
P
os
te
d
on

30
J
u
n
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
81
08
46
.6
50
18
08
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

WELL: Applying Bug Detectors to Bug Localization via Weakly

Supervised Learning

Zhuo Li1, Huangzhao Zhang1, Jia Li1, Zhi Jin1, and Ge Li1

1Peking University

June 30, 2023

Abstract

Bug localization, which is used to help programmers identify the location of bugs in source code, is an essential

task in software development. Researchers have already made efforts to harness the powerful deep learning

(DL) techniques to automate it. However, training bug localization model is usually challenging because it

requires a large quantity of data labeled with the bug’s exact location, which is difficult and time-consuming

to collect. By contrast, obtaining bug detection data with binary labels of whether there is a bug in the

source code is much simpler. This paper proposes a WEakly supervised bug LocaLization (WELL) method,

which only uses the bug detection data with binary labels to train a bug localization model. With CodeBERT

finetuned on the buggy-or-not binary labeled data, WELL can address bug localization in a weakly supervised

manner. The evaluations on three method-level synthetic datasets and one file-level real-world dataset show

that WELL is significantly better than the existing SOTA model in typical bug localization tasks such as

variable misuse and other programming bugs.

1

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

WELL: Applying Bug Detectors to Bug Localization via Weakly
Supervised Learning

Zhuo Li | Huangzhao Zhang | Jia Li ♀ | Zhi Jin | Ge Li*

1Key Laboratory of High Confidence
Software Technologies, Peking
University, Beijing, China

Correspondence
*Ge Li. No. 1542, No. 1 Science Building.
No. 5 Yiheyuan Road, Haidian District,
Beijing 100871. Email: lige@pku.edu.cn

Abstract

Bug localization, which is used to help programmers identify the location of bugs in source

code, is an essential task in software development. Researchers have already made efforts

to harness the powerful deep learning (DL) techniques to automate it. However, training

bug localization model is usually challenging because it requires a large quantity of data

labeled with the bug’s exact location, which is difficult and time-consuming to collect. By

contrast, obtaining bug detection data with binary labels of whether there is a bug in the

source code is much simpler. This paper proposes a WEakly supervised bug LocaLization

(WELL) method, which only uses the bug detection data with binary labels to train a bug

localization model. With CodeBERT finetuned on the buggy-or-not binary labeled data,

WELL can address bug localization in a weakly supervised manner. The evaluations on

three method-level synthetic datasets and one file-level real-world dataset show that WELL

is significantly better than the existing SOTA model in typical bug localization tasks such

as variable misuse and other programming bugs.

KEYWORDS:

Bug detection, bug localization, weakly supervised learning

1 INTRODUCTION

Bug localization is one of the key activities in software engineering (SE), where the practitioners are supposed to position the erroneous part of the
code. Effectively automating bug localization is essential to the software developers as it can improve productivity and software quality greatly.

In the past decade, deep learning (DL) has demonstrated its great powerfulness in many SE tasks, and has achieved state-of-the-art (SOTA)
performance in functionality classification 1,2, code clone detection 3,4, method naming 5,6, code completion 7,8,9 and code summarization 10,11,12,
etc. These may show the feasibility of harnessing the DL techniques to facilitate automated bug localization. Researchers have already tried to
apply DL models to bug localization 13,14,15,16. GREAT 15 and CuBERT 16 are among the SOTA DL models for bug localization and further fixing.
Taking variable misuse (VarMisuse) 13 for instance, which is one of the most thoroughly studied DL-based bug localization tasks, the DL models are
supposed to locate the erroneously used variable in the given buggy code. Existing approaches, including GREAT and CuBERT, are trained in the
end-to-end style, i.e., the buggy locations in the code are fine-grained annotated in the training set.

One major challenge in existing DL solutions for bug localization is that obtaining models such as GREAT and CuBERT requires a large quantity
of buggy-location-annotated training data. This kind of data provides strong supervision as the annotations are very fine-grained and highly related
to the bug localization task. However, such dataset with reasonable annotation quality and sufficient examples is difficult to collect or annotate,
due to the huge expense of manpower and resources in real world scenarios. According to Benton et al. 17, there exists only few large and publicly
available bug datasets with high quality for research purpose. The bug localization datasets are usually obtained in two major ways – manual
annotation or automatic collection. ❶ As mentioned before, it consumes a lot of manpower and resources to annotate high-quality bug localization

2 Zhuo Li et al.

FIGURE 1 An demonstrative example of bug detection, bug localization, and weakly supervised bug localization. The bug detection dataset (upper
left) consists of source code pieces and the corresponding binary buggy-or-not labels, which is easily accessible. While the bug localization dataset
(lower left) is annotated by buggy locations in the code, which is hard to collect. Models for weakly supervised bug localization (mid right) are
trained upon the detection dataset, but is able to carry out both bug detection and localization.

data pairs. The annotators must be experienced software developers, and they have to take enough time to read and comprehend the code along
with the bug report to locate the buggy position for every example to be annotated. ❷ Automatic dataset collection, on the other hand, is much
more efficient. It often utilizes web crawlers and rule-based filters to find bug fixing commits in the open source projects to locate the bugs.
However, the annotation quality of automatic approaches is not guaranteed. E.g., Lutellier et al. 18 recently propose a large (million-level) program
repair dataset collected from commit history of open source projects, but up to 7 of the 100 random samples are not actually bug-related commits
in their manual investigations.

On the other hand, bug detection is usually a binary classification task, and utilizes the coarse-grained annotated data to train DL models. The
buggy-or-not annotated data provides weak supervision compared to bug localization, as the annotation granularity is much coarser. Data for bug
detection is much easier to collect or annotate. One may automatically run tests over the projects to determine which function or file is buggy,
without much effort to dive into the project nor the bug report. Hence, in short words, bug localization data is scarce and difficult to collect or
annotate, while data for bug detection is more easily accessible.

Thence, we introduce the idea of weakly supervised learning into bug localization. The methodology is to train the strong model (bug localization)
with weak supervision signals (bug detection dataset), as illustrated in Fig. 1. Heuristically, a bug detection model internally learns the dependency
of buggy labels on the buggy portions in the code. Retrieving such knowledge embedded in the bug detection model to achieve bug localization is
very desirable and feasible. Based on such intuition, we proposeWEakly supervised bug LocaLization (WELL), which transformers the bug detection
model into a bug locator without any additional trainable weights nor bug localization data. WELL makes full usage of the easily accessible bug
detection data to tackle the lack-of-data challenge in bug localization. To summarize the technical part, WELL harnesses the powerfulness of
the pre-trained CodeBERT model 19, and finetunes CodeBERT for bug localization in the weakly supervised manner. Concretely, WELL finetunes
CodeBERT on bug detection datasets, during the training stage. When locating bugs, WELL acquires attention score from the finetuned CodeBERT
and extracts the critical part from the input source code based on the score. By intuition, if CodeBERT classifies a piece of code as buggy, the buggy
fragment is likely to be included in the key portion of the input, which draws the model’s most attention. In this way, the weakly supervised bug
localization is achieved in WELL.

At last, to demonstrate the effectiveness and capacity of WELL, we carry out in-depth evaluations on three different synthetic token-level bug
localization datasets and a real-world bug localization dataset of student programs. The three synthetic datasets include VarMisuse, bi-operatormis-
use (BiOpMisuse) and boundary condition error (BoundError). They are the most studied synthetic bug localization datasets using DL approaches.
The student program bug localization dataset is called StuBug. On this dataset, we train our detection model with binary test result labels (“passed”
or “wrong answer”) and localize the buggy lines without any other annotations. For the three synthetic datasets, on average, WELL correctly

Zhuo Li et al. 3

detects and accurately locates 79.74% of bugs, and the extended version (WELL-1) even locates 87.57% of bugs. Specifically, WELL improves the
localization accuracy of VarMisuse to 92.28% by over 4% compared with CuBERT. For StuBug, WELL can locate at least 1 bug for over 29%/85%
programs when reporting the top-1/top-10 suspicious line(s) per program, outperforming the baseline models significantly. Ablation study further
demonstrates that it is feasible to apply weak supervision to other backbones, such as LSTM. The code of this project is open-sourced on Github 1.

The contributions of this paper are summarized as follows:
• We introduce the methodology of weak supervision into bug localization, by utilizing bug detection data. This methodology tackles the lack-of-

data problem and makes full usage of the easily accessible data.
• We propose WELL, which turns bug detectors into bug locators without training data of localization nor additional trainable parameters. WELL

learns to locate bugs with only bug detection datasets.
• We carry out in-depth evaluations to demonstrate the effectiveness of our proposed WELL against existing SOTA DL methods for bug local-

ization. Compared to the baseline models jointly obtained with strong supervision signals, WELL trained with weak supervision produces
competitive or even better performance.

• We demonstrate the capability of applying weak supervision to LSTM backbone through ablation study, suggesting the capacity and portability
of the methodology.

2 RELATED WORK

In this section, we discuss the most relevant work to this paper, including the subject tasks of DL for bug detection and bug localization (Sec. 2.1),
the methodology of weakly supervised learning (Sec. 2.2) and the techniques for DL model visualization and explanation (Sec. 2.3).

2.1 DL for Bug Detection and Localization

By far, quite a lot of efforts have been made in source code processing by adopting DL techniques in the SE community 2,4,6,12,8,9. To leverage DL for
bug detection, Wang et al. 20 propose AST-based deep belief network for defect prediction. Choi et al. 21 utilize memory neural network to predict
buffer overrun. Li et al. 22 propose VulDeePecker to detect several types of vulnerabilities in source code. Pradel and Sen 23 propose DeepBugs for
bugs in function call statements and binary expressions, with a feed-forward network taking variable types and names as inputs.

As for DL-based bug localization, studies are conducted mostly on artificial synthetic datasets, where certain types of bugs are injected into the
clean code to formulate buggy-location-annotated data pairs, due to the aforementioned lack-of-data problem. Allamanis et al. 13 first propose the
VarMisuse task, which is one of the most thoroughly studied tasks in DL-based bug localization at present. Vasic et al. 14 employ the sequence-
to-pointer (Seq2Ptr) architecture to detect, locate and fix VarMisuse bugs jointly. More recently, Hellendoorn et al. 15 propose two architectures
to generate distributed representations for source code in order to locate bugs, namely Graph-Sandwich and GREAT. Kanade et al. 16 propose the
pre-trained CuBERT for VarMisuse and multiple other bug detection and localization tasks.

Although some of the aforementioned existing work train bug detection and localization model jointly 14,15,16, i.e., the DL models are trained
to detect and locate bugs simultaneously upon bug localization datasets, they do not seek to facilitate bug localization via the weak supervision
signals from the bug detection (binary classification) data. As a result, the lack-of-data problem is often challenging and inevitable in traditional DL
for bug localization in the real world. In this paper, on the contrary, WELL adopts the methodology of weakly supervised learning, and leverages
the easily accessible and abundant buggy-or-not data to finetune CodeBERT as a bug detector for token-level fine-grained bug localization.

2.2 Weakly Supervised Learning

Weak supervision can be categorized as incomplete supervision, inexact supervision and inaccurate supervision. In this paper, we focus on inexact
supervision, where the annotation of the training data is only coarse-grained labels (e.g., buggy-or-not data provides weak supervision to the bug
localization task). Please refer to the survey 24 for more detailed discussions of other types of weak supervision.

The methodology of weakly supervised learning has been demonstrated to be valid in many DL tasks. In computer vision (CV), researchers
facilitate image semantic segmentation via course-grained annotated classification datasets. The weak annotations include bounding boxes 25,26,
scribbles 27, and points 28, etc. More recently, pixel-level segmentation by image-level annotation has been achieved through the technique of

1https://github.com/Lizhmq/CodeBertRationalizer

https://github.com/Lizhmq/CodeBertRationalizer

4 Zhuo Li et al.

TABLE 1 Summary of notations and symbols in this paper.
Notation Definition
Dt,Dv ,De Dataset for training, validation & evaluation.
X ,Y Source code space & annotation space.

x = (t1, · · · , tl) Token sequence of the source code.
(s1, · · · , sl′) Subtoken sequence of the source code.

C,ΘC DL model & its trainable parameters.
y, ỹ Annotation & prediction from the model.
L(ỹ, y) Loss function.
Q,K, V Query, key & value matrices in attention.

h = (h0, · · · , hl′) Context-aware hidden states.
α = (α1, · · · , αnh) Multi-head attention with nh heads.

CAM 29,30,31,32. As for natural language processing (NLP), researchers also leverage weak supervision in sequence labeling tasks, such as named
entity recognition (NER), to ease the burden of data annotation 33,34,35,36. The most relevant approach to WELL is Token Tagger 34, which employs
attention-based architecture for weakly supervised NER with sentence-level annotations. Token Tagger is trained to classify whether a named
entity is in the sentence, and during NER, it selects the most important tokens based on the attention score.

In this paper, we adopt the idea of weakly supervised learning to train bug locators with buggy-or-not annotated data. The inner logic to leverage
attention for weakly supervised learning of WELL is inspired by Token Tagger.

2.3 DL Model Visualization & Explanation

Interpreting the DL models could aid the researchers to understand and explain the inner mechanism of neural networks, and such techniques
may technically promote weakly supervised learning. In CV, at present, the CAM family 29,30,31,32 are the most widely-applied and mature tech-
niques to visualize and explain the image classifiers. It generates a heat map, where the value reflects the contribution and the importance of the
corresponding pixel to the final prediction.

As for NLP, which is more relevant to our subject tasks, selective rationalization 37,38,39,40,41 is one of the most effective techniques to explain
sentence classifiers. It identifies the rationale, which is a subsequence of the input sentence, to best explain or support the prediction from the
DL model. The recent proposed FRESH 41 utilizes a two-model framework for rationalization. It generates heuristic feature scores (e.g., attention
score) from the subject BERT to derive pseudo binary tags on words, and finetunes another BERT in a sequence labeling manner as the rationale
tagger. This work demonstrates the powerfulness of pre-trained models in comprehending and explaining the NLP models.

Inspired by FRESH, we employ a simplified framework in WELL, which utilizes one single finetuned CodeBERT 19 bug detector to generate
attention scores for bug localization. As demonstrated in selective rationalization, attention in CodeBERT is supposed to mine the portions of the
code informative for bug detection, and such portions are supposed to be bugs.

3 PROBLEM DEFINITION & PRELIMINARY

In this section, we first provide our formal definition of the object tasks (Sec. 3.1). Then we explain the multi-head attention mechanism in the
transformer model (Sec. 3.2), based on which we facilitate WELL. And at last, we introduce the large CodeBERT model pre-trained for source code
(Sec. 3.3), which acts as the backbone of WELL. The symbols we employ in this paper are summarized in Table 1.

3.1 Bug Detection & Localization

Dataset. Both bug detection and localization are supervised tasks, since the datasets are annotated. A typical dataset consists of multiple pairs of
examples, i.e., D = {(x1, y1), · · · , (xn, yn)}, where n refers to the size of the dataset. A pair of example (x, y) ∈ D includes a source code piece
x ∈ X and its corresponding annotation y ∈ Y . The annotation space varies for different tasks, which will be defined later in this section. The
source code is already tokenized, i.e., x = (t1, · · · , tl), where ti is the i-th token in x and l is the length of the token sequence.

Zhuo Li et al. 5

Model. A DL model C takes the tokenized source code x as input, and outputs ỹ ∈ Y as the prediction. Note that the output format also varies
for different tasks. C is supposed to produce ỹ = y, where the prediction exactly matches the ground-truth. To obtain the optimal parameters
in C is to optimize the objective function minΘC

∑
(x,y)∈Dt L(ỹ, y), where L(·) is the loss function (usually cross entropy), which measures the

similarity of ỹ and y. For those C ’s which require different input formats (e.g., AST or graph), we assume that they process the format internally.
Bug detection. We define bug detection in method-level. Bug detection is to determine whether a bug exists in the given method or function.
Therefore, the annotation space for bug detection is binary, i.e., Y = {0, 1}, where y = 1 suggests that the corresponding function x is buggy,
while y = 0 the opposite. One often adopted approach to build a bug detector is to first generate an encoding vector of the source code via a
code representation model, and then classify the encoding with a feed forward network.
Bug localization. Bug localization is to determine which token subsequences cause a bug in the given code. The annotation for bug localization
is defined as a sequence of binary labels, i.e., Y = {0, 1}l. Each token annotation yi in y = (y1, · · · , yl) is binary, where yi = 1 suggests that
ti participates in the bug, while yi = 0 the opposite. Hence, bug localization can be viewed as a sequence tagging problem on source code. Bug
locators take x as input and binarily tags each ti.

In this paper, as a very early step in this area, we focus on the fine-grained synthesized bugs, where the bug is caused by one or two tokens,
e.g., VarMisuse by a single variable misuse, BiOpMisuse by a single bi-operator misuse, and BoundError by a single inequality operator misuse. We
propose and evaluate WELL on these datasets. The proposed weakly supervised WELL has potential to be extended to detect and locate other
more complex bugs. We leave it for future work.
Existing strongly supervised bug localization. Existing approaches are mainly based on the Seq2Ptr framework 14,15,16. The DL model is trained on
the buggy-location-annotated datasets with strong supervision. Concretely, the model encodes the source code, and computes attentions based
on the token representations. The “pointer” points to the token with the highest attention score as the predicted buggy location, and for non-buggy
(clean) code, the “pointer” points to a special “clean” token inserted in the sequence.

3.2 Attention in Transformer

The attention technique is first proposed in Seq2Seq model 42, which aims to selectively focus on parts of the source sequence during prediction.
The attention function maps multiple queries and a set of key-value pairs to a weighted sum of the values, where the weight assigned to each
value is computed with the query and the corresponding key 43.
Query, key & value. The queries, the keys and the values are all vectors. The queries Q = (Q1, · · · , Qn) are the points of interest, the values
V = (V1, · · · , Vl) are the vectors to be weighted, and the keys K = (K1, · · · ,Kl) are the “descriptions” of V . Note that each Ki and Vi are
paired. We query Qi against the keyKj about how much portion of the value Vj should be included in the weighted-sum output.
Scaled self-attention. The scaled self-attention measures how relevant the tokens in the given sequence x are to each other. Therefore, Q, K
and V are all generated from X , where X ∈ Rl×d is the embedding matrix of x and d is the dimension of the embedding space. Concretely,
Q = WQX , K = WKX , and V = WV X , where WQ, WK and WV are trainable parameters. Scaled self-attention is computed as Eq. 1, where
α(Q,K) produces the probabilistic attention score, and σ is the softmax function. αij (the element of the i-th row and the j-th column in α) is the
attention score of query Qi against keyKj . αij reflects how relevant ti and tj are in x. For other types of attention, please refer to 44.

Attention(Q,K, V) = α(Q,K)V = σ

(
QKT

√
d

)
V (1)

Multi-head attention. Themulti-head attentionmechanism is proposed in transformer 43 to focus on different types of information in the sequence.
It consists of multiple sets of scaled self-attention, and each attention is called a head, where the parameters in each head are not shared. The
outputs of these heads are concatenated and linearly transformed to integrate the information and generate the final representation. The overall
formulation of multi-head attention in the transformer architecture is deducted as below:

MultiHead(X) = Concat(head1, · · · , headnh)WO,

where headi = Attentioni(Qi,Ki, Vi),
(2)

where nh is the head number, andWO , along withWQi,WKi,WV i in the i-th head, are trainable parameters.
Transformer layer. The transformer architecture 43 is composed of a stack of identical transformer layers. Each layer consists of a multi-head
attention and a fully connected neural network. These two modules are linked through residual connection 45 and additional layer normalization 46.
The i-th layer takes Xi as input and computes Xi+1 for the i + 1-th layer (X1 = X). Please refer to “Layer 1” in Fig. 2 for the detailed structure
of the transformer layer.

6 Zhuo Li et al.

FIGURE 2 An illustrative example of WELL based on the CodeBERT backbone. We plot the computation flow chart of transformer layer only for
“Layer 1” to save space. The top-left part is for bug detection, while the top right part is for bug localization.

3.3 Pre-trained Models

With the rapid increase of the amount of accessible training data and computing power, the ways of using DL models have also changed greatly.
Recently, researchers have demonstrated the SOTA performance of large pre-trained models on various tasks across different domains including
CV and NLP. Compared to traditional training from scratch, pre-training on general tasks and fine-tuning on specific downstream tasks result in a
significant performance improvement. The idea of pre-training is introduced to the field of SE lately, resulting in the CodeBERT 19 model pre-trained
for source code.
CodeBERT. Following the work of BERT 47 and RoBERTa 48 in NLP, Feng et al. 19 propose CodeBERT for source code, which employs the identi-
cal architecture and model size with RoBERTa. The general architecture of CodeBERT is shown in Fig. 2. Specifically, CodeBERT consists of 12
transformer layers (Layer 1 to 12). The hidden size, attention head number and feed-forward size in each layer are 768, 12 and 3,072 respec-
tively, leading to overall 125 million parameter size. CodeBERT is pre-trained on the CodeSearchNet dataset 49 with more than 8 million functions
across six programming languages (i.e., Python, Java, JavaScript, Php, Ruby, and Go). After finetuning, CodeBERT is capable of performing code
classification and code generation (as an encoder) tasks, and producing SOTA results in various SE tasks 50.

4 WELL- WEAKLY SUPERVISED BUG LOCALIZATION

In this section, we illustrate the proposed WELL in detail. We first give a high-level overview of WELL in Sec. 4.1, which locates bugs through
learning upon detection tasks in a weakly supervised manner. Then, we present details of training the model and locating bugs in Sec. 4.2 and Sec.
4.3. Finally, we extend WELL by leveraging a small amount of buggy-location-annotated data for validation when available.

4.1 Overview of WELL

Wefirst present the high-level idea of our proposedWELL, utilizing the CodeBERTmodel as the backbone to locate bugs in source code in a weakly
supervised manner. It takes three steps to achieve weakly supervised learning: ❶ finetuning CodeBERT on bug detection datasets, ❷ predicting

Zhuo Li et al. 7

whether a piece of suspicious code is buggy or not, and ❸ locating the buggy position based on the attention score. One may note that finetuning
(or training) and predicting constitute the common learning paradigm of classification tasks such as bug detection. We follow this paradigm to
obtain CodeBERT as bug detectors, and facilitate bug localization according to the attention score. Intuitively, if CodeBERT is capable to detect
bugs, the code segment that draws the most attention should be related to the bug. Therefore, the multi-head attention should reveal why and
how CodeBERT detects bugs, and in this way, we achieve weakly supervised bug localization.

WELL takes the source code token sequence as input, and outputs the predicted buggy-or-not label and the bug location, as illustrated in Fig.
2. Specifically, during localization, WELL first carries out binary classification upon the code with the finetuned CodeBERT (“Tokens” up to “h” in
Fig. 2). If the prediction is negative, WELL terminates, as the code is considered as clean (not buggy); otherwise, the algorithm continues. During
prediction, the multi-head attention scores of the last layer (α) are also retrieved. WELL aggregates the multi-head attention scores to compute
the token-level importance score v = (v1, · · · , vl), where vi suggests the likeliness of the token ti in the code x to cause the bug.

4.2 Learning to Detect Bugs

As aforementioned, WELL finetunes the CodeBERT model upon bug detection datasets, which provide weak supervision for bug localization. As
binary labeled bug detection datasets are easily accessible, CodeBERT is completely capable to learn the buggy patterns in the source code. This
section illustrates the finetuning and predicting steps.
Forward computation. Forward computation means prediction in DL. According to the definition of bug detection in Sec. 3.1, CodeBERT takes the
source code x = (t1, ..., tl) as input and outputs ỹ as the predicted label. The forward computing process is demonstrated in Fig. 2. Concretely,
given the source code token sequence x, we split them into subtokens s1, s2, ..., sl′ using BPE 51, where l′ is the length of the subtoken sequence.
Special token s0 = [CLS] for classification is also inserted at the very beginning of the subtoken sequence. Then, the 12 transformer layers
generates the context-aware vector representation h = h0, ..., hl′ of subtokens. We preserve only h0 as the aggregated representation of the
whole piece of code, and discard other hi’s. Finally, we feed h0 into a feed-forward neural network with softmax output, producing the predicted
probabilities p = (p0, p1)T of the two classes (p1 for buggy and p0 for clean). The binary prediction ỹ is made based on p1, i.e., ỹ = 1 if p1 ≥ 0.5,
otherwise, ỹ = 0.
Training objective. We finetune CodeBERT on the training set of bug detection via back propagation and gradient descent. The loss function is
the commonly adopted cross-entropy loss for classification, which is formulated as below, where ΘC refers to the weights in the CodeBERT bug
detection model:

min
ΘC

L = E(x,y)∈Dt (−y log p1 − (1− y) log p0) . (3)

4.3 Localization via Multi-head Attention

Empirically, the CodeBERT bug detector obtained in Sec. 4.2 makes prediction based on some certain features embedded within the code. Such
features, which lead to buggy prediction, are likely to be related to the bugs. On the other hand, the multi-head attention provides which parts of
the source code the CodeBERT model focuses on. By analyzing the multi-head attention, we may locate bugs via the CodeBERT bug detector. The
algorithm is presented in Algo. 1.
Forward computation. In order to determine whether the input code piece is buggy or not, and to retrieve the attention scores α for further
localization procedures, a forward computation (Line 1 to 4 in Algo. 1) is necessary. After retrievingα, WELL performs two aggregations (multi-head
and subtoken) to obtain the token-level importance score v.
Aggregation of multiple heads. The attention score α (as a 3-dimensional tensor) includes all attention heads from the last transformer layer in
CodeBERT. The i-th attention head is denoted as αi, in which the j-th row (αij) suggests the probabilistic attention of sj to all other subtokens
of the code. Specifically, αi0 suggests the importance of each subtoken for the classification from the i-th head. In order to take all heads into
consideration, we adopt average aggregation of all the nh heads as Line 8 in Algo. 1:

α′ = AGG_HEAD(α) =
∑nh

i=1

αi0

nh
, (4)

where the output α′ is a sequence of probabilities suggesting the importance of each corresponding subtoken.
Alignment of subtokens. Due to BPE, a token ti may be splitted into multiple subtokens, and the concatenation of these subtokens makes the
original ti i.e., ti = CONCAT(sai , sai+1, · · · , sbi), where ai and bi refer to the beginning and ending indices in the subtoken sequence of the
token ti respectively. a and b, which are vectors constituted by ai and bi, are retrieved by aligning the token sequence x and the subtoken sequence

8 Zhuo Li et al.

Algorithm 1 Localization algorithm by WELL.
Inputs: Source code x = t1, t2, ..., tl

Outputs: Predicted label y and buggy fragment xbuggy .
1: s1, s2, ..., sl′ ← BPE(t1, t2, ..., tl) ▷ Tokenize the input code
2: h, α← CodeBERT([CLS], s1, s2, ..., sl′)

3: p← CLASSIFY(h0) ▷ Obtain prediction with CodeBERT
4: ỹ ← argmaxi pi

5: if ỹ = 0 then ▷ Source code classified as non-buggy
6: return CLEAN, NONE
7: else
8: α′ ← AGG_HEAD(α) ▷ Aggregate importance scores from different attention heads
9: a, b← ALIGN(x, s) ▷ Align subtokens with code tokens
10: v ← AGG_SUBTOKEN(a, b, α′) ▷ Sum subtokens’ importance score
11: k ← argmaxi

∑i+N−1
j=i vj ▷ Select the position with the highest importance score

12: return BUGGY, (tk, · · · , tk+N−1)

13: end if

s as Line 9 in Algo. 1. Concretely, BPE in CodeBERT tags the subtokens with a special character “Ġ”, referring to the beginning of a token. Therefore,
we perform a scanning over x and s to collect ai and bi for each ti ∈ x.
Aggregation of subtokens. Since α′ refers to the subtoken-level importance score while we require the token-level importance score, an aggre-
gation upon the subtokens is necessary. After alignment, WELL carries out additive aggregation to map the attention from the subtokens to the
corresponding tokens (Line 10 in Algo 1), resulting in the importance score v = (v1, · · · , vl). Each vi is computed as vi = ∑bi

j=ai
α′
j .

Localization. The importance score vi suggests how informative ti is to the buggy prediction of the CodeBERT bug detector. In other words, those
tokens with high importance scores are more likely to be related to the bug. As the bug localization task can be treated as a sequence tagging
problem over the source code (Sec. 3.1), WELL assumes the buggy fragment to be a consecutive token subsequence of length N , where N is a
hyper-parameter. With this assumption, WELL utilizes a slide window of sizeN to compute the importance score of all fragments, and selects the
one with the largest score as the buggy fragment (Line 11 in Algo. 1). The buggy fragment xbuggy = (xk, · · · , xk+N−1) is selected as:

k = argmax
i

∑i+N−1

j=i
vj . (5)

Please note the two assumptions in Eq. 5: ❶ The buggy tokens are no more than N , and ❷ the buggy tokens are consecutive. When the
assumptions are not satisfied, we could expand WELL by adopting the threshold activated inconsecutive selection strategy. We leave this to the
future work.

4.4 Extension with Fine-grained Supervision

So far, we have illustrated all details in WELL, including the forward computation of the CodeBERT backbone, the finetuning protocol upon buggy-
or-not datasets, and the localization process. In other words, WELL does not require nor rely on any buggy location annotations for training.
However, in the real world, although the fine-grained well-annotated examples are hard to collect, we can still obtain a small amount of them by all
means. We introduce the extendedWELL, namelyWELL-k, in this section, which leverages these fine-grained buggy-location-annotated examples
for validation.

Even though multi-head attention is designed to focus on different features in the input sequence 43, recent researches have shown that only a
small subset of the heads are specialized for the downstream task, while the other heads are dispensable and can even be pruned without losing
much performance 52,53. Therefore, those unimportant heads in WELL may have negative impacts after the average aggregation, which we indeed
encounter during our experiments. On the other hand, aggregation of only the important heads is supposed to be competitive or even better.
Therefore, WELL-k is proposed as an extension of WELL, which selects and aggregates only the top-k important attention heads.

To measure the importance of each attention head, we utilize the fine-grained well-annotated examples as validation. Instead of direct aggre-
gation, we evaluate the bug localization performance of the i-th attention head against the validation set (buggy-location-annotated), by setting
α′ = αi0, creating WELL-Hi. The performance of WELL-Hi is considered as the importance of the i-th head. Then, we aggregate only the top-k
important heads, resulting in WELL-k. Note that WELL-1 refers to no attention head aggregation at all (using only the most important head), and
WELL-nh refers to WELL itself (aggregation of all heads). During our experiments, we evaluate WELL-1, considering the extreme case.

Zhuo Li et al. 9

TABLE 2 Information of the subject tasks & datasets
Dataset Language Train # Valid # Test # l̄* Ψ*

VarMisuse Python2 ∼1.6M ∼170k ∼886k 73 ✓

BiOpMisuse Python2 ∼460k ∼49k ∼250k 123 ✓

BoundError Java ∼180k ∼26k ∼52k 146 ✓

StuBug C ∼235k ∼26k ∼17k 170 ✓

* l̄ = “Average length”, Ψ = “Well balanced”.

5 EVALUATION

5.1 Experimental Settings

Subject tasks & datasets. We evaluate WELL, against other approaches, with three synthetic bug detection/localization tasks, i.e., VarMisuse 13,
BiOpMisuse 16, BoundError, and a student program bug localization task (StuBug). VarMisuse 13 is a variable misuse detection and localization
dataset of Python2 functions. The task is to detect whether there is a misused variable name in each function and locate it. BiOpMisuse is an
operator misuse detection benchmark of Python2 functions proposed by Kanade et al. 16. Bugs are introduced by substituting one bi-operator with
a wrong but type-compatible random one (e.g., “+”⇔“-”, “*”⇔“/”, “is”⇔“is not”). We extend this task to further bug localization by requiring the
models to locate the substituted operator. BoundError is a boundary condition error detection and localization dataset of Java methods proposed
in this paper. The off-by-one bug is brought into Java methods by adding/remove the equal condition in binary comparison operators. The details
of obtaining this dataset are described in the Appendix. The bug types in the three synthetic datasets are different, but all of them are caused by
one or two tokens (e.g. “is not”⇔“is” in BiOpMisuse).

StuBug 54 is a bug localization dataset of student programs written in the C language. The dataset is collected from 28,331 student submissions
for 29 programming tasks with 231 test cases in total. During training, models learn to predict whether a program can pass a test case, i.e., the
input is a (program, test case) pair. For localization evaluation, models need to locate the buggy lines in the programs in the test set. Please refer to
the original paper for more details. The statistical and other information about the datasets is listed in Table 2.
Baseline Models. For the synthetic datasets, SOTA DL-based solutions for bug localization are mostly Seq2Ptr architecture 14. Seq2Ptr employs
the DL encoders to compute attention queried by a trainable vector upon the input code piece, and the pointer to the buggy position is generated
from the attention (argmax). Different from our proposedWELL, Seq2Ptr models are trained with the bug localization dataset with strong buggy-
location-annotated supervision signals. We employ previously proposed SOTA models as the baseline, including GREAT 15 and CuBERT 16. For
experiments on StuBug, we employ NeuralBugLocator, two SOTA program-spectrum based and one syntactic difference based bug localization
baselines 54. The implementation details (including hyper-parameters) are listed in the Appendix.
Evaluationmetrics. For synthetic datasets, we employ classification accuracy (AccD), precision (PD), and recall (RD) as the evaluation metrics for bug
detection and localization accuracy (AccL) for bug localization. For StuBug, we employ top-k (k = 1, 5, 10) localization accuracy, which represents
the percentage of programs that at least one buggy line is located successfully when top-k suspicious lines are reported. We evaluate the accuracy
on 1,449 programs in the test set as Gupta et al. 54 do.

5.2 Evaluation on Synthetic Datasets

To demonstrate WELL’s effectiveness in detecting and locating bugs, we evaluate the performance of WELL on the three synthetic datasets and
compare it with the baselines.
Bug detection. The precision (PD), recall (RD), and accuracy (AccD) of WELL and baseline models for detecting VarMisuse, BiOpMisuse, and
BoundError bugs are listed in Table 3-5. Note thatWELL-1 andWELL share the same finetuned CodeBERT backbone, the detection performance is
identical. On average,WELL produces 92.85% precision, 93.21% recall, and 93.33% accuracy in detecting the three types of bugs. The performance
of WELL on bug detection is significantly better than GREAT and CuBERT, which is attributed to the powerful CodeBERT backbone.
Bug localization. On average, WELL and WELL-1 correctly locate 79.74% and 87.57% of bugs as shown in Table 3-5. Compared with random
picking, whose accuracy is about 1%,WELL is able to locate the three kinds of bugs, even though it has no direct supervision signals for localization
during finetuning. To our surprise, the weakly supervised WELL is comparable to SOTA supervised models, GREAT and CuBERT. Specifically, the
localization accuracy of WELL is 6.75% higher than GREAT in VarMisuse, and 4.06% higher than CuBERT. As for BiOpMisuse and BoundError,

10 Zhuo Li et al.

TABLE 3 Bug detection/localization results on VarMisuse.
Sup. sig. Model Detection Localization
D† L† P (%) R (%) Acc. (%) Acc. (%)
✓ ✓ GREAT 91.38 91.69 89.91 85.53
✓ ✓ CuBERT 93.53 91.76 92.69 88.22
✓ ✗ WELL 94.34 96.12 95.20 92.28
✓ ✗ WELL-1 94.34 96.12 95.20 92.08

† D = “Detection supervision”, L = “Localization supervision”.

TABLE 4 Bug detection/localization results on BiOpMisuse
Sup. sig. Model Detection Localization
D† L† P (%) R (%) Acc. (%) Acc. (%)
✓ ✓ GREAT 82.32 81.98 82.92 76.53
✓ ✗ CuBERT 86.64 88.66 87.49 85.14

✓ ✗ WELL 92.70 90.50 91.71 83.08
✓ ✗ WELL-1 92.70 90.50 91.71 83.44

† D = “Detection supervision”, L = “Localization supervision”.

TABLE 5 Bug detection/localization results on BoundError
Sup. sig. Model Detection Localization
D† L† P (%) R (%) Acc. (%) Acc. (%)
✓ ✓ GREAT 85.87 88.11 87.08 84.77
✓ ✓ CuBERT 90.12 92.36 91.12 90.10

✓ ✗ WELL-lstm 89.00 90.40 89.63 34.96
✓ ✗ WELL 91.50 93.00 93.10 63.87
✓ ✗ WELL-1 91.50 93.00 93.10 87.19

† D = “Detection supervision”, L = “Localization supervision”.

(a) VarMisuse (b) BiOpMisuse

FIGURE 3Visualization of the importance score produced byWELL. All examples are correctly handled byWELL. The red circle suggests the buggy
location of ground-truth. The gray-scale of the background represents the importance score of the corresponding token by WELL.

the results of WELL-1 are only 2% lower than CuBERT. In addition, we notice that WELL and WELL-1 produce similar accuracy in VarMisuse and
BiOpMisuse (with differences less than 0.5%), butWELL-1 outperformsWELL by 23.32% accuracy in BoundError. This phenomenon is investigated
and discussed in Section 5.4 (“Ablation on Attention Heads”) later.
Case study. Fig. 3 shows two cases from the VarMisuse and BiOpMisuse separately. WELL predicts them as buggy correctly and locates the bugs
accurately. The darker background of a token (ti) refers to the higher importance score (vi) from WELL of this token. The most important tokens
(darkest) and the buggy locations (red circle) coincide in the figures, which, to a certain extent, shows the effectiveness of the weakly supervised
WELL. On the other hand, important tokens with dark backgrounds are scarce and concentrated in the figures, meaning that CodeBERT in WELL
is capable of learning the relation between the buggy position in the code and the given buggy-or-not supervised signal during finetuning. This
furthermore demonstrates the feasibility and effectiveness of weak supervision in bug localization. Please refer to the Appendix for more visualized
cases.

The experiment results and case study indicate that WELL is feasible and effective in detecting and locating bugs in the evaluated datasets.

Zhuo Li et al. 11

TABLE 6 Bug localization results on StuBug.

Model Localization Result
Top-10 Top-5 Top-1

Tarantula 1,141 (78.74%) 791 (54.59%) 311 (21.46%)
Ochiai 1,151 (79.43%) 835 (57.63%) 385 (26.57%)

Diff-based 623 (43.00%) 122 (8.42%) 0 (0.00%)
NBL 1,164 (80.33%) 833 (57.49%) 294 (20.29%)
WELL 1,240 (85.58%) 931 (64.25%) 421 (29.05%)

FIGURE 4 Visualization of WELL on StuBug. The three lines with highest importance scores are highlighted. The importance scores are labelled on
the right with blue font.

5.3 Evaluation on Student Programs

We further evaluate the performance ofWELL by locating semantic bugs in student programs and compareWELL with existing SOTA deep models
NBL 54, two program-spectrum-based methods (Tarantula 55, Ochiai 56) and one syntactic difference based technique. We evaluate the methods
on 1,449 programs in the test set and list the results in Table 6.

When reporting only 1 suspicious buggy line, WELL successfully locates bugs in 421 (29.05%) programs. The accuracy of the previous SOTA
deep model, NBL, is only 20.29% (9% lower). WELL also outperforms the three traditional methods significantly. For top-5 and top-10 accuracy,
the superiority of WELL is still clear. WELL gives SOTA performance on student programs collected from real world.
Case study. Two programs in StuBug are shown in Fig. 4 with the importance scores given by WELL. The first program is a solution for calculating
ab%c, while the line “k = k * a” is buggy. The correct fix is “k = k * a % c”. WELL ranks this line to the second place. The second figure is a program for
calculating the slope of a line. However, the student forgets to write the “printf” statement to output the value of slope. WELL locates the position
to fix the bug (i.e., add the “printf” statement) at the hightlighted line successfully.

5.4 Ablation on Attention Heads

As aforementioned, we find thatWELL abnormally loses 23.32% bug localization accuracy compared withWELL-1 in BoundError. It may be caused
by the issue of multi-head attention discovered in previous work 52,53. We delve into this issue in the following paragraphs and justify the necessity
of extension inWELL-1. To investigate the impact of different heads, we carry out an ablation study by randomly sampling 2,000 correctly classified
buggy examples from the test set to evaluate each WELL-Hi in VarMisuse and BoundError.

The localization accuracy of each WELL-Hi is shown in Fig. 5. In BoundError, only three heads (3, 7, 10) are effective (>50%) for localization,
while the rest are almost invalid. The results agree with the previous work that only a small subset of heads does the heavy lifting 52,53. On the
contrary, in VarMisuse, almost all heads are beneficial for localization, and only a few (3, 8) are invalid. One possible reason is that the data size of
VarMisuse is much larger and WELL learns to focus on bugs better. This ablation study explains why WELL performs slightly better than WELL-1
in VarMisuse, but fails in BoundError. Because in BoundError, only several heads are effective while the others cause counteraction to the average
aggregation, leading to an accuracy drop in WELL.

12 Zhuo Li et al.

(a) VarMisuse (b) BoundError
FIGURE 5 Localization accuracy of WELL-Hi (attention head i). The histogram is the average of the 5 repeated trials, and the standard deviation is
marked at the top of the histogram.

H21
@ Override public boolean isPromptAnswered () { return (mSelectedIndex > 0 && mSelectedIndex <mChoices . size ()) ; }

H71
@ Override public boolean isPromptAnswered () { return (mSelectedIndex > 0 && mSelectedIndex <mChoices . size ()) ; }

H11
@ Override public boolean isPromptAnswered () { return (mSelectedIndex > 0 && mSelectedIndex <mChoices . size ()) ; }

(a) Visualization of importance scores from WELL-H2, H7 and H11 in BoundError. The gray-scale of the background indicates the importancescore of the corresponding token, and WELL-Hi predicts the token with darkest background as the buggy location. The red box refers to theground-truth buggy location.
public boolean hasKey () { return id != null && id . length >= 0 ; }
private boolean hasStarted () { return startTime >= 0 ; }
public boolean isGreaterOrEqual (Priority r) { return level > r . level ; }
(b) Visualization of WELL-lstm in BoundError. The gray-scale of the background indicates the importance score of the corresponding token,and the red box refers to the ground-truth buggy location.

FIGURE 6 Visualization of WELL.

Case study. Fig. 6(a) presents a case visualization ofWELL-Hi in BoundError. The gray-scale of the background refers to the importance score of the
corresponding token, and the red box indicates the buggy location. WELL-H7 is accurate in the demonstrated case, due to the validity of the 7-th
head according to Fig. 5(b). As for the invalid heads (2 and 11), the visualized cases are distracted and erroneously predicted. In addition, WELL-H7

is actually WELL-1 as the 7-th head is the most important among all 12 heads. Therefore, the case study further demonstrates the feasibility of
the extension in WELL-1. Please refer to Appendix E for more visualized cases.

In conclusion, the “few-specialized” problem of multi-head attention is also identified in WELL. The ablation study verifies the extension of
WELL-1, which leverages fine-grained annotations as validation to select the most important and specialized head among all heads.

5.5 Portability & Transferability

In the previous experiments, WELL shows great performance on bug localization. However, the effectiveness of WELL may come from the Code-
BERT backbone rather than weak supervision. Therefore, we perform another ablation study, by applying weak supervision to the LSTM model,
creating WELL-lstm. The backbone of WELL-lstm is a two-layer bi-directional LSTM. An attention layer 57 is placed on the top of LSTM, and we
use it to compute the importance score v (no aggregation since it is single-headed). We train and evaluateWELL-lstm upon BoundError in a weakly
supervised manner.

Zhuo Li et al. 13

FIGURE 7 Top-K localization accuracy curve with standard deviation of WELL-lstm in BoundError. The standard deviation is too small and even
imperceptible in the figure. The blue and red dashed lines are the top-1 localization accuracy of WELL-1 and WELL respectively.

Top-K localization. The localization accuracy ofWELL-LSTM is 34.96%, which suggests thatWELL-lstm is valid to locate BoundError bugs although
it is not as effective compared with CodeBERT and strongly supervised approaches. The distracted attention may cause the rather not-effective-
enough performance ofWELL-lstm due to the insufficient model capability of LSTM. This is reasonable because the parameter size of LSTM (29M)
is much smaller than CodeBERT (125M). Therefore, to further demonstrate the potential of weak supervision, we also evaluate the top-K accuracy,
whereWELL-lstm selects the top-K important segments as the predicted buggy location, and any hit among them is considered correct. The results
are shown in Fig. 7. The top-1 (exact) accuracy ofWELL-lstm is 34.94%, much lower thanWELL andWELL-1, while the top-2 accuracy rises rapidly
to 76.04%. When we take four tokens into account, the accuracy is even 86.30%, which is close to the exact accuracy of WELL-1 (87.19%).
Case study. Some visualized cases are presented in Fig. 6(b), and more cases are shown in Appendix F. Although the LSTM backbone is much
less powerful than CodeBERT, WELL-lstm is still capable to notice the buggy locations in code in the scenario of weak supervision. As a rough
conclusion, the weakly supervised framework is portable and transferable to other attention-based models such as LSTM as well.

Although the LSTM backbone is much less powerful than CodeBERT, WELL-lstm is still able to notice the buggy locations with only weak
supervision. As a rough conclusion, the weakly supervised framework is portable and transferable to other attention-based models such as LSTM
as well.

5.6 Threats to Validity

The randomness is a potential threat to the results. We counteract it by repeating the experiments in RQ3 and RQ4. The model selection could
be a threat. We counteract it by comparing WELL with the currently SOTA GREAT and CuBERT models. And we further build WELL-S with the
controlled variable of supervision to compare with WELL. Also, the task and dataset selection may be another threat to validity. We counteract it
by using two previously adopted benchmarks and one dataset constructed in this work. The subject datasets contain various of bugs and multiple
programming languages. The CodeBERT backbone may be too powerful and the weak supervision could be ineffective for other models, which
makes a major threat to this paper too. We counteract it by replacing the CodeBERT backbone with LSTM in RQ4 to demonstrate the impact of
weak supervision.

6 CONCLUSION & DISCUSSION

This paper proposes WELL, a weakly supervised bug localization model equipped with the powerful CodeBERT model, to alleviate the challenge
of data collection and annotation. WELL is obtained on bug detection datasets without buggy-location annotations, making full usage of the more
easily accessible training data. Through the in-depth evaluations, we demonstrate that WELL is capable of localizing bugs under coarse-grained
supervision, and produces competitive or even better performance than existing SOTA models across both synthetic and real-world datasets.
Further experiments show that the weakly supervised methodology in WELL can be effectively applied to other attention-based models.

As an early step in this field, we hope this work could introduce some new ideas and methodologies into the SE community. Some future work
is discussed in Appendix G.

14 Zhuo Li et al.

References

1. Mou L, Li G, Zhang L,Wang T, Jin Z. Convolutional Neural Networks over Tree Structures for Programming Language Processing. In: Schuurmans
D, Wellman MP., eds. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USAAAAI
Press; 2016: 1287–1293.

2. Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. A novel neural source code representation based on abstract syntax tree. In: Atlee JM,
Bultan T, Whittle J., eds. Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019IEEE / ACM; 2019: 783–794.

3. Yu H, Lam W, Chen L, Li G, Xie T, Wang Q. Neural detection of semantic code clones via tree-based convolution. In: Guéhéneuc Y, Khomh
F, Sarro F. , eds. Proceedings of the 27th International Conference on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31,
2019IEEE / ACM; 2019: 70–80.

4. WangW, Li G,MaB, Xia X, Jin Z. Detecting CodeCloneswithGraphNeural Network and Flow-Augmented Abstract Syntax Tree. In: Kontogian-
nis K, Khomh F, Chatzigeorgiou A, FokaefsM, ZhouM., eds. 27th IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2020, London, ON, Canada, February 18-21, 2020IEEE; 2020: 261–271.

5. Allamanis M, Peng H, Sutton CA. A Convolutional Attention Network for Extreme Summarization of Source Code. In: Balcan M, Weinberger
KQ., eds. Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. 48 of
JMLR Workshop and Conference Proceedings. JMLR.org; 2016: 2091–2100.

6. Alon U, Zilberstein M, Levy O, Yahav E. code2vec: learning distributed representations of code. Proc. ACM Program. Lang. 2019; 3(POPL):
40:1–40:29.

7. Li J, Wang Y, King I, Lyu MR. Code Completion with Neural Attention and Pointer Networks. CoRR 2017; abs/1711.09573.
8. Liu F, Li G, Wei B, Xia X, Fu Z, Jin Z. A Self-Attentional Neural Architecture for Code Completion with Multi-Task Learning. In: ACM; 2020:

37–47.
9. Liu F, Li G, Zhao Y, Jin Z. Multi-task Learning based Pre-trained Language Model for Code Completion. In: IEEE; 2020: 473–485.

10. Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. In: Khomh F, Roy CK, Siegmund J., eds. Proceedings of the 26th Conference on
Program Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018ACM; 2018: 200–210.

11. Hu X, Li G, Xia X, Lo D, Lu S, Jin Z. Summarizing Source Code with Transferred API Knowledge. In: Lang J., ed. Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swedenijcai.org; 2018: 2269–2275.

12. Alon U, Brody S, Levy O, Yahav E. code2seq: Generating Sequences from Structured Representations of Code. In: OpenReview.net; 2019.
13. Allamanis M, Brockschmidt M, Khademi M. Learning to Represent Programs with Graphs. In: OpenReview.net; 2018.
14. Vasic M, Kanade A, Maniatis P, Bieber D, Singh R. Neural Program Repair by Jointly Learning to Localize and Repair. In: OpenReview.net; 2019.
15. Hellendoorn VJ, Sutton C, Singh R, Maniatis P, Bieber D. Global Relational Models of Source Code. In: OpenReview.net; 2020.
16. Kanade A,Maniatis P, Balakrishnan G, Shi K. Learning and Evaluating Contextual Embedding of Source Code. In: . 119 of Proceedings ofMachine

Learning Research. PMLR; 2020: 5110–5121.
17. Benton S, Ghanbari A, Zhang L. Defexts: a curated dataset of reproducible real-world bugs for modern JVM languages. In: Atlee JM, Bultan

T, Whittle J., eds. Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019IEEE / ACM; 2019: 47–50.

18. Lutellier T, Pham HV, Pang L, Li Y, Wei M, Tan L. CoCoNuT: combining context-aware neural translation models using ensemble for program
repair. In: Khurshid S, Pasareanu CS., eds. ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event,
USA, July 18-22, 2020ACM; 2020: 101–114.

19. Feng Z, Guo D, Tang D, et al. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In: Cohn T, He Y, Liu Y., eds. Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-20 November
2020Association for Computational Linguistics; 2020: 1536–1547.

Zhuo Li et al. 15

20. Wang S, Liu T, Tan L. Automatically learning semantic features for defect prediction. In: Dillon LK, Visser W, Williams LA., eds. Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016ACM; 2016: 297–308.

21. Choi M, Jeong S, Oh H, Choo J. End-to-End Prediction of Buffer Overruns from Raw Source Code via Neural Memory Networks. In: Sierra
C., ed. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017ijcai.org; 2017: 1546–1553.

22. Li Z, Zou D, Xu S, et al. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. In: The Internet Society; 2018.
23. Pradel M, Sen K. DeepBugs: a learning approach to name-based bug detection. Proc. ACM Program. Lang. 2018; 2(OOPSLA): 147:1–147:25.
24. Zhou ZH. A brief introduction to weakly supervised learning. National Science Review 2017; 5(1): 44-53.
25. Dai J, He K, Sun J. BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. In: IEEE Computer

Society; 2015: 1635–1643.
26. Papandreou G, Chen L, Murphy K, Yuille AL.Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation. CoRR 2015;

abs/1502.02734.
27. Lin D, Dai J, Jia J, He K, Sun J. ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation. In: IEEE Computer

Society; 2016: 3159–3167.
28. Bearman AL, Russakovsky O, Ferrari V, Li F. What’s the Point: Semantic Segmentation with Point Supervision. In: Leibe B, Matas J, Sebe N,

Welling M., eds. Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
VII. 9911 of Lecture Notes in Computer Science. Springer; 2016: 549–565.

29. Lin M, Chen Q, Yan S. Network In Network. In: Bengio Y, LeCun Y., eds. 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings; 2014.

30. Zhou B, Khosla A, Lapedriza À, Oliva A, Torralba A. Learning Deep Features for Discriminative Localization. In: IEEE Computer Society; 2016:
2921–2929.

31. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization. In: IEEE Computer Society; 2017: 618–626.

32. Wei Y, Xiao H, Shi H, Jie Z, Feng J, Huang TS. Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi-Supervised Semantic
Segmentation. In: IEEE Computer Society; 2018: 7268–7277.

33. Ni J, Dinu G, Florian R. Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representation Projection.
In: Barzilay R, KanM., eds. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long PapersAssociation for Computational Linguistics; 2017: 1470–1480.

34. Patra B, Moniz JRA. Weakly Supervised Attention Networks for Entity Recognition. In: Inui K, Jiang J, Ng V, Wan X., eds. Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019Association for Computational Linguistics; 2019: 6267–6272.

35. Lison P, Barnes J, Hubin A, Touileb S. Named Entity Recognition without Labelled Data: A Weak Supervision Approach. In: Jurafsky D, Chai
J, Schluter N, Tetreault JR., eds. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020Association for Computational Linguistics; 2020: 1518–1533.

36. Safranchik E, Luo S, Bach SH. Weakly Supervised Sequence Tagging from Noisy Rules. In: AAAI Press; 2020: 5570–5578.
37. Lei T, Barzilay R, Jaakkola TS. Rationalizing Neural Predictions. In: Su J, Carreras X, Duh K., eds. Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016The Association for Computational Linguistics;
2016: 107–117.

38. Bastings J, Aziz W, Titov I. Interpretable Neural Predictions with Differentiable Binary Variables. In: Korhonen A, Traum DR, Màrquez L., eds.
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long PapersAssociation for Computational Linguistics; 2019: 2963–2977.

16 Zhuo Li et al.

39. Yu M, Chang S, Zhang Y, Jaakkola TS. Rethinking Cooperative Rationalization: Introspective Extraction and Complement Control. In: Inui K,
Jiang J, Ng V, Wan X., eds. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019Association for Computational
Linguistics; 2019: 4092–4101.

40. DeYoung J, Jain S, Rajani NF, et al. ERASER: A Benchmark to Evaluate Rationalized NLP Models. In: Jurafsky D, Chai J, Schluter N, Tetreault
JR., eds. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020Association
for Computational Linguistics; 2020: 4443–4458.

41. Jain S, Wiegreffe S, Pinter Y, Wallace BC. Learning to Faithfully Rationalize by Construction. In: Jurafsky D, Chai J, Schluter N, Tetreault JR.,
eds. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020Association for
Computational Linguistics; 2020: 4459–4473.

42. BahdanauD, ChoK, Bengio Y. NeuralMachine Translation by Jointly Learning to Align and Translate. In: Bengio Y, LeCun Y., eds. 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings; 2015.

43. Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need. In: Guyon I, Luxburg vU, Bengio S, et al., eds. Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA; 2017:
5998–6008.

44. Luong T, Pham H, Manning CD. Effective Approaches to Attention-based Neural Machine Translation. In: Màrquez L, Callison-Burch C, Su J,
Pighin D, Marton Y., eds. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015The Association for Computational Linguistics; 2015: 1412–1421.

45. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: IEEE Computer Society; 2016: 770–778.
46. Ba LJ, Kiros JR, Hinton GE. Layer Normalization. CoRR 2016; abs/1607.06450.
47. Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Burstein J,

Doran C, Solorio T., eds. Proceedings of the 2019Conference of theNorth American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)Association for Computational
Linguistics; 2019: 4171–4186.

48. Liu Y, Ott M, Goyal N, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR 2019; abs/1907.11692.
49. Husain H,WuH, Gazit T, Allamanis M, Brockschmidt M. CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. CoRR 2019;

abs/1909.09436.
50. Lu S, Guo D, Ren S, et al. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation. arXiv preprint

arXiv:2102.04664 2021.
51. Sennrich R, Haddow B, Birch A. Neural Machine Translation of Rare Words with Subword Units. In: The Association for Computer Linguistics;

2016.
52. Voita E, Talbot D, Moiseev F, Sennrich R, Titov I. Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can

Be Pruned. In: Korhonen A, Traum DR, Màrquez L., eds. Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long PapersAssociation for Computational Linguistics; 2019: 5797–5808.

53. Michel P, Levy O, Neubig G. Are Sixteen Heads Really Better than One?. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB,
Garnett R., eds. Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada; 2019: 14014–14024.

54. Gupta R, Kanade A, Shevade SK. Neural Attribution for Semantic Bug-Localization in Student Programs. In: ; 2019: 11861–11871.
55. Abreu R, Zoeteweij P, Gemund vAJC. An Evaluation of Similarity Coefficients for Software Fault Localization. In: IEEE Computer Society; 2006:

39–46.
56. Jones JA, Harrold MJ, Stasko J. Visualization for Fault Localization. In: ; 2003.

Zhuo Li et al. 17

57. Wang Z, Yang B. Attention-based Bidirectional Long Short-Term Memory Networks for Relation Classification Using Knowledge Distillation
from BERT. In: IEEE; 2020: 562–568.

APPENDIX

A GENERATING DATASET BoundError

We randomly sample 20% projects from the Github Java Corpus 2, and extract all the Java methods using TreeSitter 3. The methods with more
than 400 tokens are discarded as they are too long and complicated. Then we use TreeSitter to parse the methods to get the Concrete Syntax Tree
(CST), and locate the subtree with type “binary expression” to find binary expressions with operators “<=”, “>=”, < and >. The off-by-one bug is
brought into the methods by replacing comparison operators (e.g., <⇔<=, “>”⇔“>=”4). 5

B MODEL CONFIGURATION

We implement WELL with Python3 based on the DL framework PyTorch (ver 1.7.1) and the transformers package (ver 3.4.0) 6.
WELL adopts the released base version of CodeBERT (CodeBERT-base) as the backbone7. The max length is fixed to 512. We utilize the open-

sourced GREATmodel with the same configuration reported in the original paper and train it from scratch. As for CuBERT, we reproduce the model
by replacing the backbone model with CodeBERT. The reasons are as follows: ❶ The model size of CuBERT is (three times larger than CodeBERT).
It is too large for our machine to finetune the model. ❷ Using the same CodeBERT backbone helps us to compare the method with WELL better.
During finetuning, the learning rate is set to 4 × 10−5, and L2 regularization is adopted with the weight of 0.01. In each experiment, the models
are trained/finetuned for 6 epochs with the batch size of 64 and we select the checkpoint with the highest accuracy on the validation set. To
emphasize the supervision, the buggy locations in the training set is accessible for GREAT, CuBERT, while blocked forWELL (weak supervision). For
WELL-1, we sample 1,000 fine-grained labeled examples from the validation dataset to measure the importance of each attention head, which is
a very small amount (less than 1% of the original training dataset size). For WELL-LSTM, we train a bi-directional LSTM model with the hidden size
of 600 and time step of 400. The vocabulary size is 30,000 and the embedding width is 512. In the experiment of StuBug, the results of baseline
models (NeuralBugLocator, Turantula, Ochiai and Diff-based model) are reported as in the original paper of NBL.

C WELL FOR BUG FIXING

WELL is trained on bug detection datasets and can be applied for both bug detection and localization. Furthermore, WELL has the potential for
unsupervised bug fixing. The backbone model of WELL is CodeBERT, which is pre-trained with masked language model task. So CodeBERT can
predict the probability of the masked original token. Thus, when WELL predict a program to be buggy and find the bug location, we can mask the
located buggy tokens and query CodeBERT to predict the original tokens. Theoretically, CodeBERT should recover the most probable and correct
tokens. In this way, we may apply WELL for bug fixing.

However, there are still many challenges to accomplish this rough idea. For example, it is hard to determine the number of tokens to query
CodeBERT to generate, i.e., the number of “mask” to insert to the bug location. As an early trial, we try this method on fixing bugs in VarMisuse
dataset, in which each bug corresponds to a misused variable. We randomly sample 1,000 functions and evaluate the repair accuracy. When we
set the repair (sub)token number to 1, 65.9% of bugs are fixed correctly. When up to 3 (sub)tokens are taken into consideration, the number of
fixed bugs grows to 81.4%. Although WELL can only repair simple bugs now, this introduces a new thought to achieve bug fixing.

2https://groups.inf.ed.ac.uk/cup/javaGithub/3https://tree-sitter.github.io/tree-sitter4The equal condition in the comparison is added or removed in the operator.5All the used dataset will be published.6https://huggingface.co/transformers/7https://huggingface.co/microsoft/codebert-base

https://huggingface.co/transformers/
https://huggingface.co/microsoft/codebert-base

18 Zhuo Li et al.

D MORE VISUALIZED CASES OF WELL

We list more visualized cases from WELL in BoundError in Fig. D1. Perceivable dark backgrounds in each case are sparse, indicating that the
importance scores are concentrated. Fig. 1(a)-1(e) are correctly handled, and WELL is quite “certain” about the buggy location predictions, as the
importance scores are almost concentrated only upon the actual buggy locations. Although the bug in Fig. 1(f) is erroneously located by WELL,
it still pays attention to the actual buggy position, and is in a dilemma between “>” (actual bug) or “>=” (wrong prediction). In some certain
scenarios, “>” may be misused; while in others, “>=” may be misused. As the context is not provided in this case, WELL cannot make certain
and correct decisions. We assume that it is hard to decide whether the equal condition should be incorporated given the limited context. And it is
understandable for WELL to make mistakes in such cases.

(a) add (b) clone (c) main

(d) delete (e) ReInitRounds (f) setSample

FIGURE D1 Visualization of the importance score produced by WELL in BoundError. The red circle suggests the buggy location. The gray-scale
of the background represents the importance score of the corresponding token. (a)-(e) are correctly handled by WELL, as the darkest token is
coincident with the ground-truth circle; while (f) is erroneously handled, as WELL locate the bug at “>=” instead of “>”.

E MORE VISUALIZED CASES OF WELL-HI

We present more visualized cases of WELL-Hi on different attention heads in BoundError in Fig. D2. Similar to Fig. 6(a), we carry out visualization
upon three heads (i.e., 2, 7 and 11), where WELL-H7 is considered as effective and valid for bug localization while WELL-H2 and H11 are not
according to Fig. 5(b). In all cases, WELL-H7 (WELL-1) produces perceivable and concentrated importance score, and accurately locates the bugs.
On the contrary, WELL-H2 and H11 are distracted in many cases, and make less accurate localization. These cases to a certain extent demonstrates
the issue of multi-head attention, and the necessity and feasibility of extented WELL-1.

F MORE VISUALIZED CASES OF WELL-LSTM

Weprovidemore visualized cases ofWELL-lstm in BoundError in Fig. D3.WELL-lstm exhibits similar behaviors in most cases, where the importance
scores are concentrated on the buggy locations. However, there are also erroneous predictions, such as case 2. WELL-lstm regards “segmentEnd”
instead of “<=” next to it as bug. Such incidents would somehow explain why WELL-lstm is not as effective as WELL nor WELL-1– the LSTM
backbone may be not strong enough to fully support the weakly supervised bug localization.

Zhuo Li et al. 19

H21 public static boolean hasFlag (int options , int flag) { return ((options & flag) >= 0) ; }
H71 public static boolean hasFlag (int options , int flag) { return ((options & flag) >= 0) ; }
H11 public static boolean hasFlag (int options , int flag) { return ((options & flag) >= 0) ; }(a) hasFlag
H21 private boolean isDigit (char ch) { return ch >= ’0’ && ch < ’9’ ; }
H71 private boolean isDigit (char ch) { return ch >= ’0’ && ch < ’9’ ; }
H11 private boolean isDigit (char ch) { return ch >= ’0’ && ch < ’9’ ; }(b) isDigit
H21 private void previousPage () { if (currentPage >= 0) { currentPage – ; updateTitle () ; showPage (currentPage) ; } }
H71 private void previousPage () { if (currentPage >= 0) { currentPage−− ; updateTitle () ; showPage (currentPage) ; } }
H11 private void previousPage () { if (currentPage >= 0) { currentPage – ; updateTitle () ; showPage (currentPage) ; } }(c) previousPage
H21 public void run () { for (int i = 0 ; i <= CNT ; i ++) { test () ; } }
H71 public void run () { for (int i = 0 ; i <= CNT ; i ++) { test () ; } }
H11 public void run () { for (int i = 0 ; i <= CNT ; i ++) { test () ; } }(d) run
H21 public void setFulfill (String fulfill) { _fulfill = fulfill != null && fulfill . length () >= 0 ? fulfill : null ; }
H71 public void setFulfill (String fulfill) { _fulfill = fulfill != null && fulfill . length () >= 0 ? fulfill : null ; }
H11 public void setFulfill (String fulfill) { _fulfill = fulfill != null && fulfill . length () >= 0 ? fulfill : null ; }(e) setFulfill
H21

public void setMaxWriteThroughput (int maxWriteThroughput) { if (maxWriteThroughput <= 0) {maxWriteThroughput = 0 ; } this . maxWriteThroughput = maxWriteThroughput ; }
H71

public void setMaxWriteThroughput (int maxWriteThroughput) { if (maxWriteThroughput <= 0) {maxWriteThroughput = 0 ; } this . maxWriteThroughput = maxWriteThroughput ; }
H11

public void setMaxWriteThroughput (int maxWriteThroughput) { if (maxWriteThroughput <= 0) {maxWriteThroughput = 0 ; } this . maxWriteThroughput = maxWriteThroughput ; }(f) setMaxWriteThroughout

FIGURE D2 Visualization of the importance score produced by WELL-H2, H7 and H11. The gray-scale of the background suggests the importance
score of the corresponding token, and the red box refers to the buggy location. According to Fig. 5(b), WELL-H7 is valid and effective and the other
two are not.

G FUTURE WORK

As an early step in this field, we demonstrate the feasibility and effectiveness of weakly supervised bug localization, leaving many things to future
work.

The evaluations of this paper are carried out on three synthesized datasets, where simple bugs are injected to the originally clean code to
formulate buggy-location-annotated data. We leave the complex bug localization and the real world evaluation for future work.

The assumptions in WELL, that the buggy fragment is consecutive and has a max length ofN may not be satisfied for many complex bugs. We
could adopt the threshold activation strategy or the inconsecutive selection strategy to allowWELL to locate inconsecutive token sequences with
variable lengths. We leave this for the future work.

There are other approaches rather than attention to obtain the importance scores, such as gradients. WELL may be generalized by employing
such techniques. We leave these trials of different approaches to compute the importance scores for the future work.

A more desirable future work is to further fix bugs in the weakly supervised style. This could also be achieved with the CodeBERT backbone,
when we consider not only h0, but also other hi’s. We leave this weakly supervised Dl-based bug fixing for the future work as well.

20 Zhuo Li et al.

private void assertTagOpened (String output) { assertTrue (output . indexOf ("<input ") >= − 1) ; }
public boolean contained (long from , long to) { return (from < this . segmentStart && this . segmentEnd <= to) ; }
public static boolean flagBit (int b , int bit) { return (b & (1 << bit)) >= 0 ; }
@ Override public boolean hasChildren () { return children . size () >= 0 ; }
private boolean isAcceptableSize (int width , int height) { return (width > _minAcceptableImageWidth) && (height
>= _minAcceptableImageHeight) ; }
FIGURE D3 Visualization of importance scores from WELL-lstm in BoundError. The gray-scale of the background suggests the importance score
of the corresponding token, and the red box refers to the buggy location.

	WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised Learning
	Abstract
	Introduction
	Related Work
	DL for Bug Detection and Localization
	Weakly Supervised Learning
	DL Model Visualization & Explanation

	Problem Definition & Preliminary
	Bug Detection & Localization
	Attention in Transformer
	Pre-trained Models

	WELL- Weakly Supervised bug localization
	Overview of WELL
	Learning to Detect Bugs
	Localization via Multi-head Attention
	Extension with Fine-grained Supervision

	Evaluation
	Experimental Settings
	Evaluation on Synthetic Datasets
	Evaluation on Student Programs
	Ablation on Attention Heads
	Portability & Transferability
	Threats to Validity

	Conclusion & Discussion
	References
	Appendix
	Generating Dataset BoundError
	Model Configuration
	WELL for Bug Fixing
	More Visualized Cases of WELL
	More Visualized Cases of WELL-Hi
	More Visualized Cases of WELL-lstm
	Future Work

