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Abstract

In this paper, an event-triggered nearly optimal tracking control method is investigated for a class of uncertain nonlinear

systems by integrating adaptive dynamic programming (ADP) and integral sliding mode (ISM) control. By introducing a

neural network (NN) adaptive term, the designed ISM-based discontinuous control law is employed to eliminate the influence of

the uncertainties and obtain the tracking error system constructed from the sliding mode dynamics, as well as relax the known

upper-bounded condition of uncertainties. In order to guarantee the stability of tracking error system and improve the control

performance, under the ADP technique, a critic NN is applied to approximate the optimal value function for solving the event-

triggered Hamilton-Jacobi-Bellman equation and the event-triggered nearly optimal feedback control is obtained. The feedback

control law is updated and transmitted to plant only when events occur, thus both the communication and the computational

resources can be saved. Furthermore, the stability of tracking error is proven thanks to Lyapunov’s direct method. Finally, we

provide two simulation examples to validate the developed control scheme.
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Summary

In this paper, an event-triggered nearly optimal tracking control method is inves-
tigated for a class of uncertain nonlinear systems by integrating adaptive dynamic
programming (ADP) and integral sliding mode (ISM) control. By introducing a neu-
ral network (NN) adaptive term, the designed ISM-based discontinuous control law
is employed to eliminate the influence of the uncertainties and obtain the tracking
error system constructed from the sliding mode dynamics, as well as relax the known
upper-bounded condition of uncertainties. In order to guarantee the stability of track-
ing error system and improve the control performance, under the ADP technique, a
critic NN is applied to approximate the optimal value function for solving the event-
triggered Hamilton-Jacobi-Bellman equation and the event-triggered nearly optimal
feedback control is obtained. The feedback control law is updated and transmitted to
plant only when events occur, thus both the communication and the computational
resources can be saved. Furthermore, the stability of tracking error is proven thanks
to Lyapunov’s direct method. Finally, we provide two simulation examples to validate
the developed control scheme.

KEYWORDS:
Integral sliding mode control, adaptive dynamic programming, neural networks, event-triggered mecha-
nism, uncertain systems.

1 INTRODUCTION

With the existing of model uncertainties and disturbance, there will always be a deviation between practical control systems and
their nominal systems employed for controllers design.1,2 It is necessary to investigate a robust control method for guaranteeing
the stability and desired performance of systems in the presence of deviation. During the past few years, many advanced control
methods, such as adaptive control,3,4 robust control,5 H∞ control,6 and sliding mode control (SMC),7,8 have been used to
design robust controller. Among these methods, as an effective technique, SMC has widely employed in solving the robust
control problem due to the insensitive of parameter changes and the ability of fast respond.9,10,11,12 Liu et al.11 proposed an
adaptive SMC method for nonlinear systems with parametric uncertainties and external disturbances by combining immersion
and invariance adaptive scheme. Ding et al.12 developed a discontinuous and a quasi-continuous second-SMC methods for
uncertain nonlinear systems, and the chattering phenomenon was reduced in the last method to some extent. The traditional SMC
composes two parts, i.e., the initial reaching phase and the sliding motion phase, and the robustness is only occurred during the
slidingmotion. In order to avoid the reaching phase and improve the robustness, many integral SMC (ISMC)methods13,14,15 have
been developed in recent years. Cao et al.13 developed an ISMC method for nonlinear systems with uncertainties by designing
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a nonlinear integral-type sliding mode surface (SMS). In these methods, the system trajectory starts on the sliding manifold for
any initial system state by designing an integral sliding mode function.
Although the aforementioned methods have been widely employed to design robust controllers, which are not only required

to stabilize the systems with uncertainties, but also satisfy the considerable optimality in practical applications.16 By integrat-
ing ISMC technique and optimal control (OC) approaches, many approaches designed a composite control law to achieve the
objective for linear systems.17,18,19,20,21,22 Surjagade et al.21 developed an optimal ISMC method for a pressurized heavy water
reactor system, this method combined the optimal control law with ISMC law to guarantee the stability of the closed-loop sys-
tem when the existing of uncertainties and external disturbances. Das and Mahanta22 proposed an optimal second-order SMC
method for uncertain linear systems by combining the terminal SMS and the integral SMS. On the whole, in the these methods,
a discontinuous control law is employed to eliminate the effect of uncertainties or disturbances and obtain sliding mode dynam-
ics, and the OC law from solving algebraic Riccati equation is obtained to stabilize the linear sliding mode dynamics. However,
for the nonlinear systems, these methods are not easy to implement since they are difficult to design the OC law for the nonlin-
ear sliding mode dynamics by solving Hamilton-Jacobi-Bellman (HJB) equation, which is difficult or even impossible to obtain
the analysis solution.
Fortunately, adaptive dynamic programming (ADP) and reinforcement learning (RL) which are viewed as synonyms are two

effective techniques developed to overcome this difficulty by computing forward-in-time23,24,25. Many significant ADP-based
control methods have been reported to solve the OC problem for nonlinear systems26,27. Vamvoudakis and Lewis28 developed an
actor-critic (AC) strategy to solve the OC problem for nonlinear systems. Vrabie and Lewis29 developed an integral RL method
to obtain the solution of HJB equation and solve the OC problem of partially known nonlinear systems. It is easy to find that
the aforementioned results are achieved for optimal regulation problems. However, in many practical systems, the objective of
controller design is to guarantee the system state tracking an user-defined reference trajectory rather than regulate the system
state approaching the origin. Hence, it is significant to track the user-defined reference trajectory with optimal performance and
is also one of the common problem in ADP- or RL-based control community. For discrete-time (DT) nonlinear systems, the
optimal tracking control problem was converted into an OC problem for tracking error dynamics and a neuro-optimal tracking
control scheme was developed for nonlinear systems via the ADP technique.32 Wei et al.33 developed a data-based optimal
tracking control method for DT nonlinear systems and to apply the coal gasification system. For continuous-time (CT) nonlinear
systems, Modares and Lewis34 developed an integral RL-based tracking control method for CT nonlinear systems. Zhao et al.35
developed an ADP-based robust tracking control method for CT nonlinear systems with uncertainties, where the tracking control
problemwas transformed into an OC problem for the augmented system.Wang et al.36 developed an adaptive-critic-based robust
tracking control method for uncertain nonlinear systems, and this method was applying to a spring-mass-damper system.
However, these methods adopted time-triggered mechanism, the updating of the control law with a fixed period may increase

the energy consumption, and waste computational and communication resources. In order to save the computational and com-
munication resources on the basis of satisfying some control performance, many researchers have introduced event-triggered
mechanism to ADP, and developedmany ADP-based ETCmethods,37,38,39,40 where the event was defined as the event-triggering
error exceeded the designed event-triggering condition and the control law was updated only when the occurrence of the events.
For example, Vamvoudakis39 developed an event-triggered OC (ETOC) method for CT nonlinear systems, this method was
implemented based on AC structure, a critic and an actor neural networks (NNs) were employed to approximate the cost function
and the ETOC law, respectively. Wang et al.40 developed an event-triggered robust control method for uncertain CT nonlinear
systems, where the robust control problem was transformed into an ETOC problem by designed a modified value function. For
the tracking control problem, Zhang et al.41 developed an event-triggered tracking control (ETTC) scheme for CT nonlinear
systems, the designed control law composited with a feedforward and a feedback control laws which were employed to track the
reference trajectory and stabilize tracking error dynamics, respectively.
Based on the above-mentioned literature, these methods involved precise system dynamics only, research in ADP-based ETTC

has not been fully taken into account. However, the uncertainties is widely existed between actual plant and its nominal system.
On the other hand, among existing methods35,40,41,42 required the upper-bounded function of the uncertainties which is difficult
to be obtained. Inspired by the aforementioned literature, this paper focus on developing an event-triggered nearly optimal
tracking control (ETNOTC) method for uncertain nonlinear systems by integrating ADP and ISMC. The main contributions of
this scheme is summarized in the following three aspects.

1. In contrast to existing methods17,18,19,21,20,22 which proposed ISMC methods integrated with OC approaches for uncertain
linear systems, this paper develops an ETNOTC method based on ADP technique for uncertain nonlinear systems.



ZHANG ET AL 3

2. Unlike works35,40,41,42 required the assumption that the known upper bound of the uncertainties, this paper adopts the
ISMC technique with an adaptive term to eliminate the effect of uncertainties and relax the assumption simultaneously.

3. Different from works17,18,19,21,20,22,30,31 which adopted time-triggered mechanism to design the nearly optimal continuous
control law, this paper develops an ETC method to save the computational and communication resources.

The reminder of this paper is organized as follows. Section 2 presents the problem statement. Section 3 introduces the com-
posite control law design in detail. In Section 4, a numerical and a practical examples are employed to verify the effectiveness
of ETNOTC method. In Section 5, conclusion is given.

2 PROBLEM STATEMENT

Consider the uncertain nonlinear system described by

ṡ(t) = 
(

s(t)
)

+ 
(

s(t)
)

u(t) − Δ
(

s(t)
)

, (1)

where s ∈ ℝn and u ∈ ℝm are the system state and the control input, respectively,Δ (s) = (s)d(s) ∈ ℝn is the uncertain term,
 (s) ∈ ℝn and (s) ∈ ℝn×m are continuously differentiable matrix functions, and (s) is invertible.

Assumption 1. The system (1) is controllable, and the system dynamic  (s) + (s)u is Lipschitz continuous on a compact set
Ω and  (0) = 0.

For the tracking control, the system state is expected to track an user-defined reference trajectory which is give by

ẋd(t) = �(xd), (2)

where xd ∈ ℝn is the reference state, and �(xd) ∈ ℝn is an Lipschitz continuous function. According to (1) and (2), the tracking
error is defined as �(t) = s(t) − xd(t). Then, the tracking error system can be described as

�̇(t) = ṡ(t) − ẋd(t)
=  (s) + (s)u(t) − Δ (s) − �(xd). (3)

In the following, a composite control law u is designed to guarantee the system state tracking the reference trajectory and
minimize a given value function as far as possible.

3 COMPOSITE CONTROL LAW DESIGN VIA ISMC AND ADP

For the tracking error system (3), an ETNOTC method which integrates ADP and ISMC techniques is developed to design a
composite control law as

u = uc + ud +w, (4)

where uc ∈ ℝm is the discontinuous component to eliminate the influence of the uncertainties, ud ∈ ℝm is the continuous
feedforward control component to track the trajectory, w ∈ ℝm is the continuous ADP-based feedback control component to
guarantee the tracking error stabilization.

3.1 Discontinuous control law design via ISMC
The integral sliding mode (ISM) function is designed as

S(�(t), t) = A� − A�0 −

t

∫
0

A
(


(

s(�)
)

+ 
(

s(�)
)

W (�) − �(xd)
)

d�, (5)

where �0 = s(0),W = ud +w, A ∈ ℝm×n is a design matrix. It is worth pointing out that the ISM function satisfies S(�0, t) = 0,
the system state starts on the ISM surface, thus the reaching phase can be removed.
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Differentiating S(�(t), t) with respect to t, it yields

Ṡ(�, t) = A�̇ − A
(

 (s) + W − �(xd)
)

= A
(

 (s) + (s)(u − d(s)) − �(xd)
)

− A
(

 (s) + (s)W − �(xd)
)

= A(s)
(

uc − d(s)
)

.

According to SMC theory, let Ṡ(s, t) = 0, the equivalent control law uceq is derived as

uceq = d(s). (6)

Substituting (6) into (3), we get the sliding mode dynamics as

�̇(t) =  (s) + (s)W − �(xd). (7)

However, the uceq cannot be obtained since the unknown d(s). To keep the integral slidingmode function as zero, i.e.,S(�, t) = 0,
the discontinuous control law uc is designed as

uc = −sgn(Ξ), (8)

where Ξ = T(s)ATS, sgn(⋅) is the sign function, > d̄ is a sliding mode gain, d̄ is the norm-bound of d(s). In order to relax the
requirement of the known d̄, a radial basis function (RBF) NN-based adaptive team is designed to estimate the uncertainties as

d(s) = �∗Tℎ(s) + �,

where �∗ ∈ ℝld×m is the ideal weight, ld is the number of neurons, ℎ(s) ∈ ℝld is a RBF, and � is the approximation error. Denote
�̂ ∈ ℝld×m be the estimation of �∗, we have

d̂(s) = �̂Tℎ(s).

Furthermore, the discontinuous control law uc in (8) is changed as

uc = −Ksgn(Ξ) + d̂(s), (9)

where K is the improved sliding mode gain satisfying K > �b and �b is the norm-bound of �.

Theorem 1. For the nonlinear system (1), the designed integral sliding mode function (5), and Assumption 1, the discontinuous
control law uc (9) can maintain the system state trajectory on the ISM surface S = 0 with the adaptive law

̇̂� = −1


ℎ(s)STA(s), (10)

where 
 > 0 is the updating rate.

Proof. Consider the Lyapunov function candidate given as

Σ1(t) =
1
2
STS +



2
tr{�̃T�̃}, (11)

where �̃ = �̂ − �∗. The time derivative of the Σ1 is deduced as

Σ̇1(t) = STA
(

 (s) + (s)
(

u − d(s)
)

− �(xd)
)

− STA
(

 (s) + (s)W − �(xd)
)

+ 
tr{�̃T ̇̃�}

= STA
(

 (s) + (s)
(

uc +W − d(s)
)

)

− STA(s)
(

 (s) + (s)W
)

+ 
tr{�̃T ̇̃�}

= STA
(

(s)
(

−Ksgn(Ξ) + d̂(s) − d(s)
)

)

+ 
tr{�̃T ̇̃�}

= −KSTA(s)sgn(Ξ) + 
tr{�̃T ̇̃�} + STA(s)(s)
(

d̂(s) − d(s)
)

= −KSTA(s)sgn(Ξ) + 
tr{�̃T ̇̃�} + STA(s)
(

�̂Tℎ(s) − �∗Tℎ(s) − �
)

. (12)

Considering the adaptive law (10) and ̇̃� = ̇̂�, (12) becomes

Σ̇1(t) = −KSTA(s)sgn(Ξ) + STA(s)
(

�̃Tℎ(s) − �
)

− tr{�̃Tℎ(s)STA(s)}
= −KSTA(s)sgn(Ξ) − STA(s)�
≤ −K‖STA(s)‖1 − ‖STA(s)�‖
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≤ − (K − �b)‖STA(s)‖1. (13)

Therefore, if K > �b holds, the system state trajectory is maintained on sliding mode surface.

Remark 1. It is noticed that the improved sliding mode gain K is different from the gain and depends on the norm-bound of
approximation error � instead of the norm-bound of the uncertain term d(s). In practical applications, it is difficult to obtain the
norm-bound of of the uncertain term. The approximation error � can be guaranteed to be arbitrary small by selecting sufficient
number of neurons.43,44 Although the selection of gainK is challenging, there is no guiding method to select an optimal sliding
mode gain, and it can be selected based on repeated “trial and error”.

Remark 2. It is evident from (13) if the sliding mode gain K is chosen as K > �b, we have Σ̇1(t) = the Lyapunov candidate
function (11) will decrease gradually and the sliding mode surface S will converge to zero in finite time.

3.2 Continuous control law design via ADP
Assume that the desired trajectory satisfies

ẋd(t) =  (xd) + (xd)ud , (14)

where ud is the feedforward control law. Combining (2) and (14), we have

ud = +(xd)
(

�(xd) −  (xd)
)

, (15)

where +(xd) denotes the generalized inverse of (xd). Substituting (15) into (7), the tracking error dynamics is given by

�̇(t) = ẋ(t) − ẋd(t)
=  (s) + (s)(ud +w) − �(xd)
=  (s) + (s)+(xd)

(

�(xd) −  (xd)
)

+ (s)w − �(xd).

Letting � =  (s) + (s)+(xd)
(

�(xd) −  (xd)
)

− �(xd), we have

�̇(t) = � + (s)w. (16)

Then, under the event-triggered mechanism, an ADP-based control method is developed to design the feedback control law w.
The value function of (16) is defined as

V (�) =

∞

∫
t

(

�T(�)Q��(�) +wT(�)Rw(�)
)

d�, (17)

where Q� ∈ ℝn×n and R ∈ ℝm×m are symmetric positive definite matrices. Based on (17), we have

0 = �TQ�� +wTRw + ∇V T(�)
(

� + (s)w
)

with V (0) = 0, where ∇V (�) ≜ )V (�)∕)�. The Hamiltonian of system (16) is given by

H(∇V (�), �, w) = �TQ�� +wTRw + ∇V T(�)
(

� + (s)w
)

.

The optimal value function V ∗(�) satisfy the following HJB equation

0 = min
w
H(∇V ∗(�), �, w), (18)

where ∇V ∗(�) ≜ )V ∗(�)∕)�. We drive from (18) that
)H

(

�,∇V ∗(�), w
)

)w
|

|

|

|w=w∗
= 0,

where w∗ is the optimal tracking control law and given by

w∗(�) = −1
2
R−1T(�)∇V ∗(�). (19)

Substituting (19) into (18), we further obtain

H(∇V ∗
i (�), �, w

∗) = �TQ�� +w∗TRw∗ + ∇V ∗T(�)
(

� + (s)w∗)
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= 0. (20)

From (20), it is a time-triggered HJB equation whose solution often involves heavy computational burden and the waste of
communication resource by using ADP-based time-triggered mechanism. Hence, we developed an ADP-based ETC method to
obviate this shortcoming. Under the ETC framework, the sampled state is denoted as

ŝ� = s(ts), ∀t ∈ [t� , t�+1),

where t� represents the �th sampling instant, � ∈ ℕ. The corresponding tracking error is given by

�̂� = ŝ� − xd(t�), ∀t ∈ [t� , t�+1).

Then, introduce an triggering error function as

E�(t) = �̂� − �(t), ∀t ∈ [t� , t�+1). (21)

According to (21), the ETC law is expressed by

w(�̂�) = w
(

E�(t) + �(t)
)

, (22)

Based on (22), the system (16) becomes

�̇(t) = � + (s)w(�̂�). (23)

Furthermore, the event-triggered optimal tracking control (ETOTC) can be obtained from (23) as

w∗(�̂s) = −
1
2
R−1T(�̂�)∇V ∗(�̂�) (24)

for all t ∈ [t� , t�+1), where ∇V ∗(�̂�) ≜ )V ∗(�̂�)∕)�̂� . By replacing w in (18) with w∗(�̂s), the event-triggered version of HJB
equation at t = t� is written as

H
(

∇V ∗(�), �, w∗(�̂�)
)

= �TQ�� +w∗T(�̂�)Rw∗(�̂�) + ∇V ∗T(�)
(

� + (s)w∗(�̂�)
)

.

Assumption 2. w∗(�) is Lipschitz continuous, i.e., ‖w∗(�(t)) −w∗(�̂�)‖ ≤ w‖E�(t)‖, where wi > 0 is a constant.

Theorem 2. For the tracking error system given by (3), the sliding mode dynamics (16), Assumptions 1–2, the composite
control law (4) with (9), (15) and (24), if the triggering condition is designed as

‖E�‖2 ≤
(1 − �2)�TQ�� + ‖r‖2‖w∗(�̂�)‖2

2w
= T 2� , (25)

where w is a positive constant, T� is the event-triggering threshold, the closed-loop tracking error system (3) is guaranteed to
be asymptotically stable.

Proof. Choose a Lyapnuov function candidate as

Σ2(t) = V ∗(�).

Based on Theorem 1, by using the discontinuous control law uc , the system state trajectory can be forced on integral sliding
mode surface S = 0 and maintained on it. And then, applying the feedforward control law, the tracking error system is obtained
as (16). Using the trajectories of system (16), we find

Σ̇2(t) = ∇V ∗T(�)
(

� + (s)w∗(�̂�)
)

. (26)

Based on (19), we have

∇V ∗T(�)(s) = −2w∗T(�)R. (27)

From (20), it reveals that

∇V ∗T(�)� = − �TQ�� −w∗T(�)Rw∗(�) − ∇V ∗T(�)(s)w∗(�). (28)

Substituting (27) and (28) into (26), we obtain

Σ̇2(t) = − �TQ�� −w∗T(�)Rw∗(�) − ∇V ∗T(�)(s)w∗(�) + ∇V ∗T(�)(s)w∗(�̂�)
= − �TQ�� +w∗T(�)Rw∗(�) − 2w∗T(�)Rw∗(�̂�)
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= − �TQ�� +
(

w∗(�) −w∗(�̂�)
)TR

(

w∗(�) −w∗(�̂�)
)

−w∗T(�̂�)Rw∗(�̂�).

According to Assumption 2, we have

Σ̇2(t) ≤ − �TQ�� + 2w‖r‖
2
‖E�(t)‖2 − ‖r‖2‖w∗(�̂�)‖2

≤ − �2�min(Q�)‖�‖2 + (�2 − 1)�min(Q�)‖�‖2 + 2w‖r‖
2
‖E�(t)‖2 − ‖r‖2‖w∗(�̂�)‖2,

where R = rTr, r ∈ Rm×m is a square matrix. Then, if condition (25) holds, we have

Σ̇2(t) ≤ −�2�min(Q�)‖�‖2 < 0

for any � ≠ 0, it means the closed-loop tracking error system (3) is asymptotically stable.

3.3 Critic-only structure implementation
The optimal value function V ∗(�) can be represented via a critic NN with lc hidden neurons as

V ∗(�) = 'T
c �c(�) + �c(�), (29)

where 'c ∈ ℝlc is the ideal weight vector, �c(�) ∈ ℝlc is the activation function, and �c(�) is the reconstruction error.
Differentiating V ∗(�) in (29) with respect to �, it yields

∇V ∗(�) = ∇�Tc (�)'e + ∇�c(�). (30)

According to (19) and (30), we have

w∗(�̂�) = −
1
2
R−1T(s)

(

∇�Tc (�̂�)'c + ∇�c(�̂�)
)

. (31)

Letting '̂c ∈ ℝlc be the estimate of 'c , the approximate V ∗(�) is given by

V̂ (�) = '̂T
c �c(�),

and its partial derivative is given by

∇V̂ (�) = ∇�Tc (�)'̂c . (32)

Based on (31) and (32), the approximate ETOTC law is obtained as

ŵ(�̂�) = −
1
2
R−1T(s)∇�Tc (�̂�)'̂c . (33)

Noticing (32), the approximate Hamiltonian is defined as

Hi('̂c , �, ŵ(�̂�)) = �TQ�� + ŵ∗T(�̂�)Rŵ∗(�̂�) + ∇V ∗T(�)
(

� + (s)ŵ∗(�̂�)
)

= c .

Obviously, we can obtain
)c
)'̂c

= ∇�c(�)
(

� + (s)ŵ(�̂�)
)

≜ �,

where � is a lc-dimension column vector. To minimize the objective function c = (1∕2)T
c c , '̂c is updated by

̇̂'c = −�c
1

(1 + �T�)2

(

)c

)'̂c

)

= −�c
�

(1 + �T�)2
c , (34)

where �c > 0 is the learning rate.
Let '̃ = ' − '̂ be the weight error vector, then the weight error dynamics is derived as ̇̃' = − ̇̂'. According to the existing

results,45,47 the weight error dynamics is guaranteed to be UUBwith the updating law (34), and the related proof is omitted here.

3.4 Stability analysis
Assumption 3. ∇�c(�), ∇�c(�), (s) and '̃ are norm-bounded, i.e., ‖∇�c(�)‖ ≤ �̄c , ‖∇�c(�)‖ ≤ �̄c , ‖(s)‖ ≤ ḡ and ‖'̃‖ ≤ '̄,
where �̄c , �̄c , ḡ and '̄ are positive constants.9,46,47
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Theorem 3. Take the system (16) into account, if Assumptions 1–3 hold and the event-triggering condition is designed as

‖�(t)‖2 ≤
(1 − �2)�min(�)‖�‖2

22w
= T̂ 2� , (35)

where 0 < � < 1, and T̂� is the event-triggering threshold. Then, the approximate ETOTC law (33) can guarantee the closed-loop
system (16) to be UUB.

Proof. Choose a Lyapunov function candidate as

Σ3(t) = Σ31(t) + Σ32(t),

where Σ31(t) = V ∗(�) and Σ32(t) = V ∗(�̂�). The stability analysis is presented as the following two cases.
Case 1: ∀t ∈ [t� , t�+1), we have

Σ̇32(t) = 0, (36)

According to (20), we can derive

Σ̇31(t) = − �TQ�� −w∗T(�)Rw∗(�) − ∇V ∗T(�)(s)w∗(�) + ∇V ∗T(�)(s)ŵ(�̂�)
= − �TQ�� −w∗T(�)Rw∗(�) + ∇V ∗T(�)(s)(ŵ(�̂�) −w∗(�)). (37)

Based on (19), (37) becomes

Σ̇31(t) = − �TQ�� −w∗T(�)Rw∗(�) + 2w∗T(�)R(w∗(�) − ŵ(�̂�))
= − �TQ�� +w∗T(�)Rw∗(�) − 2w∗T(�)Rŵ(�̂�)

= − �TQ�� +
(

w∗(�) − ŵ(�̂�)
)TR

(

w∗(�) − ŵ(�̂�)
)

− ŵT(�̂�)Rŵ(�̂�)

= − �TQ�� + ‖r‖2‖‖
‖

w∗(�) − ŵ(�̂�)
‖

‖

‖

2
− ‖r‖2‖ŵ∗(�̂�)‖2. (38)

Considering 'ic = '̂ic + '̃ic , we get

‖w∗(�) −w(�̂�)‖2 =
‖

‖

‖

(

w∗(�) −w∗(�̂�)
)

+
(

w∗(�̂�) − ŵ(�̂�)
)

‖

‖

‖

2

≤ 2‖‖
‖

w∗(�) −w∗(�̂�)
‖

‖

‖

2
+ 2‖‖

‖

w∗(�̂�) − ŵ(�̂�)
‖

‖

‖

2

≤ 1
2
‖r−1‖2ḡ‖‖

‖

∇�Tc (�̂�)'̂c − ∇�
T
c (�̂�)'c − ∇�c(�̂�)

‖

‖

‖

2
+ 22w‖E�(t)‖

2

≤ 1
2
‖r−1‖2ḡ2‖ − ∇�c(�̂�) − ∇�Tc (�̂�)'̃c‖

2 + 22w‖E�(t)‖
2

≤ 22w‖E�(t)‖
2 + ‖r−1‖2ḡ2

(

�̄2c '̄
2
c + �̄

2
c

)

. (39)

According to (39), we further derive from (38) as

Σ̇31(t) ≤ −�TQ�� + 22w‖r‖
2
‖E�(t)‖2 − ‖r‖2‖ŵ(�̂�)‖2 + ‖r−1‖2ḡ2

(

�̄2ic'̄
2
ic + �̄

2
ic

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Θ

. (40)

By combining (36) and (40), we obtain

Σ̇3(t) ≤ −�2�min(Q�)‖�‖2 + (�2 − 1)�min(Q�)‖�‖2 + 2‖r‖22w‖E�(t)‖
2 + Θ.

Therefore, if the condition (35) holds and � lies outside the compact set

Ω� =

{

�∶ ‖�‖ ≤

√

Θ
�2�min(Q�)

}

,

we can find that Σ̇3(t) ≤ −�2�min(Q�)‖�‖2 < 0 for any � ≠ 0.
Case 2: ∀t = ts+1, we have

ΔΣ3(t) = Σ3(�̂�+1) − Σ3(�(t−�+1))
= ΔΣ31(t) + ΔΣ32(t).
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Noting the fact that � and V ∗(⋅) are both continuous, we derive

ΔΣ31(t) = V ∗(�̂�+1) − V ∗(�(t−�+1)) ≤ 0, (41a)
ΔΣ32(t) = V ∗(�̂�+1) − V ∗(�̂�) ≤ −#(‖E�+1(t�)‖), (41b)

where �(t−�+1) = limΔt→0 �(t�+1−Δt), #(⋅) is a class- function and E�+1(t�) = �̂�+1− �̂� . Based on (41), we derive ΔΣ3(t) ≤ 0.
In the end, from the two aspects, if (35) holds, the closed-loop system is UUB.

4 SIMULATION RESULTS

The effectiveness of the proposed ETNOTCmethod is demonstrated by employing a numerical and a realistic nonlinear systems.

4.1 Example 1
Consider the nonlinear system with uncertainties as

ṡ =
[

s2
−0.5s31 − 0.5s2

]

+
[

0
1

]

(

u + d
)

, (42)
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FIGURE 1 The learning process of critic NN weights.
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FIGURE 2 Feedback and continuous control inputs.
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FIGURE 3 Tracking errors of system (16).
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FIGURE 4 The updating times of the feedback control input.



10 ZHANG ET AL

0 5 10 15 20

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

S
y
st

em
 s

ta
te

s 
an

d
 t

ra
je

ct
o
ri

es

FIGURE 5 Tracking control performance.
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FIGURE 6 The tracking errors of system (3).
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FIGURE 7 The curves of composite control input and sliding
mode function.

0 5 10 15 20 25 30

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

U
n
c
e
rt

a
in

ti
e
s 

a
n
d
 i

ts
 e

st
im

a
ti

o
n

FIGURE 8 The uncertainties and its estimation.

where s ∈ [s1, s2]T is the system state, d = sin(0.6s1) cos(s2) cos(0.6s1) is the uncertainties. The reference trajectory is chosen
as

ẋd =
[

−0.5 sin(t) + 0.6 cos(3t)
−0.5 cos(t) − 1.8 sin(3t)

]

. (43)

The feedback control input in continuous control component is designed by using ADP-based ETC control method for system
(16). The parameters of the value function are set as Q� = 4I and R = 0.1. In the critic NN, the learning rate �c = 2, the
activation function is chosen as �c(�) = [�21 , �1�2, �

2
2]

T, the weight vector is defined as '̂c = ['̂c1, '̂c2, '̂c3]T. Fig. 1 displays
that the weight vector of the critic NN '̂i finally converge to [0.1361, 0.0691, 0.1613]T. Fig. 2 shows the feedback control and
the continuous control inputs, the feedback control input w is updated at t� only, and keeps unchanged during [t� , t�+1). Fig. 3
describes that the tracking errors converge to a small region of zero (SRZ) after 7s. From Fig. 4, it is found that the less updating
frequency of the feedback control signal is required by using ETC than TTC mechanism, which implies that the computational
and communication resources can be saved.
Then, in the discontinuous control component, the initial weight vector �̂ is randomly selected within [−1, 1], the RBF ℎ(s) =

[ℎ1(s), ℎ2(s),… , ℎld(s)]T is chosen as

ℎl(s) = exp
(−‖s − cl‖2

b2
)

, (44)
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FIGURE 9 The learning process of critic NN weights.
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FIGURE 10 Feedback and continuous control inputs.
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FIGURE 12 The updating times of the feedback control input.

where l = 1, 2,… , ld , and cl is the lth colum vector of the matrix

Cd =
[

−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3

]

.

The sliding mode gain is chosen as K = 0.02, A = [0, 1]. The discontinuous control law (9) is given as uc = −Ksign(AT(s)
gT(s)S)+d̂(s). The composite control input (4) is employed to drive the tracking error dynamics (3) for simulation. Fig 5 displays
the tracking performance. As shown in Fig. 6, the the tracking errors converge to a SRZ after 7s. The curves of composite control
input and sliding mode function are presented in Fig. 7. Fig. 8 shows the curves of d(s) and d̂(s) and their difference, we can
conclude that the adaptive term is effective to approximate the d(s).

4.2 Example 2
The pendulum system48 is formulated as

�̈ = −
fd
J
�̇ −

MgL
J

sin(�) + 1
J
(u + d),

where � ∈ ℝ denotes the angle position of the pendulum, and the parameters are given in Table 1.
Let s1 = �, s2 = �̇, we have

ṡ =
[

s2
−4.9 sin(s1) − 0.2s2

]

+
[

0
0.25

]

(u + d), (45)
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TABLE 1 Parameters of the pendulum system

Parameter J1 L M g fd

Value 4 kg ⋅m2 1.5 m 4/3 kg 9.8 m∕s2 0.8 N ⋅m ⋅ s∕rad
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FIGURE 13 Tracking control performance.
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FIGURE 14 Tracking errors of system (3).
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mode function.

0 5 10 15 20 25 30

Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

U
n
te

rt
ia

n
ti

e
s 

a
n
d
 i

ts
 e

st
im

a
ti

o
n
 

FIGURE 16 The uncertainty and its estimation.

where s = [s1, s2]T ∈ ℝ2 is the system state, d = sin(s1) cos(s2) sin(s2). The reference system is chosen as

ẋd =
[

−0.6 sin(t) + 0.4 cos(2t)
−0.6 cos(t) − 0.8 sin(2t)

]

. (46)

First, ADP-based ETC method is developed to design the feedback control input. The value function is given as (16) with
Q� = 5I and R = 0.05. The structure of the critic NN is the same in Example 1. As shown in Fig. 9, the weight vector '̂ finally
converges to [0.4230, 0.1627, 0.5893]T. Fig. 10 shows the feedback control and the continuous control inputs, the feedback
control input w is a piecewise signal, which implies it only updated when events occur. Fig. 11 displays that the tracking errors
converge to a SRZ after 15s. Fig. 12 shows the updating times of the feedback control input, the TTC and ETC methods are
required 1200 and 399 times, respectively. Thus, the computation and communication resources are saved.
Then, in the discontinuous control component, K = 0.2, A = [0, 1], and the parameters and structure of the adaptive term

are selected as the same in Example 1. Furthermore, The composite control input is used to drive the tracking error dynamics.
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Fig. 13 shows the tracking performance. From Fig. 14, we can find that the tracking errors converge to a SRZ after 15s. Fig. 15
displays the curves of the composite control input and the sliding mode function. According to Fig. 16, we known the adaptive
term d̂(s) estimate d(s) successfully.

5 CONCLUSIONS

In this paper, we develop an ETNOTC method for nonlinear uncertain systems by integrating ADP and ISMC techniques. The
discontinuous control input with an adaptive term is developed to eliminate the influence of uncertainties and obtain the slid-
ing mode dynamics, this method can relax the assumption of known upper-bounded function of uncertainties, and the designed
continuous control input composed of feedforward and feedback control inputs is employed to achieve the tracking task. The
ADP-based feedback control input is updated only when events occur, thus the updating frequency is reduced, and the computa-
tional and communication burdens are reduced. According to Lyapunov stability theorem, we prove that the closed-loop tracking
error system is asymptotically stable. Finally, the simulation results declare that the developed ETNOTC method is effective.
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