p) ∈ H−3/2(Γ )×H−1/2(Γ ) such that:

⟨⟨q,1Γ ⟩⟩− 3
2 ,

3
2
= 0 and ⟨⟨q, yk⟩⟩− 3

2 ,
3
2
− ⟨⟨p, nk⟩⟩− 1

2 ,
1
2
= 0 (k = 1, 2). (37b)

Notice that, for k = 1, 2, yk and nk are the Dirichlet and Neumann traces of affine functions and therefore that
they are respectively in H3/2(Γ ) and H1/2(Γ ). Both equalities (37) mean that there exist three real numbers
λ1, λ2 and λ3 such that: (

γdv
γnv

)
= λ1

(
y1
n1

)
+ λ2

(
y2
n2

)
+ λ3

(
1Γ

0

)
.

We deduce that v minus a linear combination of affine functions is in W 2
d (R2) ∩ W 2

n(R2). But since A ⊂(
W 2

d (R2) ∩W 2
n(R2)

)⊥
and v ∈

(
W 2

d (R2) ∩W 2
n(R2)

)⊥
, this function is also in

(
W 2

d (R2) ∩W 2
n(R2)

)⊥
. If follows

that v ∈ A and w = ∆v = 0, which concludes the proof.

6 Traces and jump relations

According to Theorem 2.1 and Proposition 2.1, the one-sided trace operators γ±
d and γ±

n are well defined on
H 1(R2 \ Γ ) and bounded. The purpose of this section is to extend these operators to the space H 0(R2 \ Γ ).
Since the single and double layer potentials defined in Theorem 4.1 are equal to the sum of a function in
H 0(R2 \ Γ ) plus a classical single or double layer potential, we will be able to deduce at once traces results
for surface potentials. As in Section 5, we continue assuming that Γ is a C1,1 curvilinear polygon. Recall that

Bn(R2) =
(
W 2

d (R2) ∩W 2
n(R2)

)⊥ ∩W 2
n(R2) and Bd(R2) =

(
W 2

d (R2) ∩W 2
n(R2)

)⊥ ∩W 2
d (R2).

To every v ∈ H 0(R2 \ Γ ), we associate Jdv the element of H−1/2
d (Γ ) defined by:

⟨⟨Jdv, q⟩⟩− 1
2 ,

1
2 ,d

= −
(
v,∆Ldq

)
L2(R2)

for all q ∈ H1/2
d (Γ ), (38)

where the operator Ld is given in (21b). We are going to show that Jdv is the “jump” of the one-sided Dirichlet
traces of v across Γ . We denote by H 0

d (R2 \Γ ) the image of the space Bd(R2) by the Laplacian. The operator:

∆d : Bd(R2) −→ H 0
d (R2 \ Γ )

u 7−→ ∆u,

being isometric, H 0
d (R2 \ Γ ) is closed and we denote by Π0

d the orthogonal projection on this space in L2(R2).
It can be readily verify that:

Jdv = −Td ◦ L−1
d ◦∆−1

d ◦Π0
dv for all v ∈ H 0(R2 \ Γ ), (39)

where the operator Td is defined in (34). Since the operators Td, Ld and ∆d are isometric, it follows that:

∥Jdv∥− 1
2 ,d

= ∥Π0
dv∥L2(R2) ⩽ ∥v∥L2(R2) for all v ∈ H 0(R2 \ Γ ). (40)

We turn now our attention to the Neumann trace operator. For every v ∈ H 0(R2 \ Γ ), we denote by Jnv the

element of H−3/2
n (Γ ) defined by:

⟨⟨Jnv, p⟩⟩− 3
2 ,

3
2 ,n

= −
(
v,∆Lnp

)
L2(R2)

for all p ∈ H3/2
n (Γ ). (41)

When p = 1Γ (which is indeed in H3/2
n (Γ )), Lnp = 1R2 and therefore, the operator Jn is valued in:

H̃−3/2
n (Γ ) =

{
q ∈ H−3/2

n (Γ ) : ⟨⟨q,1Γ ⟩⟩− 3
2 ,

3
2 ,n

= 0
}
. (42)

Looking for an expression like (39) for Jn, we introduce the orthogonal decomposition Bn = B̃n ⊕ ⟨1R2⟩ of

the space Bn, where B̃n = {u ∈ Bn : µ(γdu) = 0}. We introduce as well the space H̃ 0
n (R2 \ Γ ) = {v ∈

H 0
n (R2 \ Γ ) : (1Ω− , v)L2(R2) = 0} and the isometric operator:

∆̃n :
(
B̃n, ∥ · ∥D

)
−→ H̃ 0

n (R2 \ Γ )
u 7−→ ∆u.
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Recalling that the operator Tn is defined in (34) and denoting by Π̃0
n the orthogonal projector onto H̃ 0

n (R2 \Γ )
in L2(R2), we establish that:

Jnv = −Tn ◦ L−1
n ◦ ∆̃−1

n ◦ Π̃0
nv for all v ∈ H 0(R2 \ Γ ).

We deduce that:
∥Jnv∥− 3

2 ,n
= ∥Π̃0

nv∥L2(R2) ⩽ ∥v∥L2(R2) for all v ∈ H 0(R2 \ Γ ). (43)

On the other hand, for every v ∈ H 0(R2 \ Γ ) we can define v+ and v− in H 0(R2 \ Γ ) by:

v+ =

{
0 on Ω−

v|Ω+ on Ω+
and v− =

{
v|Ω− on Ω−

0 on Ω+.

We can now make precise the notion of trace for functions in H 0(R2 \ Γ ):

Definition 6.1. For every function v ∈ H 0(R2 \ Γ ), we define the one-sided Dirichlet trace operators γ+
d and

γ−
d by:

γ±
d : H 0(R2 \ Γ ) −→ H−1/2

d (Γ )
v 7−→ ±Jdv

±.
(44a)

We define as well the one-sided Neumann trace operators γ+
n and γ−

n by:

γ±
n : H 0(R2 \ Γ ) −→ H̃−3/2

n (Γ )
v 7−→ Jnv

±.
(44b)

As expected, we have:

Proposition 6.1. The operators (44) are bounded and are the extensions by density of the operators γ±
d and

γ±
n (defined on H 1(R2 \ Γ )) to H 0(R2 \ Γ ).

Proof. The boundedness results from (40) and (43). Let v be in H 1(R2 \ Γ ) and q be in H1/2
d (Γ ). Green’s

formula (3) leads to: (
v−,∆Ldq

)
L2(R2)

= ⟨q, γ−
d v⟩− 1

2 ,
1
2
= (q, γ−

d v)L2(R2) = ⟨⟨γ−
d v, q⟩⟩− 1

2 ,
1
2 ,d

,

the last equality resulting from (33b) (the inclusions allowing γ−
d v to be considered as an element of H−1/2

d (Γ )
and asserting that the duality pairing ⟨⟨·, ·⟩⟩− 1

2 ,
1
2 ,d

extends the L2 inner product). On the other hand, according

to (38): (
v−,∆Ldq

)
L2(R2)

= −⟨⟨Jdv−, q⟩⟩− 1
2 ,

1
2 ,d

.

It follows that ⟨⟨Jdv− + γ−
d v, q⟩⟩− 1

2 ,
1
2 ,d

= 0 for every q ∈ H1/2
d (Γ ) and therefore Jdv

− = −γ−
d v in H−1/2

d (Γ ). The

proof of the other equalities (γ+
d v = Jdv

+ and γ±
n v = Jnv

±) follows from the same arguments.

For every u ∈ H 0(R2 \ Γ ), we introduce the classical notations:[
γdu
]
Γ
= γ+

d u+ − γ−
d u− and

[
γnu

]
Γ
= γ+

n u+ + γ−
n u−,

so that
[
γdu
]
Γ
= Jdv in (38) and

[
γnu

]
Γ
= Jnv in (41). Before proving the jump relations for the single and

the double layer potentials, we need to establish a preliminary technical result:

Lemma 6.1. 1. For every p ∈ H3/2(Γ ),
[
γd∆LSd p

]
Γ
= 0 and for every q ∈ H1/2(Γ ),

[
γn∆LDn p

]
Γ
= 0.

2. Recall the the operator Td and Tn are defined in (24) and the operators Td and Tn in (34). The following
identities hold:
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−
[
γn∆LSd p

]
Γ
+

3∑
k=1

⟨qk, p⟩− 1
2 ,

1
2
qk = Tdp for all p ∈ H3/2(Γ ), (45a)

−
[
γd∆LDn q

]
Γ
+

2∑
j=1

(pj , q)L2(Γ )pj = Tnq for all q ∈ H1/2(Γ ), (45b)

−
[
γn∆Lnp

]
Γ
+ µ(p)|Γ |−11Γ = Tnp for all p ∈ H3/2

n (Γ ) (45c)

−
[
γd∆Ldq

]
Γ
= Tdq for all q ∈ H1/2

d (Γ ). (45d)

From (45a) and (45b) we deduce in particular that the operators:

Td : A
1/2
S −→ A

−1/2
S and Tn : A

−1/2
D −→ A

1/2
D (45e)

are isometric.

Proof. The first assertion of the Lemma results from the combination of (15) and (21) (that make precise the
ranges of the operators LSd , L

D
n , Ld and Ln) and the definitions (38) and (41) of the jumps of the Dirichlet and

Neumann one-sided traces. For the second assertion, let us verify that for every p ∈ H3/2(Γ ):

−
[
γn∆LSd p

]
Γ
+

3∑
k=1

⟨qk, p⟩− 1
2 ,

1
2
qk = Tdp,

where Td is the isometric operator defined in (24). Thus, we have:

⟨⟨Tdp, γdθ⟩⟩− 3
2 ,

3
2
=
(
LSd p, L

S
d ◦ γdθ

)
S

for all θ ∈ W 2(R2).

On the other hand, according to (13):

(LSd p, L
S
d ◦ γdθ)S = (LSd p,Π

S
d θ)S = (LSd p, θ)S .

Choosing θ = Lnp̃ with p̃ any element in the space H3/2
n (Γ ), we get:

⟨⟨Tdp, p̃⟩⟩− 3
2 ,

3
2
= (LSd p,Lnp̃)S = (∆LSd p,∆Lnp̃)L2(R2) +

3∑
k=1

⟨qk, p⟩− 1
2 ,

1
2
⟨qk, p̃⟩− 1

2 ,
1
2
,

which, once compared with (41), yields the result. The proof of the other equalities are similar.

Regarding (45e), it suffices to notice that LSd p is an affine function when p ∈ A
1/2
S and the same observation

applies to LDn q if q belongs to A
−1/2
D . We conclude with equalities (45a) and (45b).

With the definition of the trace operators given in Definition 6.1:

Proposition 6.2 (Jump relations). The following equalities hold:

γ+
d ◦ S †

Γ − γ−
d ◦ S †

Γ = 0 γ+
n ◦ D†

Γ + γ−
n ◦ D†

Γ = 0 (46a)

γ+
n ◦ S †

Γ + γ−
n ◦ S †

Γ = Id γ+
d ◦ D†

Γ − γ−
d ◦ D†

Γ = Id. (46b)

Notice that the operators γ±
n ◦ S †

Γ map H−3/2(Γ ) into the larger space H−3/2
n (Γ ). The first relation in

(46b) means that there is some sort of compensation which makes the sum of both terms γ±
n ◦ S †

Γ more
regular than each one taken separately. The same remark holds for the second identity in (46b) with the

spaces H−1/2(Γ ) and H−1/2
d (Γ ). This contrasts with what happens when the domain is of class C1,1 where

H−3/2(Γ ) = H−3/2
n (Γ ) = H−3/2(Γ ) and H−1/2(Γ ) = H−1/2

d (Γ ) = H−1/2(Γ ).

Proof. Let q be in H−3/2(Γ ). According to (25a):

S †
Γ q = −∆LSd ◦ T−1

d q +

3∑
j=1

⟨qj ,T−1
d q⟩− 1

2 ,
1
2
SΓ qj .
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For every q̃ ∈ H1/2
d (Γ ): (

∆LSd ◦ T−1
d q,∆Ldq̃

)
L2(R2)

=
(
LSd ◦ T−1

d q,Ldq̃
)
S
= 0,

because LSd ◦ T−1
d q ∈ W 2

d (R2)⊥ (see (15a)) and Ldq̃ ∈ W 2
d (R2) (see (21b)). According to (38), we deduce that

Jd
(
∆LSd ◦ T−1

d q
)
=
[
γd∆LSd ◦ T−1

d q
]
Γ
= 0,

and since
[
γdSΓ qj

]
Γ
= 0 for j = 1, 2, 3, we have proved the first equality in (46a). Continuing with the single

layer potential, the first equality in (46b) is a straightforward consequence of (45a). The proofs of the relations
related to the double layer potential are similar.

The rest of this section is devoted to establishing additional properties concerning the traces of harmonic
functions in L2

ℓoc(R2). To do this, we must first establish a technical lemma.

Lemma 6.2. For every u ∈ H 0(R2 \ Γ ), there exist

– p1 ∈ H3/2(Γ ) and q1 ∈ H1/2
d such that u = ∆LSd p1 +∆Ldq1;

– p2 ∈ H3/2
d (Γ ) and q2 ∈ H1/2 such that u = ∆Lnp2 +∆LDn q2.

Proof. Let u be in H 0(R2 \ Γ ). According to (35), there exists v ∈
(
W 2

d (R2) ∩W 2
n(R2)

)⊥
such that u = ∆v.

In line with the orthogonal decomposition in
(
W 2(R2); ∥ · ∥S

)
:(

W 2
d (R2) ∩W 2

n(R2)
)⊥

=
[(
W 2

d (R2) ∩W 2
n(R2)

)⊥ ∩W 2
d (R2)

]︸ ︷︷ ︸
Bd(R2)

⊕W 2
d (R2)⊥,

we can decompose v as v = v1 + v2 and there exists q1 ∈ H1/2
d (Γ ) such that v1 = Ldq1 (see (21b)) and

p1 ∈ H3/2(Γ ) such that v2 = LSd p1 (see (15a)). This proves the first point of the Proposition. For the second,
we use the orthogonal decomposition in

(
W 2(R2); ∥ · ∥D

)
:(

W 2
d (R2) ∩W 2

n(R2)
)⊥

=
[(
W 2

d (R2) ∩W 2
n(R2)

)⊥ ∩W 2
n(R2)

]︸ ︷︷ ︸
Bn(R2)

⊕W 2
n(R2)⊥,

and we conclude the same way.

Theorem 6.1. Let u be in H 0(R2 \ Γ ).

1. If [γdu]Γ ∈ H−1/2(Γ ) or [γnu]Γ ∈ H−3/2(Γ ) then
(
[γdu]Γ , [γnu]Γ

)
∈ H−1/2(Γ )×H−3/2(Γ ).

2. If [γdv]Γ = 0, then v = S †
Γ [γnv]Γ . If [γnv]Γ = 0, then v = D†

Γ [γdv]Γ .

3. If [γdu]Γ = 0 and [γnu]Γ = 0 then u = 0.

The first point seems particularly noteworthy. It means that as soon as the jump of the one-sided Dirichlet

traces or the jump of the one-sided Neumann traces is “regular” (in full generality [γdu]Γ is only in H−1/2
d (Γ )

and [γnu]Γ in H−3/2
n (Γ )), the other jump inherits the same regularity.

Proof. Addressing the first point of the Theorem, let assume that [γdu]Γ ∈ H−1/2(Γ ). According to (4) (the

asymptotic expansions of the single layer potential and of harmonic functions) there exists q ∈ A
−1/2
S such

that D†
Γ [γdu]Γ − SΓ q ∈ L2(R2). Let v = u − D†

Γ [γdu]Γ + SΓ q. This function is in H 0(R2 \ Γ ) and satisfies
[γdv]Γ = 0 and [γnv]Γ = [γnu]Γ + q. This entails that for our purpose, up to replacing u by v, we can assume
that [γdu]Γ = 0. According to Lemma 6.2, the function u can be decomposed as u = ∆LSd p1 + ∆Ldq1 with

p1 ∈ H3/2(Γ ) and q1 ∈ H1/2
d . Invoking next the first point of Lemma 6.1, we obtain:[

γdu
]
Γ
=
[
γd∆LSd p1

]
Γ
+
[
γd∆Ldq1

]
Γ
=
[
γd∆Ldq1

]
Γ
= 0,

which entails that q1 = 0 with (45d). It follows that
[
γnu

]
Γ
=
[
γn∆LSd p1

]
Γ
and therefore

[
γnu

]
Γ
∈ H−3/2(Γ )

according to (45a).
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In a similar fashion, assuming that [γnu]Γ ∈ H−3/2(Γ ) can be reduced to assuming that [γnu]Γ = 0 up to

replacing u by u − S †
Γ [γnu]Γ + DΓ p for some p ∈ A

1/2
D . Then we use the latter decomposition provided by

Lemma 6.2:
u = ∆Lnp2 +∆LDn q2,

for some p2 ∈ H3/2
d (Γ ) and q2 ∈ H1/2. Based on Lemma 6.1, we deduce that:

[γnu]Γ =
[
γn∆Lnp2

]
Γ
+
[
γn∆LDn q2

]
Γ
=
[
γn∆Lnp2

]
Γ
= 0.

This condition means, according to (45c), that Tnp2 = µ(p2)|Γ |−11Γ where the operator Tn is defined in (34).
We deduce that p2 = µ(p2)1Γ and then that Lnp2 = µ(p2)1R2 . Finally, ∆Lnp2 = 0 and [γdu]Γ =

[
γd∆LDn q2

]
Γ

which belongs to H−1/2(Γ ) according to (45b).
We consider now the second assertion of the Theorem. If [γdv]Γ = 0 then [γnv]Γ belongs to H−3/2(Γ )

according to the first point of the Theorem. Let q be in A
−1/2
S such that S †

Γ ([γnv]Γ − q) is in H 0(R2 \Γ ) and

introduce u = v − S †
Γ ([γnv]Γ − q). This function is in H 0(R2 \ Γ ) and satisfies [γdu]Γ = 0 and [γnu]Γ = q.

Proceeding as in the proof of the first point of the theorem, this entails that u = ∆LSd p for some p ∈ H3/2(Γ ),
with [γn∆LSd p]Γ = q. This means, with (45a) that

Tdp =

3∑
k=1

⟨qk, p⟩− 1
2 ,

1
2
qk − q,

and therefore that p ∈ A
1/2
S taking into account (45e). It follows that LSd p ∈ A and then u = 0, q = 0 and

finally v = S †
Γ [γnv]Γ . We proceed in the same manner to prove the other statements involving the double layer

potential and since the last point of the theorem is obvious, the proof is complete.

7 The Laplace equation in L2

In this section, we assume that Γ is a straight polygon. An important point to keep in mind when looking
for solutions in L2

ℓoc to Dirichlet and Neumann problems in a polygonal domain, is the loss of uniqueness.
Indeed, there exist non-zero harmonic functions in L2(Ω+) and in L2(Ω−) with zeros Dirichlet data or with
zero Neumann data. As explained in [7], in the domain Ω− on the left of Fig. 1, there exists a square integrable

Ω−

Ω−

Ω+

Figure 1: Examples of domains for which there exist square integrable harmonic functions with van-
ishing boundary data.

harmonic function with zero Dirichlet data. In polar coordinates define the function U(r, θ) = r−2/3 sin(2θ/3)
and let η ∈ D(R2) be a cut-off function equal to 1 near the corner. Then let X be the variationnal solution in
H1

0 (Ω
−) to the problem ∆X = ∆(ηU) (notice that the right hand side is smooth in Ω−). The function ηU −X

is in L2(Ω−), non zero (because X belongs to H1(Ω−) and ηU does not), harmonic in Ω− and equal to zero
on the boundary of the domain. There exists also a harmonic function with zero Neumann data which is equal,
near the corner to r−2/3 cos(2θ/3) (this is actually the harmonic conjugate of the preceeding one). The same
constructions apply with the domain on the right of Fig. 1 and provide examples of non-zero harmonic functions
in Ω+ with zero Dirichlet or Neumann data.
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Theorem 7.1 (Solvability of the interior Dirichlet problem). For every p ∈ H−1/2
d (Γ ), there exists vp in

H 0(Ω−) such that γ−
d vp = p. Moreover, the application p 7−→ vp is continuous from H−1/2

d (Γ ) to H 0(Ω−).

Proof. Recall that, for every q ∈ H1/2
d (Γ ):

∥q∥ 1
2 ,d

= inf
{
∥u∥S : u ∈ W 2

d (R2), γnu = q
}
= ∥Ldq∥S .

According to [1, Theorem 10.4.1], there exists an extension operator from H2(Ω−) to H2(R2) and since H2(R2)
is continuously embedded in W 2(R2), we can assume that this operator is valued in this latter space. This
yields the existence of a constant C > 0 such that:

∥q∥ 1
2 ,d

⩽ C∥Ldq|Ω−∥H2(Ω−) for all q ∈ H1/2
d (Γ ). (47a)

On the other hand, according to [10, Theorem 4.3.1.4] and since Ω− is assumed to be a straight polygonal
domain, there exists a constant C > 0 such that:

∥Ldq|Ω−∥H2(Ω−) ⩽ C
(
∥∆Ldq∥L2(Ω−) + ∥Ldq∥L2(Ω−)

)
for all q ∈ H1/2

d (Γ ). (47b)

We deduce from both estimates (47) that, on the space H1/2
d (Γ ), the norm deriving from the scalar product:(

∆Ldq1,∆Ldq2
)
L2(Ω−)

+
(
Ldq1,Ldq2

)
L2(Ω−)

for all q1, q2 ∈ H1/2
d (Γ ),

is equivalent to the norm ∥ · ∥ 1
2 ,d

associated to the scalar product (20). Riesz representation theorem asserts

that for every p ∈ H−1/2
d (Γ ), there exists qp ∈ H1/2

d (Γ ) such that:

⟨⟨p, q⟩⟩− 1
2 ,

1
2 ,d

=
(
∆Ldqp,∆Ldq

)
L2(Ω−)

+
(
Ldqp,Ldq

)
L2(Ω−)

for all q ∈ H1/2
d (Γ ),

and that the mapping p 7−→ qp is continuous from H−1/2
d (Γ ) to H1/2

d (Γ ). Let now wp be the unique solution in
H1

0 (Ω
−) of the variational Dirichlet problem:

(∇wp,∇θ)L2(Ω−;R2) = −
(
Ldqp, θ

)
L2(Ω−)

for all θ ∈ H1
0 (Ω

−).

Since p 7−→ Ldqp|Ω− is continuous from H−1/2
d (Γ ) to H2(Ω−), we deduce that p 7−→ wp is also continuous from

H−1/2
d (Γ ) to H1

0 (Ω
−). Applying Green’s formula (3), we then obtain that:(

Ldqp,Ldq
)
L2(Ω−)

=
(
wp,∆Ldq

)
L2(Ω−)

for all q ∈ H1/2
d (Γ ).

Let ΠΩ− : L2(Ω−) −→ H 0(Ω−) be the Bergman projection i.e. the orthogonal projection in L2(Ω−) onto the
closed subspace H 0(Ω−) of the harmonic functions and define the function vp = ∆Ldqp + ΠΩ−wp. It is clear

that the mapping p 7−→ vp is continuous from H−1/2
d (Γ ) to H 0(Ω−) and since:

⟨⟨p, q⟩⟩− 1
2 ,

1
2 ,d

=
(
vp,∆Ldq

)
L2(Ω−)

for all q ∈ H1/2
d (Γ ),

the proof is completed.

Recall that A
1
2

S is the three dimensional subspace of H1/2(Γ ) spanned by the traces of the affine functions.

Since H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2
d (Γ ), the space A

1
2

S can also be seen as a subspace of H−1/2
d (Γ ) and we denote

by A
1/2
S,d the space T −1

d A
1
2

S , where the operator Td is defined in (34). Therefore A
1/2
S,d is the subspace of H1/2

d (Γ )

such that [γd∆Ldq]Γ ∈ A
1/2
S for every q ∈ A

1/2
S,d . It follows that(

A
1/2
S,d

)⊥
=
{
q ∈ H1/2

d (Γ ) : (q, θ)L2(Γ ) = 0 for all θ ∈ A
1/2
S

}
.

The spaces A
1/2
S,d and

(
A

1/2
S,d

)⊥
will be used in the proof of the next theorem.
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Theorem 7.2 (Solvability of the exterior Dirichlet problem). For every p ∈ H−1/2
d (Γ ), there exists vp in

H 0(Ω+) and qp ∈ A
−1/2
S such that γ+

d (vp + SΓ qp) = p.

The continuity of the solution with respect to the boundary data is not clear so far. The proof relies on the
following Lemma:

Lemma 7.1. Let ξ be a distribution in H−1(Ω+) compactly supported in Ω+. Then there exists p ∈ A
1
2

S such
that the Dirichlet problem

−∆u = ξ in Ω+ and γ+
d u = p on Γ, (48)

admits a solution in H1(Ω+). If ξ ∈ L2(Ω+), this solution is in H1(Ω+,∆).

Proof. Following the method described in [3], we introduce the weighted Sobolev space (remind that the func-
tions ρ and lg were defined earlier in (7)):

W 1
d (Ω

+) =
{
u ∈ D ′(Ω+) :

u

ρ lg
∈ L2(Ω+),

∂u

∂xj
∈ L2(Ω+), (j = 1, 2) and γ+

d u = 0
}
.

This space is strictly bigger than H1
0 (Ω

+) and its purpose is that the norm deriving from the scalar product:

(∇u1,∇u2)L2(Ω+;R2) for all u1, u2 ∈ W 1
d (Ω

+),

is equivalent to the natural norm (i.e. Poincaré inequality holds true). Furthermore, the space D(Ω+) is dense
in W 1

d (Ω
+) so that W 1

d (Ω
+) is a distribution space. Let v be the solution in W 1

d (Ω
+) of the variational problem:

(∇v,∇θ)L2(Ω+;R2) = ⟨ξ, θ⟩H−1(Ω+),H1(Ω+) for all θ ∈ W 1
d (Ω

+). (49)

Since W 1
d (Ω

+) ⊂ H1
ℓoc(Ω

+) the term in the right hand side makes sens, recalling that ξ is assumed to be
compactly supported. The function v being harmonic outside a compact set, according to (4c), it can be
expanded in this region as:

v(x) =

+∞∑
j=0

pm(x) + q0 ln |x|+
+∞∑
j=0

qm(x)

|x|2m
,

where q0 ∈ R and, for every integer m, pm, qm are harmonic polynomials on R2 of degree m. By definition of
W 1

d (Ω
+), the function v/(ρ lg) is in L2(Ω+), which entails that pm = 0 for every m ⩾ 1 and q0 = 0. On the

other hand, according to (4a), there exists q ∈ A
−1/2
S (Γ ) (the subspace of H−1/2(Γ ) spanned by q1, q2 and q2)

such that, for |x| large:

SΓ q(x) =
q1(x)

|x|2
+ O(1/|x|2).

The function u = v − SΓ q|Ω+ − p01Ω+ is the solution we are looking for (in particular it is in L2(Ω+)).

We can now carry out the

Proof of Theorem 7.2. Let D− and D+ be two large open disks containing Ω− such that Ω− ⊂ D− and
D− ⊂ D+. Let χ be a smooth cut-off function defined in R2 such that 0 ⩽ χ ⩽ 1, χ = 1 in D− and χ = 0 in
R2 \D+. Following the lines of the proof of Theorem 7.1, the norm deriving from the scalar product:(

∆χLdq1,∆χLdq2
)
L2(Ω+)

+
(
χLdq1, χLdq2

)
L2(Ω+)

for all q1, q2 ∈ H1/2
d (Γ ),

is equivalent to the norm ∥ · ∥ 1
2 ,d

associated to the scalar product (20) in the space H1/2
d (Γ ). Applying Riesz

representation Theorem we deduce that for every p ∈ H−1/2
d (Γ ), there exists qp ∈ H1/2

d (Γ ) such that:

⟨⟨p, q⟩⟩− 1
2 ,

1
2 ,d

=
(
∆χLdqp,∆χLdq

)
L2(Ω+)

+
(
χLdqp, χLdq

)
L2(Ω+)

for all q ∈ H1/2
d (Γ ). (50)
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The first term in the right hand side is next expanded as follows:(
∆χLdqp,∆χLdq

)
L2(Ω+)

=
(
χ∆χLdqp,∆Ldq

)
L2(Ω+)

+ 2
(
∆χLdqp∇χ,∇Ldq

)
L2(Ω+,R2)

+
(
∆χ∆χLdqp,Ldq

)
L2(Ω+)

. (51)

Focusing on the second term of this expansion, Lemma 7.1 ensures the existence of a function u1 ∈ H1(Ω+)

such that γ+
d u1 ∈ A

1/2
S and:

(∇u1,∇θ)L2(Ω+,R2) =
(
∆χLdqp∇χ,∇θ

)
L2(Ω+,R2)

for all θ ∈ W 1
d (Ω

+).

For every k ⩾ 1 denote by Lk
dq the function ϕkLdq where ϕk is the cut-off function mentioned in Proposition 3.1.

For k large enough, since the function ∆χLdqp∇χ is compactly supported, we are allowed to write:(
∆χLdqp∇χ,∇Ldq

)
L2(Ω+,R2)

=
(
∇u1,∇Lk

dq
)
L2(Ω+,R2)

= −
(
γ+
d u1, q

)
L2(Γ )

−
(
u1,∆Lk

dq
)
L2(Ω+)

.

Assume from now on that q is in
(
A

1/2
S,d

)⊥
. If follows that (γ+

d u1, q)L2(Γ ) = 0 and letting k go to +∞ we obtain:(
∆χLdqp∇χ,∇Ldq

)
L2(Ω+,R2)

= −
(
u1,∆Ldq

)
L2(Ω+)

. (52a)

Considering now the last term in (51), we denote by u2 the function in H1(Ω+), provided by Lemma 7.1,

satisfying −∆u2 = ∆χ∆χLdqp and γ+
d u2 ∈ A

1
2

S . For k large enough, we can write that:(
∆χ∆χLdqp,Ldq

)
L2(Ω+)

= −
(
∆u2,Lk

dq
)
L2(Ω+)

= −
(
q, γ+

d u2

)
L2(Γ )

−
(
u2,∆Lk

dq
)
L2(Ω+)

.

Again, since q is assumed to be in
(
A

1/2
S,d

)⊥
the boundary integral vanishes and letting k go to +∞ we are left

with: (
∆χ∆χLdqp,Ldq

)
L2(Ω+)

= −
(
u2,∆Ldq

)
L2(Ω+)

. (52b)

In the same manner, for the second term in the right hand side of (50), there exists a function u3 in H1(Ω+)
such that: (

χLdqp, χLdq
)
L2(Ω+)

=
(
χ2Ldqp,Ldq

)
L2(Ω+)

= −
(
u3,∆Ldq

)
L2(Ω+)

. (52c)

Using the expressions (52) in (51) and (50), we obtain eventually:

⟨⟨p, q⟩⟩− 1
2 ,

1
2 ,d

= −
(
vp,∆Ldq

)
L2(R2)

for all q ∈
(
A

1/2
S,d

)⊥
,

where vp = ΠΩ+

(
2u1 + u2 + u3 − χ∆χLdqp

)
and ΠΩ+ stands for the Bergman projection in L2(Ω+).

It remains to construct qp ∈ A
−1/2
S as announced in the statement of the theorem. Let {P1, P2, P3} be a

basis of A such that (Pk, Pj)L2(Ω−) = δj,k. For every j = 1, 2, 3, let q̃j ∈ A
−1/2
S and q̂j ∈ A

1/2
S,d be such that

SΓ q̃j |Ω− = ∆Ldq̂j |Ω− = Pj |Ω− . If follows that(
SΓ q̃j , q̂k

)
L2(Γ )

= (Pj , Pk)L2(Ω−) = δj,k for all j, k = 1, 2, 3.

This proves that we can always define qp ∈ A
−1/2
S such that:(

SΓ qp, q
)
L2(Γ )

= −⟨⟨p, q⟩⟩− 1
2 ,

1
2 ,d

−
(
vp,∆Ldq

)
L2(Ω+)

for all q ∈ A
1/2
S,d ,

and completes the proof.

Let us address now the Neumann problems. Recall that:

H̃−3/2
n (Γ ) =

{
q ∈ H−3/2

n (Γ ) : ⟨⟨q,1Γ ⟩⟩− 3
2 ,

3
2 ,n

= 0}.
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Theorem 7.3 (Solvability of the interior Neumann problem). For every q ∈ H̃−3/2
n (Γ ) there exists vq in

H 0(Ω−) such that γ−
n vq = q. Moreover, the application q 7−→ vq is continuous from H̃−3/2

n (Γ ) to H 0(Ω−).

We omit the proof which is similar to that of Theorem 7.1.

Theorem 7.4 (Solvability of the exterior Neumann problem). For every q ∈ H̃−3/2
n (Γ ) there exists vq in

H 0(Ω+) and pq ∈ A
1/2
D such that γ+

n

(
vq + DΓ pq

)
= q.

The proof is roughly the same as the one of Theorem 7.2 and rests on the following lemma:

Lemma 7.2. Let ξ be a distribution in H−1(Ω+) either compactly supported in Ω+ or in L2(Ω+) and compactly

supported in Ω+ and define the constant α = |Γ |−1⟨ξ,1Ω+⟩H−1(Ω+),H1(Ω+). Then there exists q ∈ A
−1/2
D such

that the Dirichlet problem

−∆u = ξ in Ω+ and γ+
n u = α1Γ + q on Γ, (53)

admits a solution in H1(Ω+). The solution is in H1(Ω+,∆) if ξ is in L2(Ω+).

If ξ is compactly supported in Ω+, the solution u is harmonic near the boundary Γ and the Neumann trace
is well defined. If ξ is in L2(Ω+), then u is in H1(Ω+,∆) and again the boundary condition makes sens.

Proof. The only notable difference with the proof of Lemma 7.1 is that the space W 1
0 (Ω

+) must be replaced
with the space:

W 1(Ω+) =
{
u ∈ D ′(Ω+) :

u

ρ lg
∈ L2(Ω+),

∂u

∂xj
∈ L2(Ω+), (j = 1, 2)

}
,

provided with the scalar product:

(∇u1,∇u2)L2(Ω+,R2) + µ(γdu1)µ(γdu2) for all u1, u2 ∈ W 1(Ω+),

whose corresponding norm is equivalent to the natural norm.

8 Transmission problems

We continue assuming that Γ is a straight polygon. We are interested in the following transmission problems:

Problem 1: Let p be in H−1/2
d (Γ ) and q be in H−3/2(Γ ). Find u ∈ L2

ℓoc(R2) such that, for some a ∈ R:
∆u = 0 in Ω− ∪Ω+

[γdu]Γ = 0,

γdu = p or [γnu]Γ = q,

u(x) = a ln |x|+ O(1/|x|) as |x| −→ +∞.

(54a)

(54b)

(54c)

(54d)

Theorem 8.1. Problem 1 admits always a solution. Any solution u is a single layer potential S †
Γ q̄ for some

q̄ ∈ H−3/2(Γ ). This solution is unique if condition (54c) is [γnu]Γ = q, in which case q̄ = q. If condition (54c)
is γdu = p, the solution is not unique in general.

Proof. Let u be a solution to Problem 1. Then, according to (4a), there exists q ∈ A
−1/2
S such that the function

v = u − SΓ q belongs to H 0(R2 \ Γ ). This functions satisfies furthermore [γdv]Γ = 0 which means, applying
point 2 of Theorem 6.1, that v and hence also u is a single layer potential.

If condition (54c) is [γnu]Γ = q, the function u = S †
Γ q is indeed a solution of the transmission problem.

To prove uniqueness, assume that u is a solution to the problem with q = 0. According to (4a), there exists

q ∈ A
−1/2
S such that v = u + SΓ q is in L2(R2). This function is in H 0(R2 \ Γ ) and satisfies [γdv]Γ = 0 and

[γnv]Γ = q. The second point of Theorem 6.1 asserts that v = SΓ q whence we deduce with (4a) again that
q = 0, and then u = 0.

Assume now that condition (54c) is γdu = p for some given p in H−1/2
d (Γ ). Applying Theorem 7.2, there

exists v+p in H 0(Ω+) and qp ∈ A
−1/2
S such that γ+

d (v+p +SΓ qp) = p. On the other hand, Theorem 7.1 provides

us with a function v−p ∈ H 0(Ω−) such that γ−
d v−p = p − γ−

d SΓ qp. Define now vp ∈ H 0(R2 \ Γ ) by setting
vp|Ω+ = v+p and vp|Ω− = v−p . Since [γdvp]Γ = 0 we are entitled to apply Theorem 6.1 which ensures us that

vp = S †
Γ [γnvp]Γ . It follows that u = S †

Γ q̄ with q̄ = [γnvp]Γ + qp.
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From this proof, we easily deduce:

Corollary 8.1. For every u in H 0(Ω−), there exists q ∈ H−3/2(Γ ) such that S †
Γ q|Ω− = u. For every u in

L2
ℓoc(Ω

+), harmonic and such that u(x) = a ln |x| + O(1/|x|) as |x| −→ +∞ (for some a ∈ R) there exists

q ∈ H−3/2(Γ ) such that S †
Γ q|Ω+ = u.

Problem 2: Let p be in H−1/2(Γ ) and q be in H̃−3/2
n (Γ ). Find u ∈ L2

ℓoc(R2) such that:
∆u = 0 in Ω− ∪Ω+

[γnu]Γ = 0,

[γdu]Γ = p or γnu = q,

u(x) = O(1/|x|) as |x| −→ +∞.

(55a)

(55b)

(55c)

(55d)

The proofs of the following Theorem and Corollary are omitted because they are similar to those of Theorem 8.1
and Corollary 8.1. Introducing the space:

H̃−1/2(Γ ) =
{
p ∈ H−1/2(Γ ) : ⟨⟨p,1Γ ⟩⟩− 1

2 ,
1
2
= 0
}
,

they are stated as follows:

Theorem 8.2. Problem 2 admits always a solution. Any solution u is a double layer potential D†
Γ p̄ for some

p̄ ∈ H−1/2(Γ ). This solution is unique if condition (55c) is [γdu]Γ = p, in which case p̄ = p. If condition (55c)

is γnu = q, p̄ can be chosen in H̃−1/2(Γ ) and the solution is not unique in general.

Corollary 8.2. For every u in H 0(Ω−), there exists p ∈ H−1/2(Γ ) such that D†
Γ p|Ω− = u. For every u

in L2
ℓoc(Ω

+), harmonic and such that u(x) = O(1/|x|) as |x| −→ +∞ there exists p ∈ H̃−1/2(Γ ) such that

D†
Γ p|Ω+ = u.

Problem 3: Let p ∈ H−1/2
d (Γ ) and q ∈ H−3/2

n (Γ ) be such that p ∈ H1/2(Γ ) or q ∈ H−3/2(Γ ). Find u ∈
L2
ℓoc(R2) such that, for some a ∈ R:

∆u = 0 in Ω− ∪Ω+

[γdu]Γ = p and [γnu]Γ = q,

u(x) = a ln |x|+ O(1/|x|) as |x| −→ +∞.

(56a)

(56b)

(56c)

Theorem 8.3. Problem 3 admits a unique solution given by u = S †
Γ q + D†

Γ p.

Proof. According to the first point of Theorem 6.1, (p, q) ∈ H−1/2(Γ )×H−3/2(Γ ) and u = S †
Γ q + D†

Γ p solves
System (56). The uniqueness is proved in the same way as in the proof of Theorem 8.1.

Proposition 8.1. On the contrary to what happens for functions in H 1(R2\Γ ) (see (36)), there exist functions
u ∈ H 0(R2 \ Γ ) that cannot be achieved as the sum of a single and a double layer potential.

Proof. Let u− be in H (Ω−) such that γ−
d u− = p with p ∈ H−1/2

d (Γ ) but p /∈ H−1/2(Γ ). Define u in H 0(R2\Γ )
by setting u|Ω− = u− and u|Ω+ = 0. Then [γdu]Γ = p /∈ H−1/2(Γ ) and therefore u cannot be the sum of a
single and a double layer potential.

We end this section with the question of representing the harmonic functions defined in Theorems 7.1, 7.2,
7.3 and 7.4 as layer potentials. We need to define first:

H̃−1/2(Γ ) =
{
p ∈ H−1/2(Γ ) : ⟨⟨p,1Γ ⟩⟩− 1

2 ,
1
2
= 0
}
.

Theorem 8.4. The bounded operators γd ◦ S †
Γ : H−3/2(Γ ) −→ H−1/2

d (Γ ), γ−
n ◦ S †

Γ : H−3/2(Γ ) −→ H̃−3/2
n (Γ )

and γ+
n ◦S †

Γ : H−3/2(Γ ) −→ H−3/2
n (Γ ) are surjective but not injective in general. The same conclusion applies

for γn ◦ D†
Γ : H̃−1/2(Γ ) −→ H̃−3/2

n (Γ ) and γ−
d ◦ D†

Γ : H−1/2(Γ ) 7−→ H−1/2
d (Γ ).
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Proof. The subjectivity of γd ◦ S †
Γ : H−3/2(Γ ) −→ H−1/2

d (Γ ) results from Theorem 8.1.

Let now q be given in H̃−3/2
n (Γ ). According to Theorem 7.3, there exists a function v− in H (Ω−) whose

normal trace γ−
n v− is equal to q. We apply next Theorem 7.2 which asserts the existence of a function v+ (the

sum of a function in H 0(Ω+) and a single layer potential) such that γ+
d v+ = γ−

d v−. The function v defined by
v|Ω+ = v+ and v|Ω− = v−. This function v is a solution to the transmission problem 1 and therefore, according

to Theorem 8.1, it is a single layer potential, what proves that γ−
n ◦ S †

Γ is surjective.

Let us verify that the range of γ+
n ◦ S †

Γ is H−3/2(Γ ). Any q in H−3/2(Γ ) can be decomposed as q̄ + α1Γ

with q̄ ∈ H̃−3/2(Γ ) and α = |Γ |−1⟨q,1Γ ⟩− 1
2 ,

1
2
. According to Theorem 7.4, there exists vq̄ ∈ H 0(Ω+) and pq̄ in

A
1/2
D such that γ+

n (vq̄ + D†
Γ pq̄) = q̄. Denote by p the external one-sided Dirichlet trace γ+

d (vq̄ + D†
Γ pq̄) which

belongs to H−1/2
d (Γ ) and apply Theorem 7.1: There exists u− ∈ H 0(Ω−) such that γ−

d u− = p. Define now a

function v by setting v|Ω+ =
(
vq̄ +D†

Γ pq̄
)
|Ω+ and v|Ω− = u−. Since [γdv]Γ = 0, we can apply Theorem 8.1 and

conclude that v is a single layer potential. Denote by eΓ the equilibrium density of Γ i.e. the unique element in
H−1/2(Γ ) such that γd ◦SΓ eΓ is a constat function on Γ normalized in such a way that ⟨eΓ ,1Γ ⟩− 1

2 ,
1
2
= 1 (see

[16, page 263]). The function v+ (α/cΓ )SΓ eΓ (cΓ is the constant value taken by SΓ eΓ on Γ ) is a preimage of
q by γ+

n .
The remaining two results are proved in the same way, so the proof is omitted.

The last operator however deserves a special treatment:

Theorem 8.5. Let p be given in H−1/2
d (Γ ). There exists a constant c and p̄ ∈ H̃−1/2(Γ ) such that γ+

d ◦D†
Γ p̄ =

p+ c.

Proof. Let p be given in H−1/2
d (Γ ). According to Theorem 8.1, there exists q̄ ∈ H−3/2(Γ ) such that γd ◦

S †
Γ q̄ = p. Next, denote by q̃ the external one-sided Neumann trace γ+

n ◦ S †
Γ q̄ and let α ∈ R be such that

⟨⟨q̃ + αeΓ ,1Γ ⟩⟩− 3
2 ,

3
2 ,n

= 0. It holds γd ◦ S †
Γ (q̄ + αeΓ ) = p + αcΓ (recall that cΓ is the constant value taken by

the function γd ◦SΓ eΓ ) and γ+
n ◦S †

Γ (q̄+αeΓ ) = q̃+αeΓ since γ−
n ◦SΓ eΓ = 0. We define now a function v be

setting v|Ω+ =
(
S †

Γ (q̄+αeΓ )
)
|Ω+ and v|Ω− is the solution, provided by Theorem 7.3, to the interior Neumann

problem with boundary data q̃ + αeΓ . The function v is a solution to Problem 2 and therefore, according to
Theorem 8.2, it is a double layer potential.

A List of the main function spaces and operators

Weigthed Sobolev spaces

The space

W 2(R2) =
{
u ∈ D ′(R2) :

u

ρ2 lg
∈ L2(R2),

1

ρ lg

∂u

∂xj
∈ L2(R2) and

∂2u

∂xj∂xk
∈ L2(R2), ∀ j, k = 1, 2

}
,

and its subspaces

W 2
d (R2) =

{
u ∈ W 2(R2) : γdu = 0

}
,

W 2
n(R2) =

{
u ∈ W 2(R2) : γnu = 0

}
,

Bn(R2) =
(
W 2

d (R2) ∩W 2
n(R2)

)⊥ ∩W 2
n(R2),

Bd(R2) =
(
W 2

d (R2) ∩W 2
n(R2)

)⊥ ∩W 2
d (R2),

A = {(x1, x2) 7−→ a+ b1x1 + b2x2 : a, b1, b2 ∈ R} (the affine functions)

are provided with either one of the scalar products:

(·, ·)S = (∆ ·,∆ ·)L2(R2) +

3∑
j=1

⟨qj , γd ·⟩− 1
2 ,

1
2
⟨qj , γd ·⟩− 1

2 ,
1
2

(·, ·)D = (∆ ·,∆ ·)L2(R2) +

2∑
j=1

(pj , γn ·)L2(Γ )(pj , γn ·)L2(Γ ) + µ(γd ·)µ(γd ·).
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Boundary spaces

H3/2(Γ ) = γdW
2(R2) and H1/2(Γ ) = γnW

2(R2).

H3/2
n (Γ ) = γdW

2
n(R2) and H1/2

d (Γ ) = γnW
2
d (R2),

A
1/2
S = γdA and A

−1/2
S = S−1

Γ A
1/2
S ,

A
−1/2
D = γnA and A

1/2
D = D−1

Γ A
−1/2
D .

Space and dual space Duality bracket Scalar product

H1/2(Γ ), H−1/2(Γ ) ⟨·, ·⟩− 1
2 ,

1
2

(·, ·) 1
2
= ⟨S−1

Γ ·, ·⟩− 1
2 ,

1
2

H1/2(Γ ), H−1/2(Γ ) ⟨⟨·, ·⟩⟩− 1
2 ,

1
2

(·, ·)A1
2

= (LAn ·, LAn ·)A, A ∈ {S,D}
H3/2(Γ ), H−3/2(Γ ) ⟨⟨·, ·⟩⟩− 3

2 ,
3
2

(·, ·)A3
2

= (LAd ·, LAd ·)A, A ∈ {S,D}
H1/2

d (Γ ), H−1/2
d (Γ ) ⟨⟨·, ·⟩⟩− 1

2 ,
1
2 ,d

(·, ·) 1
2 ,d

= (Ld ·,Ld ·)S
H3/2

n (Γ ), H−3/2
n (Γ ) ⟨⟨·, ·⟩⟩− 3

2 ,
3
2 ,n

(·, ·) 3
2 ,n

= (Ln ·,Ln ·)D

H̃−1/2(Γ ) =
{
p ∈ H−1/2(Γ ) : ⟨⟨p,1Γ ⟩⟩− 1

2 ,
1
2
= 0
}
,

H̃−3/2
n (Γ ) =

{
q ∈ H−3/2

n (Γ ) : ⟨⟨q,1Γ ⟩⟩− 3
2 ,

3
2 ,n

= 0}.

Some isometric operators

A = S or A = D in the definitions below:

LAd :
(
H3/2(Γ ), ∥ · ∥A3

2

)
−→

(
W 2

d (R2)⊥, ∥ · ∥A
)

p 7−→ inf
{
∥u∥A : u ∈ W 2(R2), γdu = p

}
,

LAn :
(
H1/2(Γ ), ∥ · ∥A1

2

)
−→

(
W 2

n(R2)⊥, ∥ · ∥A
)

q 7−→ inf
{
∥u∥A : u ∈ W 2(R2), γnu = q

}
,

Ln :
(
H3/2

n (Γ ), ∥ · ∥ 3
2 ,n

)
−→

(
Bn(R2), ∥ · ∥D

)
p 7−→ inf

{
∥u∥S : u ∈ W 2

n(R2), γdu = p
}
,

Ld :
(
H1/2

d (Γ ), ∥ · ∥ 1
2 ,d

)
−→

(
Bd(R2), ∥ · ∥S

)
q 7−→ inf

{
∥u∥S : u ∈ W 2

d (R2), γnu = q
}
.

Continuous and dense inclusions

H3/2
n (Γ ) ⊂ H3/2(Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−3/2(Γ ) ⊂ H−3/2

n (Γ ),

H1/2
d (Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) ⊂ H−1/2(Γ ) ⊂ H−1/2

d (Γ ).

Further isometric operators

Td : H3/2(Γ ) −→ H−3/2(Γ )
p 7−→ (p, ·)S3

2

and
Tn : H1/2(Γ ) −→ H−1/2(Γ )

q 7−→ (q, ·)D1
2

,

Td : H1/2
d (Γ ) −→ H−1/2

d (Γ )
q 7−→ (q, ·) 1

2 ,d
,

and
Tn : H3/2

n (Γ ) −→ H−3/2
n (Γ )

p 7−→ (p, ·) 3
2 ,n

.

We use L2(Γ ) as pivot space, so none of these operators reduce to the identity.
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