Overexpression of gamma-Glutamyl Cyclotransferases 2;1 (CsGGCT2;1) Reduces Arsenic Toxicity and Accumulation in Camelina sativa (L.)

Om Dhankher¹, Gurpal Singh¹, Helen Le¹, Kenny Ablordeppey¹, Stephanie Long², and Rakesh Minocha²

¹University of Massachusetts Amherst Stockbridge School of Agriculture ²Northern Research Station

June 29, 2023

Abstract

Environmental arsenic contamination adversely affects human health, and its accumulation diminishes food quality. Glutathione (GSH) is known to bind and detoxify arsenic and other toxic metals. GSH homeostasis in living cells is maintained via γ -glutamyl cycle. Previously, γ -glutamyl cyclotransferases (*GGCTs*) have been shown to be involved in GSH degradation in plants and increasing tolerance to toxic metals. Here we characterized the *GGCT2;1* homolog from *Camelina sativa* for its role in arsenic tolerance and accumulation. Overexpressing *CsGGCT2;1* in Camelina resulted in strong tolerance to arsenite (AsIII). Compared to wild-type, overexpression (OE) lines had significantly higher shoot (2.6-3.5-fold) and root (7-10-fold) biomass on AsIII containing media and accumulated 40-60% less arsenic in root and shoot tissues. Further, OE lines had higher chlorophyll content, lower lipid peroxidation and oxidative stress. There was a small but nonsignificant increase in 5-oxoproline (5-OP) in OE lines and the upregulation of *Oxoprolinase 1* (*OXP1*) suggested accelerated conversion of 5-OP to glutamate, which is then utilized for GSH resynthesis for maintaining homeostasis. Overall, overexpression of GGCT2;1 and it homologs in Camelina and other crops will enable their cultivation on contaminated marginal lands to reduce As accumulation, addressing food safety issues as well as future food and biofuel needs.

Introduction

With the growing world population and changing climate conditions, feeding the world in the future will pose a severe challenge (Dhankher and Foyer 2018; Ray et al. 2013). Global food, feed, and fuel requirements are putting tremendous stress on our limited land resources. To achieve food safety and security goals, utilizing degraded and contaminated land for agricultural production safely and sustainably will assist in feeding the future population. Heavy metals and metalloids are major contributors to soil contamination (Li et al. 2019). Metal(loid)s such as arsenic (As) can be present naturally in agricultural soil or due to anthropogenic activities like fertilizer and pesticide application, sewage waste, coal burning, and industrial pollution (Li et al. 2019). The presence of metal(loid)s in soil impacts the growth and development of food crops as these toxic elements compete with nutrient uptake, negatively impact photosynthesis, create reactive oxygen species (ROS), and damage crucial biochemical processes in plant cells (Farooq et al. 2016; Li et al. 2019). Besides severely impacting food production, toxic metals also affect food quality and safety. Food contaminated with toxic metals poses serious threats to the health of humans and livestock. Chronic exposure to As can cause skin, liver, and kidney cancer (Faroog et al. 2016; Jomova et al. 2011), mercury (Hg) exposure leads to nervous system damage (Yang et al. 2020), cadmium (Cd) can cause kidney diseases and cancers (Genchi et al. 2020), and lead (Pb) causes reduced cognitive skills and mental development issues (Mason, Harp, and Han 2014). In order to utilize degraded land resources, we need to develop strategies for the safe use of contaminated sites without compromising the quality and quantity of the produce grown on them. One such approach is utilizing genetic engineering to create plants that can withstand phytotoxicity while limiting the uptake and accumulation of toxic metals.

One of the significant toxic metalloids of global concern is As. Arsenic is a highly toxic, group I carcinogen, and unlike some heavy metals like iron, nickel, and cobalt, it is not required by plants (Farooq et al. 2016). Globally, As contamination is a major concern in ~108 countries, impacting more than 230 million people (Shaji et al. 2021). Arsenic toxicity also reduces plant growth and development by damaging the plant's cellular and molecular functions (Meselhy et al. 2021; Verma et al. 2021). Plants can take up As in two primary forms – inorganic forms such as arsenite (AsIII) and arsenate (AsV), and organic forms such as methylated arsenic –monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA) (Bali and Sidhu 2021; Farooq et al. 2016). Plants take up inorganic AsV through phosphate transporters and AsIII, MMA, and DMA via membrane-bound aquaporin transporters, like nodulin 26-like proteins (NIPs) and plasma membrane intrinsic proteins (PIPs) (Ali 2022; Farooq et al. 2016; Mosa et al. 2012). After entering plants, As impacts the plants' physiology and biochemistry by hindering photosynthetic, respiratory, and other growth and development processes. To protect themselves from the damaging effects of As and other toxic metals, plants utilize their innate capability to detoxify toxic metal(loid)s efficiently via binding with glutathione (GSH) and GSH derivatives, phytochelatins (PCs). Plant cells maintain GSH homeostasis via the γ -glutamyl cycle (Paulose et al., 2013; Noctor et al., 2012; Emamverdian et al., 2015; Hasanuzzaman et al., 2017). Glutathione and its oligomer PCs can help sequester heavy metals in the vacuole and extracellular spaces and limit their uptake and transport, thereby preventing the plant's cellular machinery from damaging toxic effects (Hasanuzzaman et al. 2017). Exogenous GSH application has improved plant tolerance to Hg, cesium (Cs), silver nanoparticles (AgNPs), and salinity in Arabidopsis, soybean, and poplar (Adams et al. 2020; Akram et al. 2017; Kim et al. 2017; Ma et al. 2020). Moreover, improving GSH synthesis via overexpression of the GSH1 gene showed increased tolerance to Cd and As in Arabidopsis (Guo et al. 2008) and enhanced tolerance to Pb in poplar (Samuilov et al. 2016) and better overall growth of poplar grown in soil contaminated with heavy metals (Ivanova et al. 2011). Overexpression of bacterial $\gamma - E^{\Sigma}$, a $\Gamma \Sigma H1$ homolog, also leads to increased tolerance to As in Arabidopsis (Dhankher *et al.* 2002; Li et al. 2005). Similarly, overexpressing GSH recycling genes, GGCT2;1 (gamma-glutamyl cyclotransferases 2:1), improved tolerance to As in Arabidopsis which led to higher biomass, lower As accumulation, and better nutrient utilization as compared to wild-type plants (Paulose et al. 2013). Here, we translate those Arabidopsis research findings of Paulose et al. (2013) into Camelina sativa, a biofuel crop, to potentially develop plants that can provide economic returns while cultivated on soils contaminated with toxic metals.

The selection of Camelina as the crop to work with was based on its unique properties. Camillina sativa, commonly known as the gold of pleasure or false flax, is an oilseed crop of the Brassicaceae family and is considered a dedicated biofuel crop (Chhikara *et al* . 2018). Camelina has various agronomic advantages for production, including early maturity, low requirement for water and nutrients, adaptability to adverse environmental conditions, and resistance to common cruciferous pests (Abdullah *et al* . 2018; Kagale *et al* . 2014; Stamenković *et al* . 2021). Camelina seeds contain more than 30% oil which can be utilized to produce biodiesel. Based on its shorter life cycle (85-100 days), it can be included in double and relay cropping systems. Life cycle assessment studies of Camelina have shown its economic viability and sustainability for use as a biofuel (Berti*et al* . 2017; Keske *et al* . 2013). However, Camelina is still an underutilized resource, and its potential as a biofuel crop could be increased by translating and applying beneficial research findings from other model plants (Sainger *et al* . 2017; Stamenković *et al* . 2021).

In congruence with this aim to improve Camelina, as a translational approach, we overexpressed the CsG-GCT2;1 gene in Camelina and analyzed its effect on the plant's ability to grow on arsenite-contaminated media. Our results showed that overexpression of CsGGCT2;1 enabled Camelina plants to grow better than wild-type (WT) plants on media supplemented with AsIII. The CsGGCT2;1 transgenic lines also had significantly higher shoot and root biomass, improved chlorophyll content, lower lipid peroxidation, and lower arsenic accumulation than WT plants.

Material and Methods

Cloning of CsGGCT2;1 and generation of the gene construct

A Complementary DNA (cDNA) library generated from Camelina wild-type leaves was used to perform PCR with sense (5' TACGTCGTCGACGTTTAAACATGGTTTTGTGGGTA 3') and antisense primers (5' AGATTCGAATCATGATACAAAGACTCTTTGC 3') designed from Camelina GGCT2;1 (Csa08g024050.1, www.Camelinadb.ca) gene coding sequences. The PCR amplification conditions were 94°C for 2 min (1 cycle); 94°C for 45 sec, 55°C for 1 min, 72°C for 45 sec (40 cycles); final extension at 72°C for 10 min (1 cycle). The resulting 654 nucleotide PCR product was gel purified using Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA) and ligated into pGem-T easy cloning vector (Promega Corporation, Madison, WI). The insert was verified by sequencing and then subcloned into the binary pCambia Redseed vector using Sal 1 and Xba 1 sites for overexpression in plants. The expression of the CsGGCT2; 1 gene is driven under an enhanced 35S promoter. The 35S promoter was amplified from the pEarlygate 103 plasmid via PCR with primers (5' TAGCTGGGGGCCCGGCGCGCGCGAGATCTCC 3'), (5' CGTCGACACTAGTTCCTCT-CCAAATGAAA 3') and after sequence verification, it was subsequently sub-cloned at Apa 1 and Sal 1 sites of pCambia Redseed vector. The pCambia RedSeed vector contains a DsRed reporter gene and a hygromycin resistance gene for transgenic seed selection using a DsRed filter or hygromycin antibiotics. The resulting plasmid pCambiaRedSeed/35Sp::CsGGCT2:1 (Figure 1) was transformed into plants for driving constitutive expression of the CsGGCT2; 1 gene.

Plant Materials and generation of CSGGCT2;1 overexpression lines

Camelina sativa (L.) Crantz cultivar 'Sunseon' was used as the wildtype plant. CsGGCT2;1 overexpression lines were generated by inoculating wild-type plants with Agrobacterium via vacuum infiltration (Lu and Kang 2008). Agrobacterium tumefaciens strain EHA105A with modified pCAMBIA1300 plasmid containing CaMV35Sp::CsGGCT2;1::Nos-t construct was used for transformation (Figure 1a). After transformation, homozygous lines were generated using DsRED as a selection marker (Figure 1b). The gene expression level was confirmed by using isolated RNA from 3-week-old plants, synthesizing cDNA, and using quantitative real-time PCR (qRT- PCR) (Figure 1c). T₃ homozygous lines were used for all analyses.

Analysis of differential regulation of CsGGCT2;1transcript

For differential gene expression analysis, WT plants were germinated on $\frac{1}{2}$ x MS media, and 2-week-old plants were transferred to $\frac{1}{2}$ x Hoagland's solution. After acclimatization for 4-5 days, the hydroponic solution was replaced with $\frac{1}{2}$ x Hoagland's solution containing 25 μ M sodium arsenite (AsIII). Plants were harvested at 0 (Control), 6, 12, 24, and 48 h of AsIII exposure. Finally, plants were flash-frozen in liquid nitrogen and stored at -80°C until further analysis of gene expression.

Total RNA was isolated from the roots and shoots of Camelina seedlings using a Plant RNA isolation kit (Sigma-Aldrich Inc., St. Louis, MO) following the manufacturer's protocol. The cDNA was synthesized using the Verso-cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA). *CsGGCT2;1* forward (5'CTACAGCTACTGGACCATGTG 3') and reverse (5' TCACTTCCTCTGGCAAATCG 3') and housekeeping gene *CsEF1* forward (5' CTGCTAACTTCACCTCCCAG 3') and reverse (5' GCTCCTTCT-CAATCTCCTTACC 3') primers were used to perform qRT-PCR. The qRT-PCR amplification program was 95°C for 5 min (1 cycle); 95°C for 15 seconds, 60°C for 45 seconds, 72°C for 1 min (32 cycles), and final extension at 72°C for 10 min (1 cycle). The relative expression level was analyzed by using the delta-delta Ct $(2^{-[?][?]}Ct)$ method (Livak and Schmittgen 2001).

Experimental set-up for AsIII treatment

For AsIII treatments, plants were grown on 1/2 x MS media (Phytotechnology Laboratories, LLC, Lenexa, KS) containing 1.5% Sucrose and 0.8% Phytoblend (Caisson Labs, Smithfield, UT) with pH adjusted to 5.7 in growth chamber. Growth conditions were $24^{\circ}/22^{\circ}$ C day/night temperature and 16h/8h light/dark cycle, with a light intensity of 100-120 μ mol/m²/s. For AsIII treatments, 20 μ M sodium arsenite was added to the

 $\frac{1}{2}$ x MS media and plants were grown for 21 days. Fresh shoot and root biomass were recorded at harvesting, and the samples were flash-frozen in liquid nitrogen and stored at -80°C until further analysis.

Chlorophyll content

Chlorophyll was measured using the protocol found in (Ma *et al* . 2016) with adjustments for lower weight and volume. To extract chlorophyll, approximately 10 mg of crushed leaves were added to 1.5 ml of 95% (v/v) ethanol. Samples were incubated in the dark for two days at room temperature (RT) and absorbance of the supernatant was measured at 664.2 nm and 648.6 nm by UV-Vis spectrophotometer (Biotek Epock microplate reader, Aligent Technologies Inc., Santa Clara, CA). Total chlorophyll was determined by Chla = 13.36x(A664.2) - 5.19x(A648.6); Chlb = 27.43x(A648.6) - 8.12x(A664.2), and total chlorophyll = Chla + Chlb.

Lipid peroxidation analysis

Lipid peroxide was measured using the protocol mentioned in Chen and Zhang (2016). Briefly, 50 mg of crushed plant tissues were placed in a microcentrifuge tube and 1 ml phosphate buffer (PBS) (100mM, pH 7.8) was added. After vortexing briefly, tubes were centrifuged for 20 mins at 10,000 rpm. Then 100 μ l of supernatant was taken in a fresh tube and 1ml of 0.25% Thiobarbituric acid (TBA) in Trichloroacetic acid (TCA) was added to it. PBS was used as a control. The samples were heated on a heating block for 15 mins at 90°C. Holes were poked in the centrifuge tube lids to avoid popping. The samples were then cooled on ice for 5 mins and the absorbance readings were taken using a UV-Vis spectrophotometer (Biotech Epoch microplate reader, Aligent Technologies Inc., Santa Clara, CA) at 532nm and 600nm. The final Malondialdehyde (MDA) concentration was calculated based on Lambert-Beer's equation (extinction coefficient of MDA is 155 mM/cm).

Analysis of Reactive Oxygen Species (ROS) production

Total ROS were measured in control and AsIII-treated WT and CsGGCT2;1 overexpressing (OE) seedlings by using the fluorescent dye 2',7'-dichlorofluorescein diacetate (DCFDA). Roots were soaked in a solution of 1 mM DCFDA for 15 min in the dark, washed, and imaged. A Nikon Eclipse Ni microscope equipped with a DS-Ri2 digital camera (Nikon Instruments Inc., Melville, NY) was used for imaging. The fluorescence from H₂DCFDA was observed under eGFP epifluorescence (Ex470-440, DM4951p, BA525/550) with exposure time set at 150 milliseconds at 4x magnification. ImageJ software was used to quantify the average signal intensity in regions of interest (1cm of root tip).

Arsenic accumulation analysis

Shoot and root samples from plants grown on media containing 20 μ M AsIII for 3-weeks were harvested separately. The samples were washed with 10 mM sodium-EDTA to remove excess As adsorbed on surface and then rinsed twice with DI water. The samples were then dried at 70°C for 48 hours. Dried samples were weighed, roughly crushed, and digested using concentrated nitric acid (15.8N) and 30% hydrogen peroxide (H₂O₂) on a heat block digester at 115°C for 45 minutes. Digested samples were then diluted and analyzed for arsenic using ICP-MS (ICPMS-2030, Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan). Translocation factor from root to shoot was calculated using this formula: TF = As concentration in shoot/As concentration in root

Analysis of thiol compounds and amino acids

For thiol compounds analysis, approximately 100 mg of fresh seedling tissues (a homogenous mixture of root and shoot) was collected in a 1.5 ml microcentrifuge tube containing 1 ml of extraction buffer (6.3 mM diethylenetriamine pentacetic acid mixed with 0.1% trifluoroacetic acid). The extracts were used for derivatization and analysis of thiol compounds – Cysteine, γ -EC, GSH, and PCs as described in Minocha*et al* . 2008. For amino acid analysis, a homogeneous mixture (shoot and root) of 100 mg fresh tissue was collected in a 1.5 ml microcentrifuge tube containing 1ml of 5% (v/v) perchloric acid and stored at -20° C. The samples

were prepared and analyzed via HPLC as per Minocha and Long (2004) with minor modifications described in (Majumdar *et al* . 2018).

Analysis of 5-Oxoproline (5-OP) For 5-OP analysis, samples were homogenized in 80% chilled ethanol. After vortexing briefly, the samples were centrifuged at 13000 rpm for 15 mins. Supernatants were transferred to new tubes and evaporated under vacuum at RT for 16 to 24 hours. Samples were then lyophilized and re-dissolved in 10 mM ammonium acetate. Samples were processed with LC-MS-MS (UPLC/Xevo TQD QQQ-MS, Waters Corporation, Milford, MA) using the protocol from (Eckstein *et al* . 2008) with minor modifications. Briefly, Synregi 4 μ Hydro-RP 80R analytical column (Phenomenex, Torrance, CA) was used at a flow rate of 0.3ml/min, with a total run time of 7 minutes per sample.

Analysis of OXP1 transcript level in CsGGCT2;1 overexpression lines

WT and CsGGCT2;1 OE lines were grown for 21 days on $\frac{1}{2}$ x MS and $\frac{1}{2}$ x MS media supplemented with AsIII (20 μ M). After RNA isolation and cDNA synthesis, qRT-PCR was performed using CsOXP1 forward (5' GTCTTCTGCGTTGACACCCA 3') and reverse primers (5' GGTGCCAAGCCTCCATCAGA 3'). CsEF1 (housekeeping) primers and qRT-PCR conditions were the same as mentioned earlier.

Statistical analysis

Statistical analysis was done using the Student's and Dunnett's T-test performed using SAS software (version 9.4) with Camelina wild-type as the control. Bars represent the average and error bars represent the standard error of the mean. Statistical significance is represented as "*", "**" and "***" for p [?] 0.05, p [?] 0.01, and p [?] 0.001, respectively.

Results

Camelina GGCT2;1 share strong homology with its relative Arabidopsis

Camelina and Arabidopsis have three homologs of GGCTs - GGCT1, GGCT2;1, and GGCT2;2. Camelina sativa , being a hexaploid, has three copies of GGCT2;1 – Csa20g051600, Csa08g024050, Csa13g034230 (www.camelina.db, Kaegel, et al . 2014; Figure S1 a). Based on multiple sequence alignment analysis, three copies of CsGGCT2;1 homeolog sequences had 91 to 97% identity at the amino acid levels. The CsGGCT2;1 (Csa08g024050) and AtGGCT2;1 (AT5G26220) exhibited approximately 92.92% identity (Figure S1 a&c). The phylogenetic analysis showed CsGGCT2;1 has a close relationship with AtGGCT2;1 as compared to other GGCTs (Figure S1 b).

Generation of Camelina lines overexpressing CsGGCT2;1

To overexpress CsGGCT2;1 in Camelina, the gene construct CaMV35Sp::CsGGCT2;1::Nos-t (Figure 1a) was introduced into the Camelina nuclear genome under the control of the constitutive 35S promoter via flower dip method. Resulting seeds from the transgenic lines were identified using DS Red fluorescence (Figure 1b) and grown up to T₃ generation to obtain homozygous lines. Two weeks old seedlings of T₃ homozygous lines were analyzed for the confirmation of the overexpression of CsGGCT2;1 transcripts using qRT- PCR. The PCR assays of three elite lines indicated that the relative expression of CsGGCT2;1 transcripts was 6 to 17-fold higher in the Camelina transgenic lines compared to WT seedlings (Figure 1c). The qRT-PCR findings confirmed that the CsGGCT2;1 construct resulted in GGCT2;1 transcriptional overexpression in Camelina.

Differential expression of CsGGCT2;1 gene

To gain insight into the potential function of CsGGCT2;1 for arsenic tolerance or sensitivity in Camelina, its differential regulation was analyzed in root and shoot tissues exposed to AsIII. Camelina wild-type plants grown in Hoagland's solution and exposed to AsIII for 0, 6, 12, 24, and 48 hours were used for the differential regulation of CsGGCT2;1 transcripts using qRT-PCR. The results show that the CsGGCT2;1gene was induced after 6 h of exposure to AsIII in both root and shoot (Figure 2). In shoots, the expression level at 6 h showed a 3-fold increase and then decreased to control levels after 48 h exposure (Figure 2a). In roots, there was a 17-fold increase in the expression of CsGGCT2;1 after 6 h of AsIII exposure, that then waned to a 6-fold difference at 12 h, and then again increased to 15-fold difference at 48 h (Figure 2b).

Analysis of Camelina wild-type and CsGGCT2;1 OE lines on AsIII containing media

Camelina wild-type and CsGGCT2;1 OE lines were grown on $\frac{1}{2}$ x MS media (control) and $\frac{1}{2}$ x MS media supplemented with 20 µM sodium arsenite for 21 days and then harvested (Figure 3a). There were no significant differences in the root and shoot biomass of wild-type and OE lines under the non-stress $\frac{1}{2}$ x MS control conditions (Figure 3). However, under AsIII treatment, CsGGCT2;1 OE lines showed strong tolerance and attained significantly higher root and shoot biomass than WT plants. The CsGGCT2;1 OE lines had approximately 2.6-3-fold higher shoot biomass and approximately 7-fold higher root biomass than WT plants (Figure 3 b&c).

Analysis of chlorophyll content and lipid peroxidation

Chlorophyll content was measured in Camelina WT and CsGGCT2;1 OE lines exposed to control and AsIII treatments. There were no significant differences between WT and OE lines under control conditions. However, under the AsIII treatment, all the CsGGCT2;1 OE plants had leaves that were darker green in color and had higher chlorophyll content than the WT plants (Figure 4a). CsGGCT2;1 OE lines #9, #102, and #103 had 70%, 123%, and 115%, respectively, higher chlorophyll than the WT plants.

MDA levels as an indication of membrane damage due to lipid peroxidation were measured under normal and AsIII stress conditions. Like biomass and chlorophyll content, WT and CsGGCT2;1 OE lines had no significant difference in lipid peroxidation under control conditions. However, WT plants had significantly higher MDA content than CsGGCT2;1 OE lines under AsIII treatment (Figure 4b). In response to AsIII stress, the CsGGCT2;1 OE lines had approximately 30% lesser MDA than WT, indicating that CsGGCT2;1prevents membrane damage due to AsIII-induced oxidative stress.

ROS analysis in Camelina seedlings

ROS was analyzed in Camelina WT and CsGGCT2;1 OE lines grown on $\frac{1}{2}$ x MS and AsIII treatments using H₂DCF-DA staining. The seedlings were grown for two weeks on the media, and the root tips were stained with H₂DCF-DA, washed with DI water, and then observed under confocal fluorescent microscopy. As depicted by fluorescence, WT roots had significantly higher ROS under AsIII treatments as compared to the CsGGCT2;1 OE lines (Figure 4c). Based on quantification of fluorescence, there was a significant (~ 40%) reduction in fluorescence in CsGGCT2;1OE lines than in the WT plants (Figure 4d).

Arsenic accumulation in roots and shoots of CsGGCT2;1 OE and WT plants

Arsenic concentration was determined in the shoot and root tissue of both CsGGCT2;1 OE and WT seedlings. CsGGCT2;1 OE lines accumulated ~ 40-60% lesser arsenic in the roots (Figure 5a) and ~ 60% less in the shoots than the WT plants (Figure 5b). The translocation factor (TF) from root to shoot was also 23 to 36% lower for CsGGCT2;1 OE lines relative to WT seedlings (Figure 5c).

Analysis of 5-Oxoproline level and upregulation of 5-Oxoprolinase (OXP1) gene

GGCT2;1 is involved in GSH degradation and the recycling of its constituent amino acids (Paulose *et al*., 2013). The immediate product of GGCTs activity is 5-oxoproline (5-OP) resulting from the degradation of GSH or its precursor γ -glutamyl cysteine (γ -EC). We measured the 5-OP levels in WT and two CsGGCT2;1 OE lines #102 and #103 under normal and AsIII treatments using triple-quadrupole mass spectroscopy (UPLC/Xevo TQD QQQ-MS, Waters Corporation, Milford, MA). No significant differences were observed between WT and OE lines under normal or AsIII treatment. However, the OE lines had approximately 21-24% more 5-oxoproline levels under MS control conditions than the WT (Figure 6a). Additionally, the 5-OP level increased in both WT and OE lines by 19-33% under AsIII treatment relative to non-stress control conditions. Still, the OE lines maintained 10-20% higher 5-OP levels than WT under AsIII treatment.

Since the immediate product of GGCTs activity is 5-oxoproline (5-OP), significantly higher levels of 5-OP

were expected in the lines overexpressing CsGGCT2;1. 5-OP is further converted to glutamate (Glu) by the endogenous activity of Oxoprolinase1 (OXP1). Our findings prompted us to study the upregulation of the endogenous OXP1 gene in CsGGCT2;1 OE lines using qRT-PCR under normal and AsIII stress conditions. Our results showed that under control conditions the expression of CsOXP1 was upregulated 2 to 3.5-fold in the OE lines compared to WT plants and 1.5 to 3.5-fold under AsIII stress conditions (Figure 6b).

Αναλψσις οφ ΓΣΗ ανδ γ-Ε" λεελς

The levels of GSH and γ -EC were analyzed via HPLC in WT and two *CsGGCT2;1* OE lines (#102 and #103) exposed to MS control and AsIII treatments. There were no significant differences in GSH levels between WT and OE lines under MS control or in response to AsIII treatment (Figure 7a). However, under AsIII treatment, overall GSH levels increased relative to MS control (Figure 7a). For γ -EC analysis, *CsGGCT2;1* OE lines had significantly (50-70%) lower γ -EC levels than WT under MS control, but under AsIII treatment, there were no significant differences between WT and OE lines (Figure 7b). As with GSH, overall γ -EC levels increased in the plants grown on AsIII stress relative to MS control (Figure 7b).

Analysis of Amino acid levels

Amino acid (AAs) levels were analyzed via HPLC in WT and two CsGGCT2;1 OE lines #102 and #103 under MS control and AsIII treatment. Glycine (Gly), cysteine (Cys), and glutamate (Glu) are three constituent amino acids of GSH. Therefore, we analyzed the level of all amino acids in WT and OE lines under normal and AsIII stress conditions. No significant differences in the levels of Cys and Glu were observed in WT and OE lines under normal and AsIII treatment (Figure 7 c&d). However, under AsIII treatment, their levels increased relative to normal non-stress conditions. Still, within treatments, there were no significant difference in the levels of Cys and Glu between WT and OE lines (Figure 7c&d). For Gly, the CsGGCT2;1OE lines had 15-30% less than the WT under normal conditions. Though Gly levels increased by 45-140% in all plants in response to AsIII, relative to MS control, again there were no significant differences in Gly content between WT and OE lines (Figure 7e).

For glutamine (Gln), there was no significant difference between WT and OE lines under MS control. Under AsIII treatment, Gln content was 18-21% lower in OE lines than WT plants (Figure 7f). Further, no significant differences were found in serine, arginine, threenine, alanine, prolines, tryptophane, ornithine, and lysine (Figure S2). For Asp and GABA, other than line #103 on MS control, *CsGGCT2;1* OE lines had lower levels in both MS and AsIII treatments. No difference was observed for isoleucine (Ile) between WT and OE lines growing on MS control, but in response to AsIII treatment, OE lines had lower levels than WT. For phenylalanine (Phe) and histidine (His), higher levels were observed in OE lines relative to WT under MS control, but under AsIII, there was no significant differences in either AA (Figure S2).

Discussion

In this study, we characterized CsGGCT2;1 gene in Camelina for its role in providing arsenite tolerance by maintaining GSH homeostasis. Under AsIII stress, CsGGCT2;1 OE lines had significantly higher shoot and root biomass, improved chlorophyll content, lower lipid peroxidation, and accumulated less arsenic than the WT. Further analysis showed that relative to non-stress MS control conditions, resources in the plants treated with AsIII shifted towards the γ -glutamyl cycle as Glu, Cys, Gly, GSH, and 5-OP levels increased; some slightly to some multiple fold differences.

Paulose *et al*. (2013) investigated the role of AtGGCT2;1 and its involvement in GSH degradation and the recycling of glutamate in Arabidopsis plants under AsIII stress. The authors observed that AtGGCT2;1gene was strongly upregulated in roots exposed to AsIII treatment but not in the shoots. Overexpression of AtGGCT2;1 in Arabidopsis led to increased tolerance to AsIII as evidenced by significantly higher shoot biomass in the OE lines growing on media containing AsIII, and a significant decrease in arsenic accumulation in shoots with an increased accumulation in roots of OE plants relative to WT. Overall levels of GSH were similar in WT and AtGGCT2;1 OE lines. However, AtGGCT2;1 OE lines also had a significantly higher accumulation of 5-OP than WT plants in both root and shoots, but the level was up to 30-fold higher in shoots. Based on an N¹⁵ Glu as say, Paulose *et al* . (2013) concluded that the AtGGCT2;1 OE lines had better tolerance and less accumulation of a rsenic in shoot tissue due to an enhanced γ -glutamyl cycle and more efficient glutamate recycling.

Building on the previous work from Paulose et al. (2013), we translated the research from the model plant Arabidopsis thalianato the oilseed crop Camelina sativa. Both Camelina and Arabidopsis belong to the Brassicaceae family, and each have three homologs of GGCT s – GGCT1 (or GGCT2:3), GGCT2:1, and GGCT2:2 (Figure S1). CsGGCT2:1 and AtGGCT2:1 have high amino acids sequence similarity (~92%) (Figure S1a). This high protein sequence similarity with Arabidopsis may be one reasons why we observed comparable results in Camelina. We used 20 μ M AsIII concentration to analyze Camelina plants, as the concentration used for Arabidopsis (35 μ M), by Paulose *et al*. (2013), was too toxic for the WT Camelina plants to grow. We found that AsIII treatment upregulated CsGGCT2;1 gene in Camelina WT plants. However, contrary to AtGGCT2:1 differential regulation in Arabidopsis, we observed the upregulation of CsGGCT2; 1 transcripts in both roots and shoots (Figure 2). Camelina, being a hexaploid, have three homeologs of GGCT2:1 and could have a different expression profile compared to Arabidopsis. Relative to WT, the overexpression of CsGGCT2;1 also provided stronger tolerance to AsIII in Camelina (Figure 3). We observed a 40-60% less arsenic in both roots and shoots in the Camelina GGCT2:1 OE lines compared to the WT (Figure 5). We also found no difference in GSH levels between the WT and CsGGCT2:1 OE lines (Figure 7a). Contrary to the high levels of 5-OP in shoots reported for AtGGCT2:1 OE lines of Arabidopsis (30-fold relative to WT) (Paulose et al., 2013), we detected only a 20% increase in 5-OP in combined root and shoot tissues from 21 old-day seedlings of CsGGCT2:1 OE lines relative to CsWT (Figure 6a). This combination of results indicates that the observed tolerance to As was more robust in the Camelina lines overexpressing CsGGCT2; 1 than that reported in Arabidopsis by Paulose *et al.* (2013).

Arsenic is not a required element in plants, and once taken up by plants leads to various adverse effects on plants' growth and development (Bali and Sidhu 2021; Farooq et al. 2016). Arsenic impacts the plants' morphological, physiological, and metabolic attributes, e.g., lowering shoot and root biomass, reducing plant height, impacting root growth, decreasing chlorophyll content and photosynthetic rate, etc. (Ahmad et al. 2020a; Majumder et al. 2020; Singh et al. 2019). Arsenic also disrupts plants' cellular oxidative state by making reactive oxygen species (ROS) and causing lipid peroxidation (Ahmad et al. 2020a; Kofroňová, Mašková, and Lipavská 2018; Majumder et al . 2020; Singh et al . 2019). We observed a significant reduction in the growth of WT Camelina plants exposed to AsIII, whereas there was minimal impact on the growth of the CsGGCT2:1 OE lines; empirically, the OE lines had growth almost similar to unchallenged plants. Arsenic is known to induce oxidative stress in plants, therefore, to understand the mechanism of CsGGCT2:1 role in protecting plants from its toxicity, we explored the effects of AsIII treatment by analyzing chlorophyll content, MDA, and ROS levels. Chlorophyll content is a predictor of plants' photosynthetic efficacy. Researchers have found chlorophyll decreased due to arsenic exposure, thereby limiting the growth and development of the plant (Ahmad et al. 2020b; Anjum et al. 2017; Meselhy et al. 2021). We observed that AsIII treatment decreased the chlorophyll content in the WT plants, while there was no impact on chlorophyll in the CsGGCT2:1 OE lines (Figure 4a).

Malondialdehyde (MDA) indicates lipid peroxidation and membrane damage in living cells and many researchers have reported increased MDA levels in plants exposed to AsIII (Anjum *et al*. 2017; Khare *et al*. 2017; Pandey *et al*. 2016; Yadu *et al*. 2019). We observed an increase in MDA levels in WT Camelina seedlings exposed to AsIII treatment. However, MDA in CsGGCT2;1 OE lines was similar under both MS control and AsIII treatment (Figure 4b). One reason for this increase in the level of MDA is an increase in ROS due to oxidative stress induced by the AsIII treatment. Arsenic exposure increased ROS levels in Indian mustard (Pandey *et al*. 2016), Arabidopsis (Khare*et al*. 2017), and pigeon peas (Yadu *et al*. 2019). We also visualized ROS levels using a fluorescent probe (H₂DCF-DA staining) in the plant's root tips (~1cm) and quantified them using ImageJ software. As expected, we found increased ROS in the root tips of AsIII treated WT Camelina relative to WT under control (MS) conditions. Also somewhat expected, root tips of the CsGGCT2;1 OE lines had lower levels of ROS as compared to WT, under both MS control and AsIII treatments, however the differences were only significant for the AsIII treatment (Figure 4c&d). Higher chlorophyll, lower lipid peroxidation, and lower ROS levels under AsIII treatment could be why there was better growth of CsGGCT2; 1 OE lines relative to WT.

After arsenic uptake, plants limit its damaging effects on cellular machinery by sequestering it in vacuoles. One crucial redox molecule involved in AsIII detoxification via conjugation is GSH. Glutathione levels are maintained in the plants through the γ -glutamyl cycle, a continuous cycle of synthesis of GSH from glutamate, cysteine, and glycine and its subsequent breakdown into component amino acids (Hasanuzzaman et al. 2017; Noctor et al. 2012; Paulose et al. 2013). Glutathione and its oligomer, PCs, complex with AsIII in the cytosol and the complex is then transported to the vacuole via protein transporters (ABCC transporters) (Bali and Sidhu 2021; Noctor et al. 2012; Tang et al. 2019). Overexpression of genes related to the γ -glutamyl and PCs synthesis pathway has resulted in increased tolerance in Arabidopsis (Dhankher *et al* 2002; Guoet al. 2008; Li et al. 2005; Paulose et al. 2013; Song et al. 2010), Brassica (Gasic and Korban 2007; Reisinger et al. 2008) and Cottonwood (LeBlanc et al. 2011). Similarly, we observed that overexpressing CsGGCT2:1, a gene involved in the γ -glutamyl cycle, enhanced AsIII tolerance in Camelina. On analyzing levels of thiols i.e., GSH, γ -EC, and cysteine, we observed no significant differences between WT and CsGGCT2:1 OE lines, except for γ -EC under MS control conditions, which was significantly lower than WT plants (Figure 7b). The decrease in γ -EC may have been due to the direct breakdown of γ -EC by GGCTs. Kumar et al. (2015) also reported the breakdown of γ -EC by Arabidopsis GGCTs in *in-vivo* functional assays in yeast and the authors found very low activity of GGCT2:1 directed towards γ -EC breakdown, the GGCT2:1 homeolog in Camelina could have more effectively increased activity towards γ -EC breakdown than that in Arabidopsis (AtGGCT2:1) (Kumar et al. 2015). It could also be that the heightened activity of CsGGCT2; 1 leads to the breakdown of GSH, triggering the upregulation of the glutathione synthese (GS) gene. As a result, the synthesis of additional GSH from γ -EC and Gly is induced. Further, no difference in γ -EC levels was observed under AsIII-treated conditions because the overall γ glutamyl pathway was induced to counteract AsIII toxicity. The lack of difference in the levels of GSH and Cys between the WT and OE lines could be due to the efficient recycling of these by γ -glutamyl cycle, as reported by Paulose et al. (2013). In response to AsIII treatment, we observed an overall 1.5 to 3-fold increase in the level of these thiols for both CsWT and CsGGCT2;1 OE lines, indicating a shift of resources towards the γ -glutamyl cycle (Figure 7). The same trend was observed for Glu and Gly as well, the remaining amino acid components of GSH, also indicative of a resource shift towards the γ -glutamyl cycle for enhanced survival under AsIII stress.

Further, we found a 19-33% increase in 5-OP levels in OE lines relative to WT under MS control and AsIII treatments. GGCT2;1 is shown to directly acts on GSH and γ -Glu-AA and converts both into 5-OP (Ohkama-Ohtsu *et al* . 2008; Paulose *et al* . 2013). Though Paulose *et al*. (2013) reported a substantial build-up of 5-OP levels in the AtGGCT2;1 OE lines, there was not a considerable accumulation in Camelina (Figure 6a). Based on our qRT-PCR analysis, CsOXP1 expression was upregulated in the OE lines (Figure 6b), which indicates that the overexpression of CsGGCT2;1 has upregulated the downstream gene OXP1, which in turn increased the recycling of 5-OP to maintain steady state levels of GSH in the seedlings.

Better survival of OE lines (relative to WT) under AsIII treatment also seems to be attributable to lower arsenic uptake and accumulation within the transformed plants. CsGGCT2;1 OE lines had ~ 40 to 60% lower arsenic accumulation relative to WT while maintaining a similar level of GSH (Figures 5 & 7). This could be because of efficient γ -glutamyl cycle via faster degradation of γ -EC and GSH in the CsGGCT2;1 OE lines, thus faster recycling of Cys, Glu, and Gly for subsequent GSH synthesis. This efficient degradation and synthesis of γ -EC and GSH might prevent the opportunity of binding of AsIII to these thiols for sequestration and accumulation of As in vacuole. When calculated as GSH per unit of arsenic, the CsGGCT2;1 OE lines had more GSH available Therefore, the damaging effects of As at the cellular level were more efficiently limited in the OE lines. Low accumulation of arsenic could also be due to the role of CsGGCT2;1 in GSH distribution in the root and root architecture. Joshi *et al.*(2019) noted differences in the growth and GSH distribution in the roots of Arabidopsis WT and ggct2;1 knockdown lines (Joshi *et al.* 2019). Less accumulation could also due to induction of some aquaporin channels involved in both the uptake and efflux of As back into the environment (Kumar *et al.* 2018; Lindsay and Maathuis 2016). Further investigation is needed to investigate the relationship between GGCTs and metal transporters/channel genes.

Conclusion

This study concluded that overexpression of CsGGCT2;1 in Camelina increased AsIII tolerance. Compared to WT, CsGGTC2;1 OE lines had significantly higher biomass, lower arsenic accumulation, better chlorophyll content, and lower MDA and ROS levels. The CsGGCT2;1 OE lines had slightly higher levels of 5-OP and increased levels of the CsOXP1 gene, indicating a role of GGCT2;1 in increasing the rate of GSH recycling and enhancing survival under AsIII stress via improved GSH homeostasis. This research demonstrates the successful translation and applications of findings from the model plant Arabidopsis to Camelina, a dedicated biofuel crop. These results highlight the potential of modified plants to thrive under AsIII stress with reduced accumulation, thus enabling the cultivation of crops on contaminated marginal lands to ensure food safety and future food security.

Acknowledgment

We thank Ian Eggleston for helping with the ICP-MS analysis and Dr. Steve Eyles at the University of Massachusetts Mass Spectrometry Core Facility (RRID:SCR_019063) for providing technical expertise for analyzing 5-OP. This work was supported by the Lotta M. Crabtree fellowship, USDA-NIFA Hatch project (MAS #578), and USDA Forest Service, NRS.

Author contributions

OPD, GS, and KA conceived and designed the study. GS, HL, and KA conducted experiments and collected and analyzed the data. SL and RM helped with HPLC analysis of thiols and amino acids. GS and OPD wrote and revised the manuscript. All authors helped revise the manuscript and provided valuable critical comments.

Conflict of Interest Statement

The Authors declare that they have no competing or conflict of interests.

References

Abdullah, Hesham M., Sudesh Chhikara, Parisa Akbari, Danny J. Schnell, Ashwani Pareek, and Om Parkash Dhankher. 2018. "Comparative Transcriptome and Metabolome Analysis Suggests Bottlenecks That Limit Seed and Oil Yields in Transgenic *Camelina Sativa* Expressing Diacylglycerol Acyltransferase 1 and Glycerol-3-Phosphate Dehydrogenase." *Biotechnology for Biofuels* 11(1):1–28.

Adams, Eri, Takae Miyazaki, Shunsuke Watanabe, Naoko Ohkama-Ohtsu, Mitsunori Seo, and Ryoung Shin. 2020. "Glutathione and Its Biosynthetic Intermediates Alleviate Cesium Stress in Arabidopsis." *Frontiers in Plant Science* 10:1711.

Ahmad, Parvaiz, Pravej Alam, Thamer H. Balawi, Fahad H. Altalayan, Mohammad Abass Ahanger, and Muhammad Ashraf. 2020. "Sodium Nitroprusside (SNP) Improves Tolerance to Arsenic (As) Toxicity in *Vicia Faba* through the Modifications of Biochemical Attributes, Antioxidants, Ascorbate-Glutathione Cycle and Glyoxalase Cycle." *Chemosphere* 244:125480.

Ahmad, Parvaiz, Mohammed Nasser Alyemeni, Asma A. Al-Huqail, Moneerah A. Alqahtani, Leonard Wijaya, Muhammad Ashraf, Cengiz Kaya, and Andrzej Bajguz. 2020. "Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of As and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System." *Plants*9(7):1–18.

Akram, Soleh, Md Nurealam Siddiqui, B. M. Nahi. Hussain, Md Abdullah Al Bari, Mohammad Golam Mostofa, Mohammad Anwar Hossain, and Lam Son Phan Tran. 2017. "Exogenous Glutathione Modulates Salinity Tolerance of Soybean [*Glycine max* (L.) Merrill] at Reproductive Stage." *Journal of Plant Growth Regulation* 36(4):877–88.

Ali, Ahmed GM. 2022. "Role of Plasma Membrane Intrinsic Proteins (Pips) Subfamily and Sulfur Nanoparticle Interactions in Metalloids Transport and Tolerance/Sensitivity in Rice." *Doctoral Dissertations, University of Massachusetts-Amherst, MA, USA*.

Anjum, Shakeel Ahmad, Mohsin Tanveer, Saddam Hussain, Umair Ashraf, Imran Khan, and Longchang Wang. 2017. "Alteration in Growth, Leaf Gas Exchange, and Photosynthetic Pigments of Maize Plants Under Combined Cadmium and Arsenic Stress." *Water, Air, and Soil Pollution*228(1).

Bali, Aditi Shreeya and Gagan Preet Singh Sidhu. 2021. "Arsenic Acquisition, Toxicity and Tolerance in Plants - From Physiology to Remediation: A Review." *Chemosphere* 283:131050.

Berti, Marisol, Burton Johnson, David Ripplinger, Russ Gesch, and Alfredo Aponte. 2017. "Environmental Impact Assessment of Double- and Relay-Cropping with Winter Camelina in the Northern Great Plains, USA." Agricultural Systems 156:1–12.

Chen, Tianzi and Baolong Zhang. 2016. "Measurements of Proline and Malondialdehyde Content and Antioxidant Enzyme Activities in Leaves of Drought Stressed Cotton." Iss 6.

Chhikara, Sudesh, Hesham M. Abdullah, Parisa Akbari, Danny Schnell, and Om Parkash Dhankher. 2018. "Engineering Camelina Sativa (L.) Crantz for Enhanced Oil and Seed Yields by Combining Diacylglycerol Acyltransferase1 and Glycerol-3-Phosphate Dehydrogenase Expression." *Plant Biotechnology Journal* 16(5):1034–45.

Dhankher, Om Parkash and Christine H. Foyer. 2018. "Climate Resilient Crops for Improving Global Food Security and Safety." *Plant, Cell & Environment* 41(5):877–84.

Dhankher, Om Parkash, Yujing Li, Barry P. Rosen, Jin Shi, David Salt, Julie F. Senecoff, Nupur A. Sashti, and Richard B. Meagher. 2002. "Engineering Tolerance and Hyperaccumulation of Arsenic in Plants by Combining Arsenate Reductase and γ -Glutamylcysteine Synthetase Expression." *Nature Biotechnology* 20(11):1140–45.

Eckstein, James A., Gina M. Ammerman, Jessica M. Reveles, and Bradley L. Ackermann. 2008. "Analysis of Glutamine, Glutamate, Pyroglutamate, and GABA in Cerebrospinal Fluid Using Ion Pairing HPLC with Positive Electrospray LC/MS/MS." *Journal of Neuroscience Methods*171(2):190–96.

Emamverdian, Abolghassem, Yulong Ding, Farzad Mokhberdoran, and Yinfeng Xie. 2015. "Heavy Metal Stress and Some Mechanisms of Plant Defense Response." *Scientific World Journal* 2015.

Farooq, Muhammad A., Faisal Islam, Basharat Ali, Ullah Najeeb, Bizeng Mao, Rafaqat A. Gill, Guijun Yan, Kadambot H. M. Siddique, and Weijun Zhou. 2016. "Arsenic Toxicity in Plants: Cellular and Molecular Mechanisms of Its Transport and Metabolism." *Environmental and Experimental Botany* 132:42–52.

Gasic, Ksenija and Schuyler S. Korban. 2007. "Transgenic Indian Mustard (Brassica Juncea) Plants Expressing an Arabidopsis Phytochelatin Synthase (AtPCS1) Exhibit Enhanced As and Cd Tolerance." *Plant Molecular Biology* 64(4):361–69.

Genchi, Giuseppe, Maria Stefania Sinicropi, Graziantonio Lauria, Alessia Carocci, and Alessia Catalano. 2020. "The Effects of Cadmium Toxicity." International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 3782 17(11):3782.

Guo, Jiangbo, Xiaojing Dai, Wenzhong Xu, and Mi Ma. 2008. "Overexpressing GSH1 and AsPCS1 Simultaneously Increases the Tolerance and Accumulation of Cadmium and Arsenic in *Arabidopsis Thaliana*." *Chemosphere* 72(7):1020–26.

Hasanuzzaman, Mirza, Kamrun Nahar, Taufika Islam Anee, and Masayuki Fujita. 2017. "Glutathione in Plants: Biosynthesis and Physiological Role in Environmental Stress Tolerance." *Physiology and Molecular Biology of Plants* 23(2):249–68.

Ivanova, Larissa A., Dina A. Ronzhina, Leonid Ivanov, L. V. Stroukova, Andreas D. Peuke, and Heinz Rennenberg. 2011. "Over-Expression of Gsh1 in the Cytosol Affects the Photosynthetic Apparatus and Improves the Performance of Transgenic Poplars on Heavy Metal-Contaminated Soil." *Plant Biology* 13(4):649–59.

Jomova, Klaudia, Zita Jenisova, Melania Feszterova, S. Baros, J. Liska, D. Hudecova, Chistopher J. Rhodes, and Marian Valko. 2011. "Arsenic: Toxicity, Oxidative Stress and Human Disease." *Journal of Applied Toxicology* 31(2):95–107.

Joshi, Naveen C., Andreas J. Meyer, Sajid A. K. Bangash, Zhi Liang Zheng, and Thomas Leustek. 2019. "Arabidopsis γ -Glutamylcyclotransferase Affects Glutathione Content and Root System Architecture during Sulfur Starvation." New Phytologist221(3):1387–97.

Kagale, Sateesh, Chushin Koh, John Nixon, Venkatesh Bollina, Wayne E. Clarke, Reetu Tuteja, Charles Spillane, Stephen J. Robinson, Matthew G. Links, Carling Clarke, Erin E. Higgins, Terry Huebert, Andrew G. Sharpe, and Isobel A. P. Parkin. 2014. "The Emerging Biofuel Crop *Camelina Sativa* Retains a Highly Undifferentiated Hexaploid Genome Structure." *Nature Communications 2014* 5:1 5(1):1–11.

Keske, Catherine M. H., Dana L. Hoag, Andrew Brandess, and Jerry J. Johnson. 2013. "Is It Economically Feasible for Farmers to Grow Their Own Fuel? A Study of *Camelina Sativa* Produced in the Western United States as an on-Farm Biofuel." *Biomass and Bioenergy*54:89–99.

Khare, Ria, Smita Kumar, Tapsi Shukla, Avriti Ranjan, and Prabodh Kumar Trivedi. 2017. "Differential Sulphur Assimilation Mechanism Regulates Response of *Arabidopsis Thaliana* Natural Variation towards Arsenic Stress under Limiting Sulphur Condition." *Journal of Hazardous Materials* 337:198–207.

Kim, Yeon Ok, Hyeun Jong Bae, Eunjin Cho, and Hunseung Kang. 2017. "Exogenous Glutathione Enhances Mercury Tolerance by Inhibiting Mercury Entry into Plant Cells." *Frontiers in Plant Science* 8:683.

Kofroňová, Monika, Petra Mašková, and Helena Lipavská. 2018. "Two Facets of World Arsenic Problem Solution: Crop Poisoning Restriction and Enforcement of Phytoremediation." *Planta 2018 248:1248*(1):19–35.

Kumar, Kundan, Kareem A. Mosa, Ahmed G. Meselhy, and Om Parkash Dhankher. 2018. "Molecular Insights into the Plasma Membrane Intrinsic Proteins Roles for Abiotic Stress and Metalloids Tolerance and Transport in Plants." *Indian Journal of Plant Physiology* 23(4):721–30.

Kumar, Shailesh, Amandeep Kaur, Banani Chattopadhyay, and Anand K. Bachhawat. 2015. "Defining the Cytosolic Pathway of Glutathione Degradation in *Arabidopsis Thaliana* : Role of the ChaC/GCG Family of γ -Glutamyl Cyclotransferases as Glutathione-Degrading Enzymes and AtLAP1 as the Cys-Gly Peptidase." *Biochemical Journal* 468(1):73–85.

LeBlanc, Melissa S., Amparo Lima, Paul Montello, Tehryoung Kim, Richard B. Meagher, and Scott Merkle. 2011. "Enhanced Arsenic Tolerance of Transgenic Eastern Cottonwood Plants Expressing Gamma-Glutamylcysteine Synthetase." International journal of phytoremediation 13, no. 7 (2011): 657-673

Li, Changfeng, Kehai Zhou, Wenqiang Qin, Changjiu Tian, Miao Qi, Xiaoming Yan, and Wenbing Han. 2019. "A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques." Soil and Sediment Contamination 28(4):380–94.

Li, Yujing, Om Parkash Dhankher, Laura Carreira, Rebecca S. Balish, and Richard B. Meagher. 2005. "Arsenic and Mercury Tolerance and Cadmium Sensitivity in Arabidopsis Plants Expressing Bacterial γ -Glutamylcysteine Synthetase." *Environmental Toxicology and Chemistry* 24(6):1376–86.

Lindsay, Emma R. and Frans J. M. Maathuis. 2016. "Arabidopsis Thaliana NIP7;1 Is Involved in Tissue Arsenic Distribution and Tolerance in Response to Arsenate." FEBS Letters 590(6):779–86.

Livak, Kenneth J. and Thomas D. Schmittgen. 2001. "Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2- $\Delta\Delta$ CT Method." *Methods* 25(4):402–8.

Lu, Chaofu and Jinling Kang. 2008. "Generation of Transgenic Plants of a Potential Oilseed Crop *Camelina Sativa* by Agrobacterium-Mediated Transformation." *Plant Cell Reports*27(2):273–78.

Ma, Chuanxin, Hong Liu, Guangcai Chen, Qing Zhao, Huiyuan Guo, Rakesh Minocha, Stephanie Long, Yuanzhi Tang, Emily M. Saad, Roberto Delatorreroche, Jason C. White, Baoshan Xing, and Om Parkash Dhankher. 2020. "Dual Roles of Glutathione in Silver Nanoparticle Detoxification and Enhancement of Nitrogen Assimilation in Soybean (*Glycine Max*(L.) Merrill)." *Environmental Science: Nano* 7(7):1954–66.

Ma, Chuanxin, Hong Liu, Huiyuan Guo, Craig Musante, Sanem Hosbas Coskun, Bryant C. Nelson, Jason C. White, Baoshan Xing, and Om Parkash Dhankher. 2016. "Defense Mechanisms and Nutrient Displacement in *Arabidopsis Thaliana* upon Exposure to CeO₂ and In₂O₃ Nanoparticles." *Environmental Science: Nano* 3(6):1369-79.

Majumdar, Rajtilak, Matt Lebar, Brian Mack, Rakesh Minocha, Subhash Minocha, Carol Carter-Wientjes, Christine Sickler, Kanniah Rajasekaran, and Jeffrey W. Cary. 2018. "The *Aspergillus Flavus* Spermidine Synthase (*Spds*) Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels." *Frontiers in Plant Science* 9.

Majumder, Barsha, Susmita Das, Soumyajit Biswas, Asis Mazumdar, and Asok K. Biswas. 2020. "Differential Responses of Photosynthetic Parameters and Its Influence on Carbohydrate Metabolism in Some Contrasting Rice (*Oryza Sativa* L.) Genotypes under Arsenate Stress." *Ecotoxicology* 29(7):912–31.

Mason, Lisa H., Jordan P. Harp, and Dong Y. Han. 2014. "Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity." *BioMed Research International* :840547:1-8.

Meselhy, Ahmed G., Sudhir Sharma, Zhi Guo, Gurpal Singh, Haiyan Yuan, Rudra D. Tripathi, Baoshan Xing, Craig Musante, Jason C. White, and Om Parkash Dhankher. 2021. "Nanoscale Sulfur Improves Plant Growth and Reduces Arsenic Toxicity and Accumulation in Rice (*Oryza SativaL.*)." *Environmental Science and Technology* 55(20):13490–503.

Minocha, Rakesh and Stephanie Long. 2004. "Simultaneous Separation and Quantitation of Amino Acids and Polyamines of Forest Tree Tissues and Cell Cultures within a Single High-Performance Liquid Chromatography Run Using Dansyl Derivatization." *Journal of Chromatography* A1035(1):63–73.

Mosa, Kareem A., Kundan Kumar, Sudesh Chhikara, Joseph Mcdermott, Zijuan Liu, Craig Musante, Jason C. White, and Om Parkash Dhankher. 2012. "Members of Rice Plasma Membrane Intrinsic Proteins Subfamily Are Involved in Arsenite Permeability and Tolerance in Plants." *Transgenic Research* 21(6):1265–77.

Noctor, Graham, Amna Mhamdi, Sejir Chaouch, Yi Han, Jenny Neukermans, Belen Marquez-Garcia, Guillaume Queval, and Christine H. Foyer. 2012. "Glutathione in Plants: An Integrated Overview." *Plant, Cell* & *Environment* 35(2):454–84.

Ohkama-Ohtsu, Naoko, Akira Oikawa, Ping Zhao, Chengbin Xiang, Kazuki Saito, and David J. Oliver. 2008. "A γ-Glutamyl Transpeptidase-Independent Pathway of Glutathione Catabolism to Glutamate via 5-Oxoproline in Arabidopsis." *Plant Physiology*148(3):1603–13.

Pandey, Chandana, Ehasanullah Khan, Medha Panthri, Rudra Deo Tripathi, and Meetu Gupta. 2016. "Impact of Silicon on Indian Mustard (*Brassica Juncea* L.) Root Traits by Regulating Growth Parameters, Cellular Antioxidants and Stress Modulators under Arsenic Stress." *Plant Physiology and Biochemistry* 104:216–25.

Paulose, Bibin, Sudesh Chhikara, Joshua Coomey, Ha Il Jung, Olena Vatamaniuk, and Om Parkash Dhankher. 2013. "A γ-Glutamyl Cyclotransferase Protects Arabidopsis Plants from Heavy Metal Toxicity by Recycling Glutamate to Maintain Glutathione Homeostasis." *Plant Cell* 25(11):4580–95.

Ray, Deepak K., Nathaniel D. Mueller, Paul C. West, and Jonathan A. Foley. 2013. "Yield Trends Are Insufficient to Double Global Crop Production by 2050." *PLOS ONE* 8(6):e66428.

Reisinger, Sarah, Michela Schiavon, Norman Terry, and Elizabeth A. H. Pilon-Smits. 2008. "Heavy Metal Tolerance and Accumulation in Indian Mustard (*Brassica Juncea* L.) Expressing Bacterial γ -Glutamylcysteine Synthetase or Glutathione Synthetase." International journal of phytoremediation, 10(5), 440-454.

Sainger, Manish, Anjali Jaiwal, Poonam Ahlawat Sainger, Darshna Chaudhary, Ranjana Jaiwal, and Pawan K. Jaiwal. 2017. "Advances in Genetic Improvement of *Camelina Sativa* for Biofuel and Industrial Bio-Products." *Renewable and Sustainable Energy Reviews*68:623–37.

Samuilov, Sladjana, Friedericke Lang, Matilda Djukic, Danijela Djunisijevic-Bojovic, and Heinz Rennenberg. 2016. "Lead Uptake Increases Drought Tolerance of Wild Type and Transgenic Poplar (*Populus Tremula* x *P. Alba*) Overexpressing Gsh 1." *Environmental Pollution* 216:773–85.

Shaji, E., M. Santosh, K. V. Sarath, Pranav Prakash, V. Deepchand, and B. V. Divya. 2021. "Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula." *Geoscience Frontiers* 12(3):101079.

Singh, Rajani, Ambuj Bhushan Jha, Amarendra Narayan Misra, and Pallavi Sharma. 2019. "Differential Responses of Growth, Photosynthesis, Oxidative Stress, Metals Accumulation and NRAMP Genes in Contrasting *Ricinus Communis* Genotypes under Arsenic Stress." *Environmental Science and Pollution Research* 26(30):31166–77.

Song, Won Yong, Jiyoung Park, David G. Mendoza-Cózatl, Marianne Suter-Grotemeyer, Donghwan Shima, Stefan Hörtensteiner, Markus Geisler, Barbara Weder, Philip A. Rea, Doris Rentsch, Julian I. Schroeder, Youngsook Lee, and Enrico Martinoia. 2010. "Arsenic Tolerance in Arabidopsis Is Mediated by Two ABCC-Type Phytochelatin Transporters." *Proceedings of the National Academy of Sciences of the United States of America* 107(49):21187–92.

Stamenković, Olivera S., Kshipra Gautam, Sneh L. Singla-Pareek, Om P. Dhankher, Ivica G. Djalović, Milan D. Kostić, Petar M. Mitrović, Ashwani Pareek, and Vlada B. Veljković. 2021. "Biodiesel Production from Camelina Oil: Present Status and Future Perspectives." *Food and Energy Security* (April 2021):1–25.

Tang, Zhong, Yi Chen, Anthony J. Miller, and Fang Jie Zhao. 2019. "The C-Type ATP-Binding Cassette Transporter OsABCC7 Is Involved in the Root-to-Shoot Translocation of Arsenic in Rice." *Plant and Cell Physiology* 60(7):1525–35.

Verma, Shulbhi, Pankaj Bhatt, Amit Verma, Harish Mudila, Parteek Prasher, and Eldon R. Rene. 2021. "Microbial Technologies for Heavy Metal Remediation: Effect of Process Conditions and Current Practices." *Clean Technologies and Environmental Policy 2021* 1:1–23.

Yadu, Bhumika, Vibhuti Chandrakar, R. Tamboli, and Keshavkant Sahu. 2019. "Dimethylthiourea Antagonizes Oxidative Responses by Up-Regulating Expressions of Pyrroline-5-Carboxylate Synthetase and Antioxidant Genes under Arsenic Stress." *International Journal of Environmental Science and Technology* 16(12):8401–10.

Yang, Lixin, Yuanyuan Zhang, Feifei Wang, Zidie Luo, Shaojuan Guo, and Uwe Strähle. 2020. "Toxicity of Mercury: Molecular Evidence." *Chemosphere* 245:125586.

Hosted file

Figures_CsGGCT2_1_Final.docx available at https://authorea.com/users/634300/articles/652220overexpression-of-gamma-glutamyl-cyclotransferases-2-1-csggct2-1-reduces-arsenictoxicity-and-accumulation-in-camelina-sativa-1