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Abstract

We obtain a complete classification of scalar nth order ordinary differential equations for all subalgebras of vector fields in the

real plane. While softwares like Maple can compute invariants of a given order; our results are for a general n. The n=1 ,2 ,3

cases are well-known in the literature. Further, it is known that there are three types of nth order equations depending upon

the point symmetry algebra they possess, viz. first-order equations which admit an infinite dimensional Lie algebra of point

symmetries, second-order equations possessing the maximum eight point symmetries and higher-order, n[?]3, admitting the

maximum n+4 dimensional point symmetry algebra. We show that scalar nth order equations for n>5 do not admit maximally

an n+3 dimensional real Lie algebra of point symmetries. Moreover, we prove that for n>4 equations can admit two types of

n+2 dimensional real Lie algebra of point symmetries: one type resulting in nonlinear equations which are not linearizable via

a point transformation and the second type yielding linearizable (via point transformation) equations. Furthermore, we present

the types of maximal real n dimensional and higher than n dimensional point symmetry algebras admissible for equations of

order n[?]4 and their canonical forms. The types of lower dimensional point symmetry algebras which can be admitted are

shown and the equations are constructible as well. We state the relevant results in tabular form and in theorems.
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Abstract: We obtain a complete classification of scalar nth order ordinary differen-
tial equations for all subalgebras of vector fields in the real plane. While softwares like
Maple can compute invariants of a given order; our results are for a general n. The
n = 1, 2, 3 cases are well-known in the literature. Further, it is known that there are
three types of nth order equations depending upon the point symmetry algebra they
possess, viz. first-order equations which admit an infinite dimensional Lie algebra of
point symmetries, second-order equations possessing the maximum eight point symme-
tries and higher-order, n ≥ 3, admitting the maximum n+4 dimensional point symmetry
algebra. We show that scalar nth order equations for n > 5 do not admit maximally
an n + 3 dimensional real Lie algebra of point symmetries. Moreover, we prove that
for n > 4 equations can admit two types of n + 2 dimensional real Lie algebra of point
symmetries: one type resulting in nonlinear equations which are not linearizable via a
point transformation and the second type yielding linearizable (via point transforma-
tion) equations. Furthermore, we present the types of maximal real n dimensional and
higher than n dimensional point symmetry algebras admissible for equations of order
n ≥ 4 and their canonical forms. The types of lower dimensional point symmetry alge-
bras which can be admitted are shown and the equations are constructible as well. We
state the relevant results in tabular form and in theorems.

Keywords: Lie Symmetry Classification of ODEs, Symmetry Lie Algebras, Invariants.

1 Introduction

We obtain a complete classification of scalar nth order ordinary differential equations
for all subalgebras of vector fields in the real plane. While softwares like Maple can
compute invariants of a given order; our results are for a general n. The precise results
are given in section 7 as theorems (7.1 to 7.5).
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Symmetry Lie algebras of scalar nth order ordinary differential equations (ODEs) have
been extensively studied over several years since the initial ground breaking works of
Lie [1, 2, 3]. Lie [3], inter alia, provided all continuous groups of transformations in the
complex plane. He emphasized that this can form the basis of classification as well as
reduction of scalar nth order ODEs which he implicitly performed.

The classification of Lie algebras in terms of vector fields are essential in the algebraic
study of scalar nth order ODEs which possess infinitesimal symmetries, both symmetry
classification and reduction algorithms. After the works of Lie, there have been much
interest in this area. Lie algebras of vector fields in the real plane are completely clas-
sified in González-López et. al. [4]. Recently, a proof of Lie’s classification of solvable
Lie algebras of vector fields in the plane is presented (see [5]). Of essence also, is the
contribution [6] which refers to contemporary works on Lie algebra realizations as well
as equivalence of realizations.

In recent years there have been much focus on the Lie algebra classification of ODEs in
several works as we refer to henceforth. Equations of order one, have infinite Lie point
symmetries and are equivalent to each other via point transformation. For scalar higher
order ODEs, Lie [1] proved that the maximum dimension of the point symmetry Lie
algebra for a scalar second order ODE is eight dimensional and occurs for linear and
linearizable by point transformation equations. Lie [2] obtained a complex classification
of second order ODEs in terms of their point symmetry Lie algebras. Mahomed and
Leach [7] derived the real classification and showed that a second order equation can
admit 0, 1, 2, 3 or the maximum 8 dimension real point symmetry Lie algebra. The
original Lie classification and the classification in the real domain [7] for second order
ODEs are, inter alia, compared in [8]. Algebraic linearizability criteria were initiated by
Lie himself [1], who showed that such second order equations possessing a Lie algebra
of dimension 2 and of rank one, are linearizable via point transformations. This falls
under Type II and Type IV Lie canonical forms in Lie’s classification. The Types I and
III cases with focus on linearizability were achieved in [9] and [10]. The reader is also
referred to the survey [11].

In the study of scalar linear ODEs of order n, n ≥ 3, Mahomed and Leach [12] (see also
[8], [11] as well as the contribution by Krause and Michel [13]) demonstrated that the
point symmetry algebra can be n+1, n+2 or n+4. Thus, for n ≥ 3, scalar linear ODEs
are not necessarily equivalent to each other via point transformation. Moreover, for
n ≥ 3, there exist linear as well as nonlinearizable ODEs with n+2 and n+3 symmetry
algebras [12]. It is important to remark that second order ODEs are quite different to
higher order equations n ≥ 3 as per the point symmetry algebras they admit. Apart,
from the maximum dimension of the point symmetry algebra being 2+6 for second order
ODEs and that for higher order, n ≥ 3, equations n + 4 (see Lie [1, 2]), there are two
more notable differences. Secondly, that all linear second order ODEs are equivalent to
the free particle equation whereas a linear higher order n ≥ 3 ODE has three equivalence
classes depending upon whether it has n + 1, n + 2 or the maximum number n + 4 of
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point symmetries [12]. Thirdly, the complete or full algebra of point symmetries of a
second order ODE is a subalgebra of its maximum algebra s1(3, R), whereas the full
algebra of a higher order n ≥ 3 ODE is not necessarily a subalgebra of its maximum Lie
point symmetry algebra [12].

The point symmetry Lie algebra classification of third order ODEs as well as lineariza-
tion by point transformation have been investigated in a number of relevant publications
(see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]). Furthermore, integrability and reductions
for third order ODEs were investigated in [23].

Scalar fourth order ODEs were considered in recent works from the point of view of
Lie point symmetry classification in terms of four-dimensional algebras, canonical forms
as well as integrability (see [24, 25, 26]). A complete Lie point symmetry classification
and algebraic linearization were also attempted [27]. Linearization criteria, by point
transformation, for such ODEs were found as well [28].

The classification of scalar nth order ODEs which possess nontrivial irreducible contact
Lie symmetry algebras was completed in the work Wafo et al [29]. For scalar third order
ODEs, the contact symmetry algebra is a subalgebra of the ten dimensional contact
symmetry algebra of y′′′ = 0 except for linear equations that admit four and five dimen-
sional point symmetry algebras [29]. It is shown in this work that fourth order scalar
ODEs do not admit irreducible contact symmetry algebras. Further it was proved in
this paper [29] that there are three types of contact symmetry algebras (of dimensions 6,
7 and 10) admissible for nth order ODEs for n > 4, up to local contact transformations.
The present work is a natural generalization of previous contributions on the classifi-
cation of scalar 2nd and 3rd order ODEs. Here we present the complete classification
of nth order, n ≥ 4, ODEs according to the Lie point symmetry algebras they admit.
We explicitly present the maximal n dimensional point symmetry Lie algebra admissi-
ble and the representative or canonical equations as well as higher dimensional point
symmetry algebras and canonical ODEs. We also have shown how one can obtain lower
dimensional point symmetry algebras and determine the corresponding ODEs.

The second section deals with notation which are well-known in books (see e.g. [30, 31,
32, 33, 34]) which we have utilised in [27] as well as provide a overview of the methods
used herein. In the third and fourth sections we classify all equations of order n which
admit n+1 and n+2 dimensional Lie symmetry algebras, respectively, including those
that are linearizable by point transformation. Then in section five we find the n − 1
and n dimensional fundamental invariants of algebras of dimension n. In section 6 we
discuss admissibility for n+ 3 dimensional algebras. Thereafter, in section 7, we obtain
a complete classification for n ≥ 4 for the maximal n, lower as well as higher symmetry
algebra cases. We finally present concluding remarks.
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2 Notation and Methodology

We utilize the vector fields in the plane presented in the important work [4] for the real
Lie symmetry classification of scalar nth order ODEs performed in this seminal study.

By (m,n) we denote the real algebra realization, where m is the type of algebra in [4]
and n is the dimension of the Lie algebra. One writes a general vector field or generator
in the real plane as

Xi = ξi(x, y)∂x + ηi(x, y)∂y, i = 1, ..., n.

Here (x, y) ∈ R2 and ∂x denotes ∂/∂x. Note also that n is the dimension of a Lie algebra
of which Xis are the generators. Other notations will be introduced as they arise in the
sequel.

Now let L be an m dimensional Lie subalgebra of vector fields in the real plane. To find
an invariant equation of order n we as usual consider the normal form of an nth order
ODE

y(n) = H(x, y, y′, y′′, ..., y(n−1)). (2.1)

For a generator X to be a symmetry of (2.1), the symmetry condition

X [n](y(n) −H)|y(n)=H = 0 (2.2)

must hold on the equation, where X [n] denotes the nth prolongation. If the condition
(2.2) is satisfied for every Xi, i = 1, 2, ...,m, then the resulting nth order equation is
said to be invariant under L and L is called the symmetry Lie algebra of the equation.

Further, let L be an m dimensional Lie subalgebra of vector fields defined on a subspace
D ⊂ R2. Then the nth order prolonged Lie algebra is defined on a subspace D(n) ⊂ Rn+2.
Suppose that r0 is the rank of L in D. Then rn will be the rank of the prolonged L in
D(n). The rank here means the rank of the matrix whose rows are coefficients of the m
generating vector fields of L.

If we denote dn to be the number of differential invariants of order n, then we have

dn = n+ 2− rn, n ≥ 0

Example 2.1. Consider simply X = ∂x. Here n = 0 and ro = 1. Thus d0 = 0+2−1 = 1,
so we have one zeroth order differential invariant which is u = y.

Example 2.2. Now we take X1 = ∂x, X2 = ∂y. Again n = 0, ro = 2 and d0 = 0+2−2 =
0, and there is no zeroth order invariant. Now for the first prolongations of X1 and X2,
n = 1, r1 = 2 and d1 = 1 + 2− 2 = 1. Thus, there is a first order differential invariant
u = y′.
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We now mention invariant differentiation and its operator. If u, v are invariants, then
by Lie’s theorem, Dxv/Dxu is also an invariant. This process is also called invariant
differentiation (see e.g. [31]). Recall that Dx is the total differentiation operator. We
can write this as

Dxv

Dxu
= (Dxu)

−1Dxv

= λDxv

We call λDx = D the invariant differentiation operator once we know λ.

Suppose we have an unknown λ(x, y, y′, ..., y(n)). We require λDxv to be invariant, and
therefore we need

X [n](λDxv) = 0. (2.3)

If we refer to X [n] as X by ignoring the prolongation sign, then we can simply write

X = X + ξDx,

where X = w∂y+Dxw∂y′ +D2
xw∂y′′ + ...+Dn

xw∂y(n) is called the canonical operator and
w = η − y′ξ. The equation (2.3) then becomes

(X + ξDx)(λDxv) = 0
⇒ ξDx(λDxv) +X(λ)Dxv + λX(Dxv) = 0

⇒ ξDxλDxv + ξλD2
xv + (Xλ− ξDxλ)Dxv + λX(Dxv) = 0

⇒ ξDxλDxv + λξD2
xv +X(λ)Dxv − ξDxλDxv + λX(Dxv) = 0

⇒ ξλD2
xv +X(λ)Dxv + λDx(Xv − ξDxv) = 0

⇒ (X(λ)− λDxξ)Dxv = 0

This yields the known result (see [31])

X(λ) = λDxξ. (2.4)

Hence, λ satisfies the non-homogenous linear PDE (2.4). One only requires one nontrivial
solution for λ which can be a constant as well.

Example 2.3. Let X1 = ∂x and X2 = ∂y. We know that u = y′ is a first order
differential invariant of X1 and X2. Applying the condition (2.4) we have

X1λ = 0 , X2λ = 0

This clearly shows that we can set λ = 1 and therefore the invariant differentiation
operator can be taken as D = (1)Dx = Dx. Thus

Dy′ = Dxy
′ = y′′

is a second order differential invariant.

We briefly consider Lie determinants.
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Definition 2.1. Consider an m-dimensional Lie subalgebra of vector fields whose gen-
erators are given as

Xk = ξk∂x + ηk∂y, k = 1, 2, ...,m.

Then the determinant of the following matrix
ξ1 η1 η

[1]
1 η

[2]
1 · · · η

[m−2]
1

ξ2 η2 η
[1]
2 η

[2]
2 · · · η

[m−2]
2

...
...

. . .
...

ξm ηm η
[1]
m η

[2]
m · · · η

[m−2]
m


is called the Lie determinant which corresponds to the m dimensional Lie algebra for
m ≥ 2. We denote the Lie determinant by ΛL.

Lie proved that for an m dimensional Lie subalgebra of vector fields L, the Lie determi-
nant gives rise to all the invariant equations of order ≤ m − 2, [2]. Similarly it can be
noticed that the rank of the prolonged algebra is m, i.e. maximal unless the Lie deter-
minant vanishes in which case the rank of L diminishes. Here the algebra is prolonged
up to order m− 2. These invariant equations are called the singular invariant equations
of L. The fundamental differential invariants which are not singular must be of order
m− 1 and m and the higher order differential invariants can be then be found from the
fundamental invariants.

Note that here, once we find the (m − 1)th order differential invariant say ϕ and the
invariant differentiation operator D = λDx, we can determine the mth order differential
invariant as Dϕ.

3 n + 1 Dimensional Algebras and ODEs

3.1 Nonlinear Equations

It is easy to observe that (20, n+1) is not admitted by an equation as there can only be
n solution symmetries. The linearizable case (21, n+ 1) is considered in subsection 3.2.
Also, (22, n+1) and (23, n+1) are not possessed as maximal Lie algebras. We consider
the other n+ 1 dimensional algebras. These are as below.

(24, n+1), r = n−2, n ≥ 3: X1 = ∂x, X2 = ∂y, X3 = x∂x+αy∂y, X4 = x∂y, X5 = x2∂y,
..., Xn+1 = xn−2∂y.

The generators, except X3, imply that an nth order equation of the form (2.1) admitting
these generators must be of the form y(n) = H(y(n−1)). The nth prolongation of X3 is:
x∂x + αy∂y + (α − 1)y′∂y′+, ...,+(α − n)y(n)∂y(n) . By applying this to the resultant
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equation and solving we find the general form of an nth order equation admitting this
algebra to be

y(n) = K(y(n−1))
α−n

α−n+1 , K ̸= 0, (3.1)

where K ̸= 0 is an arbitrary constant and α ̸= n − 1. For K = 0 or α = n − 1, it is
easy to see that the general form of such an equation admitting this algebra must be
y(n) = 0, and we know from Lie that this simplest equation admits the maximal n + 4
dimensional algebra of which such an algebra is a subalgebra.

(25, n+1), r = n−1, n ≥ 2: X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = x2∂y , ..., Xn = xn−2∂y,
Xn+1 = x∂x + (ry + xr)∂y.

The nth prolongation of Xn+1 is: x∂x+(ry+xr)∂y+(rxr−1+(r−1)y′)∂y′+, ...,+((r(r−
1)...(r − n+ 1))xr−n + (r − n)y(n))∂y(n) .

The invariant equation is

y(n) = K exp

(
−y(n−1)

(n− 1)!

)
, K ̸= 0. (3.2)

(26, n + 1), r = n − 3, n ≥ 4: X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x∂y,...,
Xn+1 = xn−3∂y.

Here the equation turns out to be (K is constant)

y(n) = K
(y(n−1))2

y(n−2)
, K ̸= 0, n/(n− 1). (3.3)

If K = n/(n−1), then there is one more symmetry X = x2∂x+(n−3)xy∂y as discussed
in Section 4 as the type (28, n+ 2).

(27, n+ 1), r = n− 3, n ≥ 4: X1 = ∂x, X2 = ∂y, X3 = 2x∂x + ry∂y, X4 = x2∂x + rxy∂y,
X5 = x∂y,..., Xn+1 = xn−3∂y.

The nth prolongation of X3 and X4 are: X3+
∑n

k=1(r−2k)y(k)∂y(k) and X4+
∑n

k=1(k(r−
k + 1)y(k−1) + x(r − 2k)y(k))∂y(k) , respectively.

The equation is (K is constant)

y(n) =
n

n− 1

(y(n−1))2

y(n−2)
+K(y(n−2))

n+3
n−1 , K ̸= 0. (3.4)

If K = 0, then there is one more symmetry X = y∂y as pursued in section 4.
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(28, n + 1), r = n − 4, n ≥ 5: X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 =
x2∂x + (n− 4)xy∂y, X6 = x∂y, ..., Xn+1 = xn−4∂y.

The nth order invariant equation is

y(n) = (y(n−2))3(y(n−3))−2

[
n(3(n− 2)K1 − 2n+ 2)

(n− 2)2
+K((n− 2)K1 − (n− 1))

3
2

]
, (3.5)

where K1 = y(n−3)y(n−1)(y(n−2))−2 and K constant.

3.2 Linearizable Equations

Here we consider linearization for higher order n ≥ 3 equations. We demonstrate how
one obtains the linear form. The reader is referred to [12] for details.

We have the algebra with realization (21, n + 1), r = n − 1: X1 = ∂y, X2 = y∂y,
X3 = ξ1(x)∂y, ..., Xn+1 = ξr(x)∂y which can be simplified by introducing coordinates:
x = ξ1(x), y = y. Ignoring the bars, the generators of this algebra can be transformed
to X1 = ∂y, X2 = y∂y, X3 = x∂y, X4 = ξ2(x)∂y,..., Xn+1 = ξr(x)∂y.

Thus we consider

(21, n+ 1), r = n− 2: X1 = ∂y, X2 = y∂y, X3 = x∂y,X4 = ξ1(x)∂y, ..., Xn+1 = ξr(x)∂y.

We have the result from [12] which we state as follows.

Proposition 3.1. (see [12]) (21, n+1) is the symmetry algebra of the nth, n ≥ 3, order
linear homogenous equation

y(n) =
n−2∑
i=2

Ai(x)y
(i+1), (3.6)

such that each ξi for i = 1, 2, ..., n− 2, form independent solutions of this equation, i.e.
the ξis satisfy the system of homogenous equations

ξ
(n)
k =

n−2∑
i=1

Ai(x)ξ
(i+1)
k , k = 1, ..., n− 2. (3.7)

Note that if Ais are constant, then a further symmetry ∂x arises and one gets the
algebra (23, n + 2) as discussed in the next section 4.2. Furthermore, if the Ais satisfy
the conditions (3.20) and (3.21) in [12], then one has the maximal algebra (28, n + 4)
admitted as also looked at in section 4.2.
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4 n + 2 Dimensional Algebras and Representative

ODEs

4.1 Nonlinear Equations

For the n+2 dimensional algebras, (20, n+2), (21, n+2) and (22, n+2) are clearly not
admissible algebras. The linearization case (23, n+ 2) is looked at in section 4.2.

(24, n+2), r = n−1, n ≥ 2: X1 = ∂x, X2 = ∂y, X3 = x∂x+αy∂y, X4 = x∂y, X5 = x2∂y,
..., Xn+2 = xn−1∂y.

ΛL = 1 · 2! · 3!...(n− 1)!(α− n)y(n).

(25, n+ 2), r = n, n ≥ 1: X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = x2∂y , ..., Xn+1 = xn−1∂y,
Xn+2 = x∂x + (ry + xr)∂y.

ΛL = 1 · 2! · 3!....(n− 2)! · (n− 1)! · n!

(26, n + 2), r = n − 2, n ≥ 3: X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x∂y,...,
Xn+2 = xn−2∂y.

ΛL = 1 · 2! · 3!...(n− 3)! · (n− 2)!y(n−1)y(n).

(27, n+ 2), r = n− 2, n ≥ 3: X1 = ∂x, X2 = ∂y, X3 = 2x∂x + ry∂y, X4 = x2∂x + rxy∂y,
X5 = x∂y,..., Xn+2 = xn−2∂y.

ΛL = 1 · 2! · 3!...(n− 2)! · n2(y(n−1))2.

(28, n + 2), r = n − 3, n ≥ 4: X1 = ∂x, X2 = x∂x, X3 = y∂y, X4 = x2∂x + rxy∂y,
X5 = ∂y, X6 = x∂y,..., Xn+2 = xn−3∂y.

The equation is

y(n) =
n

n− 1

(y(n−1))2

y(n−2)
. (4.1)

Here we have only one case, the last, which constitute an invariant equation with max-
imal n+2 dimensional real symmetry algebra. The rest do not form an equation or are
singular equations with the maximal n+ 4 dimension algebra.

Next we need to again deal with linearization. We also mention (28, n+ 4) as it results
in linearization. This is stated at the end of section 4.2.

4.2 Linearizable Equations for n+ 2 Symmetries

We obtain the form for the reduced linear equation that is a consequence of linearizabil-
ity (see [12]).
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(23, n + 2), r = n: X1 = η1(x)∂y, X2 = η2(x)∂y, ..., Xn = ηn(x)∂y, Xn+1 = y∂y,
Xn+2 = ∂x.

We sate the following proposition (see [12] for details).

Proposition 4.1. (see [12]) The generators given in (23, n + 2) form a Lie symmetry
algebra of the homogenous constant coefficient equation

y(n) =
n−1∑
i=0

Aiy
(i). (4.2)

if the ηi, i = 1, . . . , n, form a fundamental set of solutions of the constant coefficient
equation itself.

We conclude by considering the following algebra which is maximal.

(28, n + 4), r = n − 1, n ≥ 3: X1 = ∂x, X2 = x∂x, X3 = y∂y, X4 = x2∂x + rxy∂y,
X5 = ∂y, X6 = x∂y,..., Xn+4 = xn−1∂y.

This algebra has as representative, the simplest, nth, n ≥ 3, order ODE

y(n) = 0. (4.3)

which admits the maximal n+4 dimensional algebra as is well-known from the landmark
works of Lie. Further, if (4.2) has Ais satisfying the conditions (3.20) and (3.21) as in
[12], then the maximal algebra (28, n+ 4) is admitted by the equation.

5 n Dimensional Algebras and Corresponding Equa-

tions

In this section we determine all the fundamental invariants (invariants of order n and
n− 1) for five and higher dimensions as well as present the representative ODEs. Note
that the algebras (20, n) and (21, n) are not admissible as maximal symmetry algebras.

(5, 5): The generators of this algebra are X1 = ∂x, X2 = ∂y, X3 = x∂x − y∂y, X4 = y∂x,
X5 = x∂y.

This is a five-dimensional algebra, hence r = 5. We find the 3rd prolongations of the
generators of this algebra. Then the Lie determinant, which is the determinant of the
matrix

M =


1 0 0 0 0
0 1 0 0 0
0 x 1 0 0
x −y −2y′ −3y′′ −4y′′′

y 0 −y′2 −3y′y′′ −(3y′′2 + 4y′y′′′),



10



is ΛL(M) = 9y′′2. This shows that y′′ = 0 is the only equation of order ≤ 3 invariant
under this algebra.

The fundamental differential invariants can be found in the usual way. For the given
algebra we already know a fourth order invariant

ϕ1 = 3y(4)y′′
−5
3 − 5y′′′2y′′−8/3.

Thus, a fourth order ODE ϕ1 = 3K, K a constant, has (5,5).

To find a 5th order differential invariant we can solve the determining system of linear
partial differential equations X

[5]
i (y(5) − H)|eq = 0, for i = 1, 2, · · · , 5. The solution

easily results in the 5th order equation

y(5) =
−40

9
y′′′3y′′−2 + 5y′′′y(4)y′′−1 + y′′2H(ϕ1) (5.1)

invariant under this algebra, where ϕ1 is the fourth order invariant of the algebra and
H is an arbitrary function of its argument. We can thus write the fifth order differential
invariant to be

ϕ2 = (y′′2y(5) + 40
9
y′′′3 − 5y′′y′′′y(4))/y′′4.

Here ϕ1 and ϕ2 are the fundamental differential invariants of this algebra. All higher
order differential invariants can be deduced by Lie’s invariant differentiation ϕn+1 =
Dx(ϕn)/Dx(ϕn−1) or by using the invariant derivative operator D = y′′−1/3Dx so that
higher order equations possessing this algebra are

Dn−4ϕ1 = H(ϕ1, . . . ,Dn−5ϕ1), n ≥ 5, (5.2)

where Dx is the total derivative operator.

(15, 5): X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x2∂x.

The generators X1 to X3 and X5 gives rise to the third order invariant

K1 = y′−3y′′′ − 3

2
y′−4y′′2

and the invariant differentiation operator is y′−1Dx.

Now writing X4 in terms of K1, K2 = y′−1DxK1 and K3 = y′−1DxK2 results in

X̃4 = −2K1∂/∂K1 − 3K2∂/∂K2 − 4K3∂/∂K3.

This provides the invariants

ϕ1 = K2K
−3/2
1 , ϕ2 = y′−1K−2

1 DxK2.

11



We can evaluate K2 as

K2 = y′−4y(4) − 6y′−5y′′y′′′ + 6y′−6y′′3.

Also, similarly DxK2. Thus, one has the fundamental invariants

ϕ1 =
y′2y(4) − 6(y′y′′y′′′ − y′′3)

(y′y′′′ − 3
2
y′′2)

3
2

and

ϕ2 =
y′3y(5) − 10y′2y′′y(4) − 6y′2y′′′2 + 48y′y′′2y′′′ − 36y′′4

(y′y′′′ − 3
2
y′′2)2

with the 5th order equation as

y′3y(5) − 10y′2y′′y(4) − 6y′2y′′′2 + 48y′y′′2y′′′ − 36y′′4

(y′y′′′ − 3
2
y′′2)2

= H(ϕ1) (5.3)

and with D = y′−1K
−1/2
1 Dx we can invoke (5.2) for higher order invariant equations.

Note that a 4th order ODE admitting (15,5) is ϕ1 = K, K constant.

(6, 6): X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂x, X5 = x∂y, X6 = y∂y.

The generators X1, X2, X5 and X6 result in the invariants

K1 = 3y′′−1y(4) − 5y′′′2y′′−2,

K2 = 9y′′−1y(5) − 45y′′−2y′′′y(4) + 40y′′−3y′′′3.

Writing X4 in terms of K1 and K2 we find (up to scaling)

X̃4 = 2K1∂K1 + 3K2∂K2

which provides the 5th order invariant of (6, 6)

ϕ1 = K
−3/2
1 K2,

=
9y′′2y(5) − 45y′′y′′′y(4) + 40y′′′3

(3y′′y(4) − 5y′′′2)
3
2

.

The invariant differentiation operator is D = K
−1/2
1 Dx and hence one can derive the

sixth order invariant K−3
1 (−3

2
K2DxK1 +K1DxK2).

The 5th order invariant equation is

K
−3/2
1 K2 =

9y′′2y(5) − 45y′′y′′′y(4) + 40y′′′3

(3y′′y(4) − 5y′′′2)
3
2

= K, (5.4)
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where K is constant and with D = y′′(3y′′y(4) − 5y′′′2)−1/2Dx, we have

Dn−5ϕ1 = H(ϕ1, . . . ,Dn−6ϕ1), n ≥ 6, (5.5)

for sixth and higher order equations. Thus a sixth order invariant ODE is

K−3
1 (−3

2
K2DxK1 +K1DxK2) = H(K

−3/2
1 K2). (5.6)

Note that K1 = 0 is the fourth order singular invariant equation having this algebra.

(16, 6): X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x2∂x, X6 = y2∂y.

Here the invariants, using X1, X2, X4 and X6, are

K1 = y′′′y−1 − 3

2
y′−2y′′2,

as well as K2 = DxK1 and K3 = DxK2.

Utilising X5 in (K1, K2, K3) space, we end up with, up to scaling,

X̃5 = 2xK1∂K1 + (3xK2 + 2K1)∂K2 + (4xK3 + 5K2)∂K3 .

Hence, a 5th order invariant transpires as ϕ1 = K−3
1 (5(DxK1)

2 − 4K1D
2
xK1)

and invariant 5th order ODE is (K constant)

K−3
1 (5(DxK1)

2 − 4K1D
2
xK1) = K. (5.7)

The invariant differentiation operator is D = K
−1/2
1 Dx and one can deduce the 6th

order invariant. Higher order invariant equations are obtained as in (5.2). The 6th order
invariant ODE is therefore

K
−1/2
1 Dx(K

−3
1 (5(DxK1)

2 − 4K1D
2
xK1)) = H(K−3

1 (5(DxK1)
2 − 4K1D

2
xK1). (5.8)

We remark that K1 = 0 is the third order singular invariant equation admitting this
algebra.

(7, 6): X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y, X4 = y∂x − x∂y, X5 = (x2 − y2)∂x + 2xy∂y,
X6 = 2xy∂x + (y2 − x2)∂y.

The generators X1 to X4 gives rise to the invariant

K1 = (1 + y′2)y′′−2y′′′ − 3y′,

as well as the 4th and 5th order invariants

K2 = y′′−1(1 + y′2)DxK1, K3 = y′′−1(1 + y′2)DxK2.
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Now X5 in (K1, K2, K3) space yields

X̃5 = (1 + y′2)y′′−1[−4y′K1∂K1 + (4y′K2
1 − 6y′K2 − 4K1)∂K2

+(14y′K1K2 + 4y′K1 − 4y′K3
1 − 8y′K3 − 10K2 + 8K2

1)∂K3 ].

The invariant deduced is of order five (which is admitted by X6 as well since [X4, X5] =
X6) given by ϕ1 = K−3

1 (2K1K3+4K2
1K2− 5

2
K2

2 +2K4
1 − 2K2

1). The fifth order invariant
ODE hence is

K−3
1 (2K1K3 + 4K2

1K2 −
5

2
K2

2 + 2K4
1 − 2K2

1) = K. (5.9)

The operator of invariant differentiation is D = (1 + y′2)y′′−1K
−1/2
1 Dx and sixth and

higher order equations are given by (5.5). One has the 6th order invariant ODE

(1 + y′2)y′′−1K
−1/2
1 Dx(K

−3
1 (2K1K3 + 4K2

1K2 −
5

2
K2

2 + 2K4
1 − 2K2

1))

= H(K−3
1 (2K1K3 + 4K2

1K2 −
5

2
K2

2 + 2K4
1 − 2K2

1). (5.10)

Here K1 = 0 is the third order singular invariant equation.

(8, 8): X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = y∂y, X5 = y∂x, X6 = x∂x, X7 = x2∂x + xy∂y,
X8 = xy∂x + y2∂y.

The operators X1 to X6 result in the 5th order invariant of the algebra (6,6), viz.

J1 = K
−3/2
1 K2,

where K1 and K2 are as in (6,6).

The operator X7 in terms of J1 and its invariant derivatives J2 = K
−1/2
1 DxJ1 and

J3 = K
−1/2
1 DxJ2 turns out to be

X̃7 = −9K−1
1 y′′−1y′′′J1∂/∂J1 + (−12K−1

1 J2y
′′−1y′′′ + 3J2

1K
−1
1 y′′−1y′′′ − 3J1K

−1/2
1 )∂/∂J2

+(10J1J2K
−1
1 y′′−1y′′′ − J3

1K
−1
1 y′′−1y′′′ + J1K

−1
1 y′′−1y′′′

−15J3K
−1
1 y′′−1y′′′ − 7J2K

−1/2
1 +

3

2
J2
1K

−1/2
1 )∂/∂J3

which yields the invariant of order seven of this algebra (8,8) (note [X5, X7] = X8) as

ϕ1 = 12J
−2/3
1 J2−28J

−8/3
1 J2

2 +24J
−5/3
1 J3+J

4/3
1 −4J

−2/3
1 and thus the 7th order invariant

ODE is (K is a constant)

12J
−2/3
1 J2 − 28J

−8/3
1 J2

2 + 24J
−5/3
1 J3 + J

4/3
1 − 4J

−2/3
1 = K (5.11)

The invariant differential operator of this algebra is D = K
−1/3
2 Dx.
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Therefore, eight order ODEs admitting this eight dimensional algebra is given by

K
−1/3
2 Dx(12J

−2/3
1 J2 − 28J

−8/3
1 J2

2 + 24J
−5/3
1 J3 + J

4/3
1 − 4J

−2/3
1 ) = H(ϕ1) (5.12)

and higher order by invariant differentiation as Dn−7ϕ1 = H(ϕ1, . . . ,Dn−8ϕ1), n ≥ 8.

For this algebra the singular invariant equation is K2 = 0 which is fifth order. This is
also given in section 6.

(22, n): r = n− 1, n ≥ 2: X1 = ∂x, X2 = η1(x)∂y, . . . , Xn = ηn−1(x)∂y.

The nth order equation is

y(n) + a1y
(n−1) + · · ·+ an−1y

′ = H(y(n−1) + a1y
(n−2) + · · ·+ an−1y), (5.13)

where the ais are constants and the ηis satisfy the linear (n− 1)th order equation

η
(n−1)
i + a1η

(n−2)
i + · · ·+ an−1ηi = 0, i = 1, . . . , n− 1.

(23, n) : r = n− 2, n ≥ 3: X1 = ∂x, X2 = y∂y, X3 = η1(x)∂y,...,Xn = ηn−2(x)∂y.

The nth order equation that admits this algebra is

D2
x(y

(n−2) + a1y
(n−3) + · · ·+ an−2y)

y(n−2) + a1y(n−3) + · · ·+ an−2y
= H(Dx ln |y(n−2)+a1y

(n−3)+ · · ·+an−2y|), (5.14)

where the ais are constants and the ηis satisfy the linear (n− 2)th order equation

η
(n−2)
i + a1η

(n−3)
i + · · ·+ an−2ηi = 0, i = 1, . . . , n− 2.

(24, n) : r = n − 3, n ≥ 4: X1 = ∂x, X2 = ∂y, X3 = x∂x + αy∂y, X4 = x∂y,...,
Xn = xn−3∂y.

Fundamental invariants, if α ̸= n− 1, are

ϕ1 = (y(n−1))
α−n+2

(y(n−2))−(α−n+1), ϕ2 = y(n)(y(n−1))−( α−n
α−n+1

),

and for α = n− 1

ϕ1 = y(n−1), ϕ2 = y(n)y(n−2).

Thus the invariant equation is

y(n)(y(n−1))−( α−n
α−n+1

) = H((y(n−1))
α−n+2

(y(n−2))−(α−n+1)), α ̸= n− 1 (5.15)

If α = n− 1, the invariant equation simply is

y(n) = (y(n−2))−1H(y(n−1)). (5.16)

(25, n) : r = n− 2, n ≥ 3: X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = x2∂y, · · · , Xn−1 = xn−3∂y,
Xn = x∂x + ((n− 2)y + x(n−2))∂y.

The fundamental differential invariants are
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ϕ1 = y(n−1) exp
y(n−2)

(n− 2)!
, ϕ2 = y(n) exp

2y(n−2)

(n− 2)!

and invariant equation

y(n) exp
2y(n−2)

(n− 2)!
= H(y(n−1) exp

y(n−2)

(n− 2)!
). (5.17)

(26, n): r = n− 4, n ≥ 5: X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x∂y, · · · , Xn =
xn−4∂y.

The fundamental differential invariants:

ϕ1 =
y(n−3)y(n−1)

(y(n−2))2
, ϕ2 =

(y(n−3))2y(n)

(y(n−2))3

and invariant ODE
(y(n−3))2y(n)

(y(n−2))3
= H(

y(n−3)y(n−1)

(y(n−2))2
). (5.18)

(27, n): r = n − 4, n ≥ 5: X1 = ∂x, X2 = ∂y, X3 = 2x∂x + ry∂y, X4 = x2∂x + rxy∂y,
X5 = x∂y, · · · , Xn = xn−4∂y.

The fundamental invariants:

ϕ1 = y(n−1)(y(n−3))
n+2
2−n − n− 1

n− 2
(y(n−2))2(y(n−3))

−2n
n−2

ϕ2 = y(n)(y(n−3))
n+4
2−n +

2n(n− 1)

(n− 2)2
(y(n−2))3(y(n−3))

3n
2−n +

3n

2− n
y(n−1)y(n−2)(y(n−3))

2(n+1)
2−n .

The invariant equation here is

y(n)(y(n−3))
n+4
2−n +

2n(n− 1)

(n− 2)2
(y(n−2))3(y(n−3))

3n
2−n

+
3n

2− n
y(n−1)y(n−2)(y(n−3))

2(n+1)
2−n = H(ϕ1). (5.19)

(28, n): r = n−5, n ≥ 6: X1 = ∂x, X2 = ∂y, X3 = x∂y, · · · , Xn−3 = xn−5∂y, Xn−2 = x∂x,
Xn−1 = y∂y, Xn = x2∂x + rxy∂y.

The fundamental invariants:
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ϕ1 =
(n− 3)2K2 − 3(n− 1)(n− 3)K1 + 2(n− 1)(n− 2)

(n− 3)2((n− 3)K1 − (n− 2))
3
2

,

ϕ2 =
(n− 3)3K3 − 4n(n− 3)2K2 + 6n(n− 1)(n− 3)K1 − 3n(n− 1(n− 2)

(n− 3)3((n− 3)K1 − (n− 2))2

where

Ki =
y(n−3+i)(y(n−4))i

(y(n−3))i+1
, i = 1, 2, 3.

The invariant ODE is

(n− 3)3K3 − 4n(n− 3)2K2 + 6n(n− 1)(n− 3)K1 − 3n(n− 1(n− 2)

(n− 3)3((n− 3)K1 − (n− 2))2
= H(ϕ1). (5.20)

6 n + 3 Dimensional Algebras and Equations

Scalar first order equations admit infinite number of point symmetries. A second order
equation does not admit a five dimensional symmetry algebra, as is well-known. The
only third order equations that admit 6 dimensional algebras are

y′′′ =
3y′′2

2y′
and y′′′ =

3y′y′′2

1 + y′2
, (6.1)

where the algebras are sl(2, R)⊕ sl(2, R) and so(3, 1), respectively. These are the alge-
bras (16,6) and (7,6) as stated in the previous section 5. These are also known from the
initial seminal works of Lie.

In [27], it was shown that a fourth order equation does not admit a maximal 7 dimen-
sional algebra.

For fifth order equations, the only equation which admits an 8 dimensional algebra is

y(5) =
5y′′′y(4)

y′′
− 40y′′′3

9y′′2
, (6.2)

whose symmetry algebra is sl(3, R) (also referred to as (8,8)) as stated in the previous
section.

We check all the possible algebras of dimension n + 3 for n ≥ 5. Since an nth order
linear equation cannot have more than n independent solutions, the algebras (m,n+ 3)
for m = 20, · · · , 25 are not admitted. We discuss the remaining possible algebras:

(26, n+ 3): X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x∂y, · · · , Xn+3 = xn−1∂y.
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The generators X1, X2 and X5, · · · , Xn+3 implies that the equation must be of the form
y(n) = K. The X4 then implies that K must vanish. Then X3 is automatically admitted
by this equation. However, the maximal symmetry algebra of this equation is n+ 4. In
the same way it can be shown easily that the algebras (27, n + 3) and (28, n + 3) are
admitted by an nth order equation if and only if the equation is equivalent to y(n) = 0
and hence these algebras are admitted by the equation but are not maximal. We state
the general result on admission of (n+ 3) dimensional algebra in the next section.

In the following section we review the classification for n = 4 and discuss n ≥ 5 in some
detail. Then we present the results on how one can obtain a complete classification for
n ≥ 4. We state relevant theorems of our main results.

7 Classification of Higher , n ≥ 4, Order ODEs

In this section, we review the main aspects on the classification of 4th order ODEs and
then discuss n ≥ 5. We thus consider the Lie algebraic classification of ODEs of any
high order.

In general we can classify scalar ODEs into 3 subclasses as follows:

Subclass (1): nth order equations admitting n+ 1, n+ 2, n+ 3 and the maximal n+ 4
dimensional algebras. These are higher symmetries admitted by a scalar ODE.

Subclass (2): nth order equations admitting n dimensional algebras. For this we have
found the fundamental invariants of n dimensional algebras which are of order n−1 and
n.

Subclass (3): nth order equations admitting algebras of dimension lower than n.

All these subclasses (1), (2) and (3) are completed herein for n ≥ 4 and the algebra of
dimension n + 4 is already a well-known algebra since the initial work of Lie with cor-
responding equation y(n) = 0 that possesses this maximal dimension Lie algebra. This
is the algebra (28,n+ 4) as stated in section 4.2. Also for all subclasses we provide the
procedure to obtain the representative ODEs. These are presented in tabular forms and
the main results in theorems at the end of this section.

For algebras of dimensions 1 and 2, the algebras and canonical equation are given in
Table 1.

The nth order equations admitting 1 and 2 dimensional algebras for n ≥ 3 are easy to
determine as in Table 1.
For any 3 dimensional algebra we already know the invariants of orders 2, 3 and 4 from
previous works [7, 8, 15, 16] as well as [27]. Then by invariant differentiation we can find
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Algebra Generators nth Order Invariant ODE

(9, 1) ∂x y(n) = H(y, y′, y′′, ..., y(n−1))
(10, 2) ∂x, x∂x y(n) = y′nH(y, y′′y′−2, ..., y(n−1)y′1−n)
(20, 2) ∂y, x∂y y(n) = H(x, y′′, ...y(n−1))
(22, 2) ∂x, ∂y y(n) = H(y′, y′′, ..., y(n−1))
A2,1 ∂x, x∂x + y∂y y(n) = y1−nH(y′, y′′y, y′′′y2, ..., y(n−1)yn−2)

Table 1: The nth Order Equations Admitting 1 and 2 Dimensional Algebras for n ≥ 3

higher order invariants up to the required order. Lie’s recursive formula may also be used.

We provide the types of 3 D algebras that are possessed by 4th order ODEs. They are
(1, 3) : α ≥ 0, ∂x, ∂y, (αx+ y)∂x + (αy − x)∂y,
(2, 3) : ∂y, x∂x + y∂y, 2xypx + (y2 − x2)∂y,
(3, 3) : y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y, 2xy∂x + (1 + y2 − x2)∂y,
(11, 3) : ∂x, x∂x, x

2∂x,
(12, 3) : 0 < α ≤ 1, ∂x, ∂y, x∂x + αy∂y,
(17, 3) : ∂y, x∂x + y∂y, 2xy∂x + (x2 + y2)∂y,
(18, 3) : ∂y, x∂x + y∂y, 2xypx + y2∂y,
(20, 3) : ∂y, x∂y, ξ(x)∂y,
(21, 3) : ∂y, y∂y, x∂y,
(22, 3) : ∂x, η1(x)∂y, η2(x)∂y,
(23, 3) : ∂x, y∂y, ∂y,
(25, 3) : ∂x, ∂y, x∂x + (x+ y)∂y,

The algebras (2,3), (17,3) and (18,3) above are equivalent to the realizations as given in
[4] via the transformations x̄ = y, ȳ = x, x̄ = x + y, ȳ = y − x and x̄ = y, ȳ = |x|1/2,
respectively.

We compactly review scalar fourth order ODEs which admit real 3 dimensional Lie
algebras as alluded to above. The reader is also referred to [27] for further details. This
is important for higher than fourth order symmetry classification of scalar ODEs. We
provide the main results in Table 2.

Remark. In Table 2, the ODEs for 4 types of algebras are as follows.

(1, 3): ϕ4 = y(4)a2y′′−3 − 2a2y′′−4y′′′2 + 2ay′y′′−2y′′′ − 3a,
(2, 3): xa−1/2Dxϕ3 = x2a−5/2(2y′′′ + xy(4) − 10xy′y′′y′′′a−1

−6y′y′′2a−1 − 3xy′′3a−1 + 18xy′2y′′3a−2),
(3, 3): ra−1/2Dxϕ3 = r2a−5/2(4(x+ yy′)y′′′ − 10ra−1y′y′′y′′′ + ry(4)

−3ra−1y′′3 − 12a−1y′y′′2(x+ yy′) + 18ra−2y′2y′′3),
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Algebra λ Invariants ϕi 4th Order ODE

(1, 3) a−1/2 exp(−α arctan y′) ϕ2 = y′′a−3/2 exp(−α arctan y′) ϕ4 = H(ϕ2, ϕ3)

α ≥ 0 a = 1 + y′2 ϕ3 = y′′−2y′′′a− 3y′

(2, 3) xa−1/2 ϕ2 = a−3/2(xy′′ − ay′) xa−1/2Dxϕ3 = H(ϕ2, ϕ3)

a = 1 + y′2 ϕ3 = a−3x2(ay′′′ − 3y′y′′2)

(3, 3) ra−1/2, a = 1 + y′2 ϕ2 = a−3/2(ry′′ + 2a(y − xy′)) ra−1/2Dxϕ3

r = 1 + x2 + y2 ϕ3 = r2a−3(ay′′′ − 3y′y′′2) = H(ϕ2, ϕ3)

(11,3) y′−1 ϕ0 = y y(4)y′−4 + 6y′−6y′′3

ϕ3 = y′−4(2y′y′′′ − 3y′′2) −6y′−5y′′y′′′ = H(ϕ0, ϕ3)

(12,3) y′1/(α−1) ϕ2 = y′′y′
2−α
α−1 y(4) = y′′′

α−4
α−3H(ϕ2, ϕ3)

|α| < 1 α ̸= 0 ϕ3 = y′′′y′′
3−α
α−2

α = 1 y′′−1 ϕ1 = y′, ϕ3 = y′′−2y′′′ y(4) = y′′′3/2H(ϕ1, ϕ3)
(17,3) xb−1/2 ϕ2 = (xy′′ − by′)b−3/2 xb−1/2Dxϕ3 = H(ϕ2, ϕ3)

b = 1− y′2 ϕ3 = x2b−3(by′′′ + 3y′y′′2)
(18,3) y2 ϕ2 = y3y′′ y7y(4) + 8y′y6y′′′

ϕ3 = y5y′′′ + 3y′y′′y4 +12y5y′2y′′ = H(ϕ2, ϕ3)

(20,3) 1 ϕ0 = x, ϕ3 = y′′′ − y′′ ξ
′′′

ξ′′
y(4) = y′′′ ξ

(4)

ξ′′′
+H(ϕ0, ϕ3)

(21,3) 1 ϕ0 = x, ϕ3 = y′′′/y′′ y(4) = y′′′H(ϕ0, ϕ3)
(22,3) 1 ϕ2 = E(y) = y′′ + a1y

′ + a2y Dxϕ3 = H(ϕ2, ϕ3)
ϕ3 = Dxϕ2, ηi satisfy

E(ηi) = 0,i = 1, 2, ai const
(23,3) 1 ϕ2 = y′′/y′, ϕ3 = y′′′/y′′ y(4) = y′′′H(ϕ2, ϕ3)

(25,3) exp y′ ϕ2 = y′′ exp y′, ϕ3 = y′′−2y′′′ y(4) = y′′′3/2H(ϕ2, ϕ3)

Table 2: Scalar 4th Order Equations Admitting Real 3 Dimensional Algebras

(17, 3): xb−1/2Dxϕ3 = x2b−5/2(2y′′′ + xy(4) + 10xb−1y′y′′y′′′

+6y′y′′2b−1 + 3xy′′3b−1 + 18xb−2y′2y′′3)

The a, b and r are as in Table 2. There are 12 types of real 3 dimensional Lie algebras
admitted by scalar 4th order ODEs as listed in Table 2. One can utilise the operator
of invariant differentiation D = λDx for fourth and higher order ODEs possessing 3
dimensional algebras. Therefore, nth order, n ≥ 4, scalar ODEs with 3 dimensional
symmetry algebras, have the form Dn−3ϕ3 = H(ϕ, ϕ3, . . . ,Dn−4ϕ3), n ≥ 4, where ϕ is
ϕ0, ϕ1 or ϕ2 as given in Table 2. Hence, for n = 4, we have the 4th order ODE given
by Dϕ3 = H(ϕ, ϕ3) as in Table 2 with two arguments in H. In general for higher order
ODEs there are n− 2 arguments.

We present the list of 4 dimensional algebra types as used in [27]. These are
(4, 4) : ∂x, ∂y, x∂x + y∂y, y∂x − x∂y,
(13, 4) : ∂x, ∂y, x∂x, y∂y,
(14, 4) : ∂x, ∂y, x∂x, x

2∂x,
(19, 4) : ∂x, x∂x, y∂y, x

2∂x + xy∂y,
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Also the algebras (22,4), (23,4), (24,4) and (25,4) are easily found by setting n = 4 in
the general n dimensional cases discussed in section 5.

We now briefly review fourth order equations that possess real 4 dimensional algebras
in a compact way than discussed in [27]. This is presented in Table 3.

Algebra λ Invariant/s 4th Order ODE

(4, 4) (1 + y′2)y′′−1 y′′−2y′′′(1 + y′2)− 3y′ y(4) = y′′3(1 + y′2)−2(15y′2

+10ϕy′ +H(ϕ))
(13, 4) y′y′′−1 y′y′′−2y′′′ y(4) = y′−2y′′3H(ϕ), H ̸= 0
(14, 4) y′−1 y′′′y′−3 − 3

2
y′′2y′−4 y(4) = y′4H(ϕ) + 6y′2y′′ϕ

+3y′−2y′′3

(19, 4) y1/2y′′−1/2 y1/2y′′−3/2y′′′ + 3y′y−1/2y′′−1/2 y(4) = 4
3
y′′−1y′′′2

+y−1y′′2H(ϕ), H ̸= 0
(22,4) 1 E(y) ≡ y′′′ + a1y

′′ + a2y
′ + a3y DxE(y) = H(E(y)), H ̸= 0

ηi solves E(ηi) = 0 for ais const.
(23,4) 1 Dx ln |E(y)| ≡ Dx ln |y′′ + a1y

′ + a2y| D2
xE(y) = E(y)H(ϕ),

ηi satisfy E(ηi) = 0 for ai const. H ̸= 0

(24,4) y′′1/(α−2), y′′′α−2y′′3−α, α ̸= 3 y(4) = y′′′
α−4
α−3H(ϕ),H ̸= 0

y′′ y′′′, α = 3 y(4) = y′′−1H(ϕ), H ̸= 0
y′′′−1 ϕ = y′′, y(4)/y′′′2, α = 2 y(4) = y′′′2H(ϕ), H ̸= 0

(25,4) exp(y′′/2) y′′′ exp(y′′/2) y(4) = exp(−y′′)H(ϕ), H ̸= 0

Table 3: The 4th Order Equations Admitting 4 Dimensional Algebras

Remark. There are multiple cases of (22,4) in [27]. These are considered as a single case
in Table 3. We observe that there are 8 types of four dimensional algebras admissible by
4th order ODEs and also there are 7 types of 5 dimensional algebras as listed in Table 4,
viz., (5,5), (15,5) (section 5), (21,5) (linear homogeneous ODE, Proposition 3.1), (24,5),
(25,5), (26,5) and (27,5) (these 4 are given in section 3.1 for n = 4). There are as well 3
types of 6 dimensional algebras (as in Table 4) which are (6,6) (singular invariant ODE
stated in section 5), (23,6) (linear constant coefficient ODE, Proposition 4.1) and (28,6)
(section 4.1). Further, there is the maximum 8 dimensional case (28,8) (simplest linear
ODE, section 4.2 end). Thus, altogether there are 11 types of higher than 4 dimensional
algebra types. All these 11 types are mentioned in the previous sections 3, 4 and 5 as
indicated and summarised in Table 4.

Note that invariant differentiation of the invariants in the Table 3 will give fifth and
higher order invariants. It is also important to include the algebras (20,m) and (21,m)
for higher than mth order ODEs. We now focus on these two algebra types. The alge-
bras (20,3) and (21,3) are stated in Table 2 and included here.
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Higher Algebra 4th Order ODE

(5, 5) y(4) = Ky′′
5
3 + 5

3
y′′′2y′′−1, K ̸= 0,

(15, 5)
y′2y(4) − 6(y′y′′y′′′ − y′′3)

(y′y′′′ − 3
2
y′′2)

3
2

= K,

(21,5) y(4) =
∑2

i=1Ai(x)y
(i+1), ξk satisfy ξ

(4)
k =

∑2
i=1Ai(x)ξ

(i+1)
k , k = 1, 2,

(24, 5) y(4) = Ky′′′
α−4
α−3 , α ̸= 3 K ̸= 0,

(25, 5) y(4) = K exp(−y′′′/6), K ̸= 0,
(26, 5) y(4) = Ky′′′2y′′−1, K ̸= 0, 4/3, 5/3,
(27, 5) y(4) = Ky′′7/3 + 4

3
y′′′2y′′−1, K ̸= 0

(6, 6) y(4) = 5
3
y′′′2y′′−1

(23, 6) y(4) =
∑3

i=0Aiy
(i), Ai const., ηi satisfy same equation

(28, 6) y(4) = 4
3
y′′′2y′′−1

(28, 8) y(4) = 0

Table 4: The 4th order invariant ODEs that correspond to their 5 and higher dimensional
symmetry algebras. Note that K is a constant and for (21,5) as well as (23, 6), the Ais
do not satisfy the maximal symmetry conditions of [12] as mentioned in sections 3.2 and
4.2.

For (20,m): ∂/∂y, x∂/∂y, ξ1∂/∂y, . . . , ξm−2∂/∂y, 3 ≤ m < n, one has λ = 1 and the
invariants ϕ = x and ϕm = y(m) − a1y

(m−1) − . . . − am−2y
′′, where ξi, i = 1, . . . ,m − 2

satisfy ξ
(m)
i − a1ξ

(m−1)
i − . . .− am−2ξ

′′
i = 0. The nth order ODE with (20,m) is

D(n−m)ϕm = H(ϕ, ϕm, . . . ,D(n−m−1)ϕm) (7.1)

with D = Dx.
In the case (21,m): ∂/∂y, y∂/∂y, x∂/∂y, ξ1∂/∂y, . . . , ξm−3∂/∂y, 3 ≤ m < n, we have λ =
1 and invariants ϕ = x, ϕm = Dx ln |ϕm−1|, where ϕm−1 = y(m−1)−a1y

(m−2)−. . .−am−3y
′′

and ξi, i = 1, . . . ,m − 3 satisfy ξ
(m−1)
i − a1ξ

(m−2)
i − . . . − am−3ξ

′′
i = 0. The nth order

ODE with (21,m) is of the form (7.1) with appropriate ϕ, ϕm and D = Dx.

In the case of higher than 4th order ODEs admitting 4 dimensional symmetry algebras
we resort to Table 3 and also have (20, 4) and (21, 4). For (20,4), the invariants as above
are ϕ = x, ϕ4 ≡ E(y) = y(4) − a1y

′′′ − a2y
′′, where ξi, i = 1, 2 satisfy E(ξi) = 0 for ai

constants. One thus obtains the 5th order ODE Dxϕ4 = H(ϕ, ϕ4) which has (20,4). In
the case (21,4), the invariants are ϕ = x and ϕ4 = Dx ln |y′′′ − y′′ξ′′′/ξ′′| and one has
again the form Dxϕ4 = H(ϕ, ϕ4). For higher than 4, nth order ODEs with 4 dimensional
algebra, we have the form (7.1) with m = 4. Therefore for higher nth, n ≥ 5, order
ODEs with 4 dimensional algebras there are 10 types. These follow from Table 3 and
inclusion of (20,4) and (21,4). One deduces these by invariant differentiation as (H has
n− 3 arguments) Dn−4ϕ4 = H(ϕ, ϕ4, . . . ,Dn−5ϕ4), n ≥ 5.

We now consider fifth order invariant equations admitting one or more dimensional al-
gebras. The one (single type) and 2 symmetry algebras (4 types) are known as in Table
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1. In the case of 3 dimensional algebras, there are 12 types as a consequence of Table
2 and the ensuing discussions. Thus, a 5th order ODE possessing 3 D algebras has the
form D2ϕ3 = H(ϕ, ϕ3,Dϕ3), where D = λDx for each of the λs as stated in Table 2.

For 4 dimensional algebras, there are 10 types as in Table 3 and immediate deliberations
which included (20,4) and (21,4). Hence, a 5th order ODE which admits a 4 D algebra
is of the form Dϕ4 = H(ϕ, ϕ4) for each λ in Table 3. One can use each of the λs in Table
3 to find Dϕ4 for all the types.

Now we focus on algebras of dimension 5 and greater. These are discussed and follow
from our deliberations in the previous sections as well.

The 5th order ODEs admitting a five dimensional algebra are presented in Table 5.
Higher symmetries admitted by such ODEs are listed in Table 6.

Algebra 5th Order ODE

(5, 5) y(5) = −40
9
y′′′3y′′−2 + 5y′′′y(4)y′′−1 + y′′2H(ϕ), H ̸= 0,

ϕ = 3y(4)y′′
−5
3 − 5y′′′2y′′−8/3,

(15, 5)
y′3y(5) − 10y′2y′′y(4) − 6y′2y′′′2 + 48y′y′′2y′′′ − 36y′′4

(y′y′′′ − 3
2
y′′2)2

= H(ϕ)

ϕ =
y′2y(4) − 6(y′y′′y′′′ − y′′3)

(y′y′′′ − 3
2
y′′2)

3
2

,

(22,5) Dx(E4(y)) = H(E4(y)), H ̸= 0,
ηi is solution of E4(ηi) = 0, i = 1, . . . , 4 for ai consts.

(23,5) D2
x(E3(y)) = E3(y)H(Dx ln |E3(y)|), H ̸= 0,

ηi is solution of E3(ηi) = 0, i = 1, . . . , 3 for ai consts.

(24, 5) y(5) = (y(4))
α−5
α−4H((y(4))α−3, (y(3))4−α), α ̸= 4, H ̸= 0,

y(5) = (y′′′)−1H(y(4)), α = 4, H ̸= 0,

(25, 5) y(5) = exp(−2y′′′

3!
)H(y(4) exp(y′′′/3!)), H ̸= 0,

(26, 5) y(5)y′′2y′′′−3 = H(y′′y′′′−2y(4)), H ̸= 0,
(27, 5) y(5)y′′−3 + 40

9
y′′′3y′′−5 − 5y(4)y′′′y′′−4 = H(ϕ), H ̸= 0,

ϕ = y(4)y′′−7/3 − 4
3
y′′′2y′′−10/3, H ̸= Cϕ3/2, C const.

Table 5: The 5th order invariant ODEs that correspond to their 5 dimensional symmetry
algebras. Note that En(z) ≡ z(n) + a1z

(n−1) + · · · + anz and in (27,5) if H = Cϕ3/2 for
C constant, then the algebra (28, 6) occurs.

The 5th order ODEs for the algebras (5,5) and (15,5) are the equations (5.1) and (5.3).
Those for the types (22,5) to (27,5) are the 7 equations (5.13) to (5.19).

The 5th order equations for (6,6), (16,6) and (7,6) are (5.4), (5.7) and (5.9). Also for
(24,6) to (28,6) the ODEs are (3.1) to (3.5) for n = 5. The linear case for (21,6) follows
from Proposition 3.1 by setting n = 5. Moreover, the ODE for (8,8) is the singular
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Higher Algebra 5th Order Equation

(6, 6)
9y′′2y(5) − 45y′′y′′′y(4) + 40y′′′3

(3y′′y(4) − 5y′′′2)
3
2

= K,K ̸= 0,

(16,6) K−3
1 (5(DxK1)

2 − 4K1D
2
xK1) = K,

K1 = y−1y′′′ − 3
2
y′−2y′′2,

(7,6) K−3
1 (2K1K3 + 4K2

1K2 − 5
2
K2

2 + 2K4
1 − 2K2

1) = K,
K1 = (1 + y′2)y′′−2y′′′ − 3y′, K2 = y′′−1(1 + y′2)DxK1,

K3 = y′′−1(1 + y′2)DxK2,

(21,6) y(5) =
∑3

i=1Ai(x)y
(i+1), ξk satisfy ξ

(5)
k =

∑3
i=1Ai(x)ξ

(i+1)
k , k = 1, 2, 3,

(24,6) y(5) = K(y(4))
α−5
α−4 , α ̸= 4, K ̸= 0,

(25, 6) y(5) = K exp(−y(4)/4!), K ̸= 0,
(26, 6) y(5) = Ky′′′−1(y(4))2, K ̸= 0, 5/4,
(27, 6) y(5) = K(y(3))2 + 5

4
(y(4))2y′′′−1, K ̸= 0,

(28, 6) (y
(5)y′′2

y′′′3
− 5(9K1−8)

9
)/(3K1 − 4)3/2 = K, K ̸= 0,

K1 = y(4)y′′y′′′−2

(23,7) y(5) =
∑4

i=0Aiy
(i), Ai const., ηi satisfy the same equation.

(28, 7) y(5) = 5
4
(y(4))2y′′′−1

(8,8) 9y′′2y(5) − 45y′′y′′′y(4) + 40y′′′3 = 0
(28, 9) y(5) = 0

Table 6: The 5th order invariant ODEs that correspond to their higher symmetry alge-
bras. Note that K is a constant and in (21,6) (Ais not constant) and (23,7) the Ais do
not satisfy the maximal symmetry condition as in [12], see sections 3.2, 4.2.

invariant equation K2 = 0; (23,7) is the linear ODE (4.2); for (28,7) the ODE is (4.1)
and for (28,9) one has the simplest equation (4.3).

One can proceed to classify 6th order ODEs as follows. For 1 and 2 dimensions, these
are in Table 1. As for 3 dimensional algebras, there are 12 types and equations are of
the form D3ϕ3 = H(ϕ, ϕ3,Dϕ3,D2ϕ3). In the case of 4 dimensions we have 10 types
with ODEs D2ϕ4 = H(ϕ, ϕ4,Dϕ4). Five dimensions result in 10 types with equations
Dϕ5 = H(ϕ, ϕ5) (Table 5 and (20,5), (21,5)). Note that here λ = 1/Dxϕ in D = λDx.

The algebras for dimension 6 and ODEs are as follows. One has the algebra (6,6) with
equation given by (5.6); (16,6) with equation (5.8); (7,6) with representative ODE (5.10).
Each of these three types are presented in section 5.

Also one can easily deduce the algebras and forms for the equations for the 6 dimensional
algebras (22,6) to (28,6 ) from section 5 by setting n = 6 for each type. The equations
are (5.13) to (5.20) (there are 2 equations for (24.6)). Altogether, there are hence 10
maximal algebra types for 6th order ODEs admitting 6 dimensional algebras. Moreover,
for higher symmetries n + 1, n + 2, n + 4 for n = 6, there are 9 types given by (21,7)
(linear ODE in Proposition 3.1 with n = 6), (24,7) to (28,7) (section 3.1 for n = 6 with
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corresponding equations (3.1) to (3.5)) as well as (23,8) (linear equation (4.2)), (28,8)
((4.1) for n = 6) and (28,10) simplest linear ODE with maximal n+4 = 10 symmetries,
as in (4.3).

Likewise, if we investigate 7th order ODEs, one has the same number of types of lower
dimensional algebras as for 6th order ODEs, viz. 1, 2, 3, 4 and 5 dimensional algebras.
For 6 dimensions, we have 12 types.

The number of types of maximal algebras of dimension 7 are 7 given by (22,7) to (28,7)
in section 5 with ODEs (5.13) to (5.20) with n = 7. Moreover, for higher symmetries,
we end up with 10 types, viz. (21,8) (Proposition 3.1), (24,8) to (28,8) with equations
(3.1) to (3.5) with n = 7, (23,9) (linear, Proposition 4.1), (28,9) having (4.1), (28,11)
with maximal symmetry equation and (8,8) given by the ODE (5.11), viz.

12J
−2/3
1 J2 − 28J

−8/3
1 J2

2 + 24J
−5/3
1 J3 + J

4/3
1 − 4J

−2/3
1 = K,

where K is constant.

Now proceeding to 8th order ODEs, we have similar 1 to 6 lower dimension types as for
7th order ODEs. For dimension 7 we have 9 types. One also has the 8 maximal algebra
types (22,8) to (28,8) with corresponding ODEs (5.13) to (5.20) for n = 8 as well as
(8,8) given by equation (5.12).

There are also 9 types of higher symmetries, viz. (21,9) (linear), (24,9) to (28,9), (23,10)
(linear), (28,10) and (28,12) (linear maximal case).

We have the generalization to order 9 and greater as follows:

For n ≥ 9, there are the lower dimension types similar to 8th order ODEs with dimen-
sion 8 as lower dimension algebra having 10 types. Moreover, 7 maximal types for nth
order ODEs admitting n symmetries. These are (22, n) to (28, n) with representative
ODEs (5.13) to (5.20) with 2 cases for (24,n).

Also, for higher symmetries for nth order equations, n ≥ 9, there are 9 types, viz.
(21, n+ 1) (Proposition 3.1, linear), (24, n+ 1) to (28, n+ 1) with ODEs (3.1) to (3.5),
(23, n+ 2) (Proposition 4.1, linear), (28, n+ 2) with ODE (4.1) and (28, n+ 4) which is
the maximal algebra with simplest ODE y(n) = 0.

We now state the following important results on maximal n dimensional and higher di-
mensional symmetry algebras admitted by a scalar higher order ODEs for n ≥ 4. These
are consequences of our prior discussions.

Theorem 7.1. The number of types of maximal n dimensional Lie symmetry algebras
admitted by scalar nth order ODEs for n ≥ 4 are as follows:
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8 for n = 4, 5 with algebras and canonical ODEs given in Tables 3 and 5,

10 for n = 6 with algebras and representative equations
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Algebra 6th Order Equation

(6,6) K−3
1 (−3

2
K2DxK1 +K1DxK2) = H(K

−3/2
1 K2)

K1 = 3y′′−1y(4) − 5y′′′2y′′−2, K2 = 9y′′−1y(5) − 45y′′−2y′′′y(4) + 40y′′−3y′′′3

(16,6) K
−1/2
1 Dxϕ = H(ϕ), ϕ = K−3

1 (5(DxK1)
2 − 4K1D

2
xK1)

K1 = y′′′y−1 − 3
2
y′−2y′′2

(7,6) (1 + y′2)y′′−1K
−1/2
1 Dxϕ = H(ϕ), ϕ = K−3

1 (2K1K3 + 4K2
1K2 − 5

2
K2

2 + 2K4
1 − 2K2

1),
K1 = (1 + y′2)y′′−2y′′′ − 3y′, K2 = y′′−1(1 + y′2)DxK1, K3 = y′′−1(1 + y′2)DxK2

(22,6) DxE5(y) = H (E5(y)), E5(ηi) = 0, i = 1, . . . , 5, H ̸= 0,
(23,6) D2

xE4(y) = E4(y)H (Dx ln |E4(y)|), E4(ηi) = 0, i = 1, . . . , 4, H ̸= 0

(24,6) y(6) = (y(5))
α−6
α−4H

(
(y(5))α−4(y(4))5−α

)
, α ̸= 5, H ̸= 0,

y(6) = (y(4))−1H(y(5)),α = 5 , H ̸= 0,
(25,6) y(6) = exp(−y(4)/12)H

(
y(5) exp(y(4)/24)

)
, H ̸= 0,

(26,6) y(6) = (y(4))3(y(3))−2H
(
y(5)y(3)(y(4))−2

)
, H ̸= 0,

(27,6) y(6) + 15
4
(y(4))3(y(3))−2 − 9

2
(y(5)y(4)(y(3))−1 = (y(3))5/2H(ϕ)

ϕ = y(5)(y(3))−2 − 5
4
(y(4))2(y(3))−3, H ̸= Cϕ3/2,

(28,6) K3 − 8K2 + 20K1 −
40

3
= (3K1 − 4)2H

(
9K2 − 45K1 + 40

9(3K1 − 4)3/2

)
K1 = y(4)y(2)(y(3))−2, K2 = y(5)(y(2))2(y(3))−3, K3 = y(6)(y(2))3(y(3))−4

7 for n = 7 with algebras and canonical ODEs given below in (7.2) by letting n = 7

8 for n = 8 with algebras and equations

K
−1/3
2 Dx(12J

−2/3
1 J2 − 28J

−8/3
1 J2

2 + 24J
−5/3
1 J3 + J

4/3
1 − 4J

−2/3
1 ) = H(ϕ),

where ϕ = 12J
−2/3
1 J2 − 28J

−8/3
1 J2

2 + 24J
−5/3
1 J3 + J

4/3
1 − 4J

−2/3
1

as well as by letting n = 8 in the 7 cases (7.2).

7 for n ≥ 9 with algebras and representative equations
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Algebra nth Order Equation

(22,n) DxEn−1(y) = H (En−1(y)), En−1(ηi) = 0, i = 1, . . . , n− 1, H ̸= 0,
(23,n) D2

xEn−2(y) = En−2(y)H (Dx ln |En−2(y)|), En−2(ηi) = 0, i = 1, . . . , n− 2, H ̸= 0

(24,n) y(n) = (y(n−1))
α−n

α−n+1H
(
(y(n−1))

α−n+2
(y(n−2))−(α−n+1)

)
, α ̸= n− 1, H ̸= 0,

y(n) = (y(n−2))−1H(y(n−1)), α = n− 1, H ̸= 0,

(25,n) y(n) exp
2y(n−2)

(n− 2)!
= H

(
y(n−1) exp

y(n−2)

(n− 2)!

)
, H ̸= 0

(26,n)
(y(n−3))2y(n)

(y(n−2))3
= H

(
y(n−3)y(n−1)

(y(n−2))2

)
, H ̸= 0,

(27,n) y(n) +
2n(n− 1)

(n− 2)2
(y(n−2))3(y(n−3))−2 +

3n

2− n
y(n−1)y(n−2)(y(n−3))−1

= (y(n−3))
n+4
n−2H(ϕ), H ̸= Cϕ3/2,

ϕ = y(n−1)(y(n−3))
n+2
2−n − n− 1

n− 2
(y(n−2))2(y(n−3))

−2n
n−2

(28,n) K3 −
4n

n− 3
K2 +

6n(n− 1)

(n− 3)2
K1 −

3n(n− 1)(n− 2)

(n− 3)3

= ((n− 3)K1 − (n− 2))2)H(ϕ)

ϕ =
(n− 3)2K2 − 3(n− 1)(n− 3)K1 + 2(n− 1)(n− 2)

(n− 3)2((n− 3)K1 − (n− 2))
3
2

Ki =
y(n−3+i)(y(n−4))i

(y(n−3))i+1
, i = 1, 2, 3, (7.2)

Remark: Note that in the above En(z) ≡ z(n) + a1z
(n−1) + · · ·+ anz.

If H = Cϕ3/2 then (28,7) arises for 6th order ODEs or (28,n+ 1) for (27, n).

Theorem 7.2. The number of types of maximal n+ 1 dimensional Lie symmetry alge-
bras admitted by scalar nth order ODEs for n ≥ 4 are:

7 for n = 4, with algebras and canonical ODEs given in Table 4

9 for n = 5, with algebras and representative equations in Table 6

6 for n = 6, with algebras and equations given in (7.3) by setting n = 6

7 for n = 7, with algebras and canonical ODEs

(8,8), 12J
−2/3
1 J2 − 28J

−8/3
1 J2

2 + 24J
−5/3
1 J3 + J

4/3
1 − 4J

−2/3
1 = K,

where J1 = K
−3/2
1 K2, with K1 and K2 as in (6,6), J2 = K

−1/2
1 DxJ1 and J3 = K

−1/2
1 DxJ2

and the 6 algebras in (7.3) by setting n = 7.
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6 for n ≥ 8, with algebras and representative ODEs

Higher Algebra nth Order Equation

(24, n+ 1) y(n) = K(y(n−1))
α−n

α−n+1 , K ̸= 0

(25, n+ 1) y(n) = K exp
(

−y(n−1)

(n−1)!

)
, K ̸= 0

(26, n+ 1) y(n) = K (y(n−1))2

y(n−2) , K ̸= 0, n/(n− 1)

(27, n+ 1) y(n) = n
n−1

(y(n−1))2

y(n−2) +K(y(n−2))
n+3
n−1 , K ̸= 0

(28, n+ 1) y(n) = (y(n−2))3(y(n−3))−2

[
n(3(n−2)K1−2n+2)

(n−2)2
+K((n− 2)K1 − (n− 1))

3
2

]
(21, n+ 1) y(n) =

∑n−2
i=2 Ai(x)y

(i+1),

ξk, satisfy ξ
(n)
k =

∑n−2
i=1 Ai(x)ξ

(i+1)
k , k = 1, ..., n− 2. (7.3)

Remark. For (21, n + 1), the Ais are not constant or satisfy the maximal conditions as
stated in section 3.2.

Theorem 7.3. The number of types of n + 2 dimensional maximal symmetry algebras
admitted by an nth order ODEs for n ≥ 5 are two, one for linear class of equations,
viz. (23, n + 2), with equation (4.2) and one for nonlinear equations (4.1) with algebra
(28, n + 2). For n = 4 there are three types, (23,6) results in a linear equation as well
as (6,6) and (28,6) which give rise to nonlinear classes of equations.

Theorem 7.4. The only higher order n ≥ 3, ODEs which admit real n+3 dimensional
algebras are the two ODEs for n = 3, viz. (6.1) possessing sl(2, R)⊕sl(2, R and so(3, 1),
respectively and the 5th order equation which is (6.2) having sl(3, R) as maximal algebra.

Note that the maximum real Lie algebra admissible is (28, n+ 4) as is well-known from
Lie for y(n) = 0, n ≥ 3 and all scalar linear higher order ODEs (3.20) and (3.21) as
shown in [12].

In order to recall, for lower dimensional algebras admitted by higher order ODEs n ≥ 4,
one can refer to the one and two dimensional algebras listed in Table 1 as well as the 12
types of real 3 D algebra realizations given in Table 2. Moreover, one should note that
for lower dimensions, there also appears the two non-maximal Lie algebras (20,m) and
(21,m), when one classifies scalar ODEs n ≥ 4 as discussed. Therefore, we can state the
following theorem for lower dimensions.

Theorem 7.5. The number of types of lower m < n dimensional Lie algebras possessed
by scalar nth order ODEs for n ≥ 4 are given by

1,4 for m = 1, 2 dimensional algebras with the algebras and ODEs as in Table 1
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12 for m = 3 dimension algebras with algebras and ODEs given in Table 2 for 4th order
equations and for higher n > 4 order equations obtained by (with algebras as in Table 2)
invariant differentiation from (7.1) with m = 3

10 for dimensions m = 4, 5 with 8 algebras in Tables 3, 5 as well as the 2 algebras (20,m)
and (21,m) with ODEs deduced from (7.1) via invariant derivatives. The equations are
ϕ4 = H(ϕ) and ϕ5 = H(ϕ) in Tables 3, 5.

12 for dimension m = 6 with 10 algebras as in Theorem 7.1 together with (20,m) and
(21,m) and equations determined by (7.1). The 6th order ODEs ϕ6 = H(ϕ) are stated
in Theorem 7.1

9 for dimension m = 7 with 7 algebras in Theorem 7.1 as well as the 2 algebras (20,m)
and (21,m) and ODEs derived by (7.1). The equations of the form ϕ7 = H(ϕ) are known.

10 for dimension m = 8 with 8 algebras in Theorem 7.1 and the 2 algebras (20,m) and
(21,m) and ODEs deduced by (7.1). ODEs of the form ϕ8 = H(ϕ) are stated.

9 for dimension m ≥ 9 with 7 algebras in Theorem 7.1 as well as the algebras (20,m)
and (21,m) and ODEs deduced by (7.1); nth order equations are given.

Thus, we have a full understanding of the real symmetry Lie algebras admissible by
scalar nth order ODEs for n ≥ 2 keeping in mind that the second and third order ODEs
are well-known from the literature as referenced.

8 Concluding Remarks

We have completely classified scalar nth, n ≥ 4 order ODEs according to the real Lie
algebras they possess by using the classification of Lie algebras in the plane as in the
seminal contribution [4].

The classification for second and third order equations are well-known in a number of
influential works [2, 7, 8, 15, 16, 23].

In the case of 4th order equations, there have been progress in a number of papers, viz.
[24, 25, 26, 27]. Here we have re-looked at the maximal four dimensional algebras in a
compact form to enhance further classification of higher order ODEs which admit four
dimensional algebras as subalgebras.

We have shown that a higher nth order equation cannot admit maximally n + 3 point
symmetries with the exception of 3rd and 5th order ODEs. For 3rd order equations, 6
symmetries occur for two classes having algebras so(3, 1) and so(2, 2) which are famous
from the pioneering contribution of Lie [2]. In the case of 5th order ODEs, one has
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sl(3, R) admitted for one class of equations which is quite interesting as usually this
algebra is often alluded to as the maximal Lie algebra of scalar second order ODEs.

The results on the number of n + 1 dimensional symmetry algebras for scalar higher
order ODEs are provided with theorems on higher symmetries.

Further, it is important to mention that n+ 2 dimensional algebras occur for 3rd order
equations only in the linear class having 3+2=5 symmetries (see e.g. [8]), for 4th order
there are two further classes apart from the linear class as discussed (see also [27]) and
for 5th and higher order ODEs, there this is one more class besides the linear class.
These can be deduced from the discussions and results stated relating to 4th and higher
order ODEs.

We have derived all the maximal n dimensional symmetry algebras and their represen-
tative equations for n ≥ 4. Furthermore, one can easily extract the higher symmetry
classification as well as pointed out. These are presented as main results. For lower
dimensional algebras one can continue by considering the further two types (20,m) and
(21,m) for m < n, where n is the order of the ODE, as well as the familiar two and
three dimensional algebra types which are recalled in tabular form. This is stated as
a theorem as well on when higher order ODEs admit lower dimensional Lie symmetry
algebras and the ODEs that result.

The theorems on linearization appears in two cases which are mentioned here as propo-
sitions with reference to the initial works [11, 12].

We have therefore achieved a complete classification of scalar nth, n ≥ 4, order ODEs
in terms of the real Lie algebras of point symmetries they admit.

Data Availability Statement. No data is available.
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[4] González-López, A., Kamran, N. and Olver, P. J. Lie algebras of vector fields in the
real plane. Proceedings of the London Mathematical Society, 3(2), (1992), 339-368.

[5] Azad, Hassan, Biswas, Indranil, Mahomed, Fazal M. and Shah, Said Waqas, On
Lie’s classification of subalgebras of vector fields on the plane. Proc. Indian Acad.
Sci. (Math. Sci.) (2022) 132-166, https://doi.org/10.1007/s12044-022-00711-5.

[6] Nesterenko, M. O., Transformation groups on real plane and their differential in-
variants. Int. J. of Math. and Math. Sciences, Vol. 2006, Article ID 17410, (2006),
Pages 1–17, DOI 10.1155/IJMMS/2006/17410.

[7] Mahomed, F. M. and Leach, P. G. L., Lie algebras associated with second order
ordinary differential equations, J. Math. Phys. 30 (1989), 2770-2777.

[8] Ibragimov, N. H. and Mahomed, F. M., Ordinary differential equations, in CRC
Hanbook of Lie Group Analysis of Differential Equations, Vol. 3, N. H. Ibragimov
(ed.), CRC Press, Boca Raton, FL, 1996, pp. 191–215.

[9] Sarlet, W., Mahomed, F. M. and Leach, P. G. L., Symmetries of non-linear differ-
ential equations and linearisation, J. Phys. A: Math. Gen. 20 (1987), 277-292.

[10] Mahomed, F. M. and Leach, P. G. L., The Lie algebra sl(3,R) and linearization,
Queastiones Math. 12 (1989), 121-139.

[11] Mahomed, F. M. 2007, Symmetry group classification of ordinary differential equa-
tions: Survey of some results, Math. Methods in the Applied Sciences, 30 (2007),
1995-2012.

[12] Mahomed, F. M. and Leach, P. G. L., Symmetry Lie algebra of nth order ordinary
differential equations, Journal of Mathematical Analysis Applications 151 (1990),
80–107.

[13] Krause J., and Michel L. Classification of symmetries of ordinary differential equa-
tions. Lecture Notes in Physics 1991; 382:251.

[14] Chern S. S. The geometry of the differential equation, Tensor N. S. 1940; 28:
173–176.

[15] Mahomed, F. M, and Leach P. G. L. Normal forms for third order equations. Pro-
ceedings of the Workshop on Finite Dimensional Integrable Nonlinear Dynamical
Systems, Johannesburg, Leach P. G. L., and Steeb W. H. (eds). World Scientific:
Singapore, January 1988; 178.

[16] Gat O. Symmetries of third order differential equations. Journal of Mathematical
Physics 33 (1992), 2966.

[17] Grebot G. The characterization of third order ordinary differential equations admit-
ting a transitive fibre-preserving point symmetry group. Journal of Mathematical
Analysis and Applications 206(2) (1997), 364.

32



[18] Ibragimov N. H, Meleshko S. V. Linearization of third-order ordinary differential
equations by point and contact transformations. Journal of Mathematical Analysis
and Applications 308(1) (2005), 266.

[19] Neut, S., and Petitot, M., La geometrie de equation y′′′ = f(x, y, y′), Comp Rend
de Acad. des Sciences, Paris, Serie 1, 2002, 335: 515-518.

[20] Al-Dweik Ahmad Y., Mustafa M. T. and Mahomed Fazal Mahmood, Invariant
characterization of scalar third-order ODEs that admit the maximal point symmetry
Lie algebra, Mathematical Methods in the Applied Sciences, Vol. 41 Issue 12, (2018)
4714-4723, https://doi.org/10.1002/mma.4923.

[21] Al-Dweik Ahmad Y., Mustafa M. T., Mahomed Fazal Mahmood and Alassar Rajai
S., Linearization of third-order ordinary differential equations u′′′ = f(x;u;u′;u′′)
via point transformations, Mathematical Methods in the Applied Sciences, Vol. 41
Issue 16, Aug, (2018), 6017-7098, https://doi.org/10.1002/mma.5208.

[22] Al-Dweik Ahmad Y., Mahomed F. M. and Mustafa M. T., Invariant characteri-
zation of third-order ordinary differential equations u′′′ = f(x;u;u′;u′′) with five-
dimensional point symmetry group, Communications in Nonlinear Science and Nu-
merical Simulation, Vol 67, Feb, (2019), 627-636.

[23] Ibragimov, Nail H., and Maria Clara Nucci. ”Integration of third order ordinary
differential equations by Lie’s method: equations admitting three-dimensional Lie
algebras.” Lie Groups and Their Applications 1 (1994), 49-64.

[24] Cerquetelli, T., Ciccoli N. and Nucci, M. C. ”Four dimensional Lie symmetry alge-
bras and fourth order ordinary differential equations.” Journal of Nonlinear Math-
ematical Physics 9. Sup 2 (2002), 24-35.

[25] Fatima, A., Ayub, M. and Mahomed, F. M. ”A note on four-dimensional symme-
try algebras and fourth-order ordinary differential equations.” Journal of Applied
Mathematics 2013 (2013).

[26] Shah, Said Waqas, F. M. and H. Azad, A Note on the Integration of Scalar Fourth-
Order Ordinary Differential Equations with Four-Dimensional Symmetry Algebras,
Mathematical Problems in Engineering, Vol. 2021, Article ID 6619325, (2021), 7
pages, https://doi.org/10.1155/2021/6619325

[27] Shah, S. W., Mahomed, F. M., Azad, H. and Mustafa, M. T. Complete Classification
of Scalar Fourth-Order Ordinary Differential Equations and Linearizing Algorithms.
Dynamic Systems and Applications, 30 No. 3 (2021), 519-534.

[28] Ibragimov, Nail, H., Meleshko, Sergey V. and Suksern, Supaporn, Linearization of
fourth-order ordinary differential equations by point transformations, J. Phys. A:
Math. Theor. 41 (2008), 235206 (19pp) doi:10.1088/1751-8113/41/23/235206.

33



[29] Wafo Soh, C., Mahomed, F. M. and Qu, C. Contact Symmetry Algebras of Scalar
Ordinary Differential Equations. Nonlinear Dynamics, 28 (2002), 213–230.

[30] Ovsiannikov L. V., Group Analysis of Differential Equations, 1982, Academic Press,
New York.

[31] Ibragimov, N. H., Elementary Lie group analysis and ordinary differential equations,
Vol. 197, 1999, New York: Wiley.

[32] Olver P. J., Applications of Lie Groups to Differential Equations (2nd edition).
Graduate Texts in Mathematics, vol. 107, 1993, Springer, New York.

[33] Olver, Peter J., Equivalence, invariants, and symmetry, 1995, Cambridge University
Press, Cambridge.

[34] Bluman G. W. and Anco, S. Symmetry and Integration Methods for Differential
Equations, 2002, Springer, New York.

34


