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Abstract

Effort estimation is an important activity in agile software development. The goal of the presented study was to determine the
influence of individual competence on software development effort estimation. In particular, we measured both the accuracy of
effort estimation and the duration of the estimation process itself, both for three different estimation methods. The subjects
of our study were teams of students of a graduate-level software engineering course at the University of Ljubljana, Faculty
of Computer and Information Science. Based on the grades that individual students attained in their undergraduate study,
we classified each team as ‘high-competence’ or ‘low-competence’ and additionally as ‘heterogeneous’ or ‘homogeneous’ (the
criterion here being the variance of the members’ average grades). We found out that there was no significant difference in effort
estimation accuracy neither between high-competence and low-competence teams nor between heterogeneous and homogeneous
teams, regardless of which estimation method was used. However, high-competence teams spent significantly less time on effort
estimation than low-competence ones. Likewise, for two of the employed estimation methods, heterogeneous teams completed
effort estimation in a significantly shorter time than homogeneous teams. These results might benefit both academic and
professional community.
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Abstract

Effort estimation is an important activity in agile software development. The goal
of the presented study was to determine the influence of individual competence on
software development effort estimation. In particular, we measured both the accu-
racy of effort estimation and the duration of the estimation process itself, both for
three different estimation methods. The subjects of our study were teams of stu-
dents of a graduate-level software engineering course at the University of Ljubljana,
Faculty of Computer and Information Science. Based on the grades that indi-
vidual students attained in their undergraduate study, we classified each team as
‘high-competence’ or ‘low-competence’ and additionally as ‘heterogeneous’ or ‘ho-
mogeneous’ (the criterion here being the variance of the members’ average grades).
We found out that there was no significant difference in effort estimation accuracy
neither between high-competence and low-competence teams nor between hetero-
geneous and homogeneous teams, regardless of which estimation method was used.
However, high-competence teams spent significantly less time on effort estimation
than low-competence ones. Likewise, for two of the employed estimation methods,
heterogeneous teams completed effort estimation in a significantly shorter time than
homogeneous teams. These results might benefit both academic and professional
community.
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1 INTRODUCTION

Competence is undoubtedly one of the major factors in software development. The ability of a software development team’s
members to solve a variety of engineering problems, to work towards a common goal within the team, and to meet strict deadlines
is crucial for a software project to succeed. Competence does not play a vital role only in the implementation phase of the project;
it is no less important in the effort estimation phase, during which the team members try to predict the amount of work and, in
turn, the length of time required to complete a given software project.

In this paper, we focus on the relationship between individual team member competence and software effort estimation. In
particular, we are interested in the accuracy of effort estimation (i.e., how accurately a team predicts the time required to complete
individual functionalities of the project) and the duration of the estimation process itself. We thus carried out a study to measure
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both of these dependent variables as a function of competence. The study was conducted at the University of Ljubljana, Faculty
of Computer and Information Science, and its subjects were teams of students of a graduate-level software engineering course.

Software effort estimation is a discipline in its own right. Numerous approaches have been proposed in both theory and practice
(e.g.,1,2,3). The approaches differ substantially in the way they are performed, in the aspects of estimation that they emphasize,
and in the time they typically take to complete. The student teams that participated in our study employed three estimation
methods: Planning Poker4,5,6,7, Bucket System8, and Affinity Estimation9. While Planning Poker focuses on individual user
stories (each user story is estimated individually and independently from the others), Bucket System and Affinity Estimation
take a more holistic approach: the team tries to estimate how difficult individual user stories are in relation to the others.

The goal of the study that we present in this paper is to obtain the answers to the following research questions:

RQ1: Does the average competence of the members of a software development team affect the accuracy of effort estimation?

RQ2: Does the variance in competence of team members affect the accuracy of effort estimation?

RQ3: Does the average competence of team members affect the time required to perform effort estimation?

RQ4: Does the variance in competence of team members affect the time required to perform effort estimation?

We will answer each of these questions three times, once for each of the above-mentioned estimation methods. For example,
in the context of question RQ1, we will investigate how (if at all) the average competence of team members affects the team’s
estimation accuracy provided that they employ (a) Planning Poker, (b) Bucket System, or (c) Affinity Estimation.

What, precisely, is the contribution of our paper? First, while there have been (as we show in Section 2.1) studies investigating
the relationship between competence and the accuracy of effort estimation, we are not aware of any research work dealing with
the duration of the estimation process in connection with competence. Second, whereas Planning Poker is a well-established
and well-known estimation method, this is far from being the case with Bucket System and Affinity Estimation. As a second
contribution, our paper sheds light on these intriguing, yet barely known techniques, and shows that they are perfectly fit to be
used for effort estimation.

The rest of this paper is structured as follows. In Section 2, we give an overview of related work and present the estimation
methods employed in our study. Following that, we describe the structure and implementation of our study (Section 3) and show
its statistically supported results (Section 4). The answers to our research questions are provided and discussed in Section 5.
Section 6 brings our paper to a conclusion.

2 BACKGROUND

In this section, we first give an overview of related work. Subsequently, we present the three estimation methods (Planning
Poker, Bucket System, and Affinity Estimation) that we used in our study.

2.1 Related work
Not all people possess the same level of competence. This claim seems so self-evident that it barely needs to be stated. However,
in the area of software development, researchers only relatively recently began to address it. One of the first studies to quantify
the differences in competence between the developers working on the same project was carried out by Bryan10. By keeping
track of the performance of the programmers involved in a large project over several years, he noted that the top programmer
(out of 200) resolved as many as 8% of all problems and the top 27% of programmers accomplished 78% of all tasks.

Even more time had to pass before researchers recognized developers’ competence as a factor that affects not only bare
productivity (i.e., the time required to deliver a certain software artifact) but also the ability to produce a (rough) estimate of
software effort, i.e., the expected time (in terms of hours or person-hours) to produce an artifact. For example, van Genuchten11

identified 15 reasons why software projects are often late, but developers’ competence was overlooked. Incidentally, as per his
study, the most important reason is underestimating the project’s complexity. Lederer and Prasad12, who also posed the question
as to why deadlines in software industry are so often overstepped, pointed their fingers to project managers (poor organization).
However, Lederer and Prasad did mention competence, albeit indirectly: they listed the managers’ ‘inability to anticipate skills
of project team members’ as one of the problems contributing to suboptimal organization.
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Basten and Sunyaev13 were probably among the first to explicitly identify developers’ competence as a factor that influences
the accuracy of software effort estimates. Lenarduzzi14 compiled a similar list, although her survey placed ‘competence level’
at a rather low position (as the 11th most important factor out of 14). Kuan15 incorporated competence into a linear regression
model to predict software effort.

Psychologists had been probably posing questions regarding competence long before the advent of computing revolution, but it
was not before 2000 that Kruger and Dunning in their seminal paper16 analyzed the relationship between a person’s competence
and their ability to estimate their own competence (which, as we shall see later, is related to the ability to estimate the complexity
of tasks in general). Kruger and Dunning discovered what was to become the Dunning-Kruger effect: that unskilled persons tend
to overestimate their abilities, and the reason for that is what they called ‘double curse’ — that it is the very lack of competence
that deprives the unskilled of recognizing their own lack of competence! Incidentally, Kruger and Dunning found out that the
skilled, by contrast, tend to (somewhat) underestimate their abilities relative to others, but for a different reason — they found
the problems that they had to solve as part of the study easy and consequently thought that they should appear easy to other
participants as well.

Naturally, there have been challenges to Kruger’s and Dunning’s breakthrough study. For example, Krajc and Ortmann17

raised a few questions regarding methodological soundness and offered four alternative explanations for the Dunning-Kruger
effect. One of the explanations was that the unskilled find it harder to position themselves relative to others because of the lack
of proper feedback (considering that in the era of grade inflation18 a student barely ever receives negative feedback, it is difficult
for him/her to determine where he/she stands). Nevertheless, the main claims stated by Kruger and Dunning remain to be valid
to this day, and several issues pointed out by Krajc and Ortmann were resolved in the study of Ehrlinger et al.19.

Simons20 carried out a similar study on poker players, noting that the unskilled tend to overestimate their abilities even if
they know how good they are in relation to others, i.e., even if they are, in psychological parlance, calibrated. As suggested by
Simons, this is due to the will-do-better-this-time effect: many people may attribute their lack of success to bad luck or other
circumstances beyond their control and thus naturally hope that these factors will sooner or later turn into their favor. Through
a meta-analysis based on a thorough review of studies dealing with a person’s ability to assess their own competence, Zell and
Krizan21 found out that ‘people have only moderate insight into their abilities’, thus confirming the Dunning-Kruger effect.

How are these psychological findings related to software effort estimation? An answer to this question was provided by Jør-
gensen et al.22. In their study, the participants were asked first to estimate the time required to complete each of four smaller
and four larger software projects individually and then to implement the projects. By measuring, for each participant, the actual
time they spent to complete each of the projects, Jørgensen et al. came to a conclusion that the lower-skilled do not only under-
estimate the complexity of larger projects (as predicted by the Dunning-Kruger effect) but also overestimate the complexity of
smaller projects, which they termed ‘inversed Dunning-Kruger effect’. However, while seemingly inconsistent with the findings
of Kruger and Dunning, this is in fact not the case: the lower-skilled, having poor insight into their abilities, simply have trou-
ble grasping the complexity of their task, and this also holds true when the task is in fact easier than it appears at the time it is
assigned to them.

One may argue that the accuracy of software effort estimates depends on their type; for instance, that it is harder to predict
the amount of work using absolute estimates (in terms of hours or person-hours) than it is with relative estimates (in terms of
story points), or vice versa. However, Jørgensen and Escott23 dispelled all doubts: they found out that relative estimates are no
more accurate, no less time-consuming, and no more person-independent than absolute estimates.

To conclude this section, let us mention a few other related studies. Salamea and Farré24 measured how developer factors
(experience, among others) affect the amount of ‘technical debt’ (bugs, code smells, etc.) introduced into the code. Surprisingly,
they found out that the quantity of technical debt is positively correlated with experience. However, they defined experience as
the length of time that the developer had been working on the project, rather than as prior experience, as we do. Jørgensen25

showed that the accuracy of estimates depends on how the question asking to provide an estimate is formulated. In particular, it
is better to ask the project manager to determine how likely it is for the project to take more (or less) than a given amount of time
than to ask them to provide an interval that, with a given percentage of confidence, includes the actual duration of the project.

2.2 The estimation methods
In this section, we present our three estimation methods of choice in more detail. Although all of them were designed to be
used in conjuction with agile software development processes, they are not limited to them; in fact, they could be used for
any type of effort estimation. However, all three methods assume that a project to be estimated is divided into well-delineated
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functionalities called user stories. In the context of software development, a user story typically takes the form ‘A [user role]
can [a functionality].’ All three methods also assume the existence of a product owner, a person who represents the project and
is ready to answer any questions that may arise during the estimation process.

Planning Poker4,6. First, a set of cards to represent the user stories has to be prepared. The cards are shuffled, arranged into a
pile, and placed face-down on a table. After that, each team member receives a set of cards with grades from a Fibonacci-
like sequence (e.g., 0.5, 1, 2, 3, 5, 8, 13, 20, 40 . . . ), where each unit represents a single story point (which itself represents
6 hours of uninterrupted work). Following this initial phase, the estimation process runs as follows. In each iteration, a
team member picks the next user story card from the pile and turns it around so that it is visible to everyone. Each team
member then independently selects a grading card from his/her hand that (in his/her opinion) best represents the difficulty
of the story and places the card on the table. If all the members have picked the same grade, they assign that grade to
the story and immediately move on to the next user story; otherwise, the member(s) who chose the highest grade and the
one(s) who chose the lowest have to justify their decision, and the voting procedure repeats until they reach consensus.
The estimation process is finished once all user stories have been graded.

Bucket System8. Again, the user stories are represented by cards. The team members first divide the estimation area into
buckets labeled by a Fibonacci-like sequence. After that, they pick a user story that is considered neither extremely easy
nor extremely hard and place it into the middle bucket. Following that, they pick two more user stories at random and
place them relative to the first story. At this point, upon discussion, the team might reposition any subset of these three
user stories, which will constitute the ‘backbone’ for the rest of the estimation process.
In the next phase, each team member receives approximately the same number of the remaining user story cards. Taking
turns, the members silently, without any discussion, place their cards relative to the cards that have already been positioned.
In the last phase, any team member may initiate a discussion regarding the placement of a card. The card may be moved
only if all members agree with such a step. Once everyone is satisfied with the placement of the cards, the estimation
process is finished.

Affinity Estimation9. At the beginning, every team member receives approximately the same share of the cards that represent
the user stories. The team members, taking turns, then silently place their cards on the table. The 𝑥-coordinate of a card
indicates its relative difficulty: the cards to the left are considered easier than those to the right. (In contrast to Bucket
System, the placement of the cards is not constrained by buckets.) If a member feels unable to place the current card,
he/she may place it on a designated pile away from the voting area.
In the next phase, the members may reposition some cards if they feel so. However, before making a change, the member
has to discuss it with the other members. Once the process stabilizes, the cards are placed into buckets that represent story
points. The cards themselves are not moved; rather, borders are drawn around them to delineate the buckets.
In the last phase, the members may select a set of cards and discuss each of them separately. If necessary, a card may be
moved to a different bucket. This phase ends once all the cards in the set have been discussed.

In summary, Planning Poker emphasizes the individual difficulties of the user stories, while Bucket System and Affinity Esti-
mation focus predominantly on the stories’ relative difficulties. In Planning Poker, the team spends most of the time estimating
and discussing the effort required to complete each individual user story. In the other two methods, however, most of the time
is devoted to positioning the individual user stories relative to the others; their absolute difficulties are less important.

3 METHODOLOGY

Our study was conducted on the students of a graduate-level software engineering course at the University of Ljubljana, Faculty
of Computer and Information Science. This course has been characterized by project-based learning26,27,28 ever since its incep-
tion. Every year, the students form small teams and complete a software project using agile software development methods29,30.
Our study did not disrupt the learning process in any way; the students worked on a software development project in the same
manner as their predecessors in the years prior to our study. Since effort estimation has always been considered an indispensable
part of our projects, the study placed minimal additional burden to the students’ regular work. In particular, they were asked to
perform effort estimation using three different methods rather than just one, to record the duration of the estimation process for
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each method separately, and to keep track of the actual effort (i.e., time) required to complete individual functionalities (user
stories) of the project.

Let us now describe our study in more detail. The students were grouped in estimation teams of three or four members.
Each team had the same assignment, i.e., to develop a part of a web-based application for project management which consisted
of 24 different functionalities (e.g., adding new users, adding new projects, creating a new sprint, user stories confirmation,
maintaining user accounts, completing tasks, etc.). The teams followed the Scrumban development approach to monitor and
direct their effort31,32. The teams worked on a project divided into four iterations that together lasted 14 weeks. All iterations
included user story effort estimation, decomposition of user stories into tasks, work on tasks, daily stand-ups, and an iteration
review. Before starting the first iteration, the teams received the descriptions of the application’s functionalities in the form of
user stories. To enable the students to experience different team environments, the students changed teams before the start of
each iteration.

We used the average of all grades that the student obtained during his/her study on the study program to assess his/her
competence level. To provide a solid overview of student proficiency in computer science, the study considered only those
students who received at least five grades, i.e., 27 students. Based on these students’ average grades, we calculated the average
and the variance of grades of team members for each team.

At the beginning of each iteration, the teams estimated the development effort for all 24 user stories and then started to
develop six selected user stories. The actual development time of each team for the six user stories was recorded to determine
the estimations’ accuracy using the balanced measure of relative error (BRE)33:

BRE =
|actual effort − estimated effort|

min(actual effort, estimated effort)
. (1)

BRE evenly balances overestimation and underestimation and is used in many comparable studies33,34,35. Additionally, the time
that each team needed to perform effort estimation (EET) was recorded.

Together, for six user stories, seven teams, and four iterations, we obtained 168 evaluations of BRE and EET for each estima-
tion method. We divided these evaluations into two equal groups (each having 84 members) based on median average grade of
teams (median = 8.242), namely low-competence teams group (LCG) and high-competence teams group (HCG). We compared
the two groups to detect any significant differences in BRE and EET for the three estimation methods. Additionally, we divided
BRE and EET evaluations into two different equal groups (again each having 84 members) based on median variance in aver-
age grade of teams (median = 0.335), namely homogeneous competence teams (HOCG) and heterogeneous competence teams
(HECG). Again, we compared the two groups to detect any significant differences in BRE and EET for the three estimation
methods.

As the kurtosis and skewness of BRE and EET indicated a non-normal distribution, we used the non-parametric Mann-
Whitney test for both comparisons (low- and high-competence teams and homogeneous and heterogeneous competence teams).

4 RESULTS

The main results are presented in Tables 1–8. Tables 1–4 show the key descriptive statistics regarding BRE and EET for low-
and high-competence team groups and for homogeneous and heterogeneous competence team groups. These four tables provide
descriptive statistics separately for each of the three evaluated estimation methods, namely Planning Poker (PP), Bucket System
(BS), and Affinity Estimation (AE). The statistics are provided for each group by estimation method and include group size
(N), mean, median, standard deviation, variance, skewness, standard error of skewness, kurtosis, standard error of kurtosis, and
range.

Tables 5–8 show the results of the Mann-Whitney U-test regarding BRE and EET for low- and high-competence team groups
and for homogeneous and heterogeneous competence team groups. The results are provided separately for each estimation
method. The tables’ columns show the following values: group size (N), mean rank (MR), sum of ranks (SR), Mann-Whitney U
(U), Wilcoxon W (W), Z score (Z), and 2-tailed P-value (P). Significant differences between two specific groups are indicated
by p-values of 0.05 or smaller.

The results show that, regardless of the employed estimation method, there is no significant difference in estimations’ accuracy
(BRE) either between low- and high-competence teams or between heterogeneous and homogeneous teams. However, there
are significant differences in effort estimation time (EET) between low- and high-competence teams (for all three estimation
methods) and between heterogeneous and homogeneous teams (for Bucket System and Affinity Estimation). In particular, for all
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Table 1 Descriptive statistics regarding BRE — estimation accuracy as balanced measure of relative error

LCGa HCGb

PP BS AE PP BS AE

N 84 84 84 84 84 84
Mean 1.29 1.75 1.71 1.06 1.20 1.34
Median 0.68 0.84 1.02 0.67 0.71 0.80
Std. deviation 1.70 2.22 1.95 1.26 1.65 1.52
Variance 2.88 4.91 3.80 1.58 2.72 2.30
Skewness 3.11 2.32 2.25 2.41 3.61 2.35
Std. error of skewness 0.26 0.26 0.26 0.26 0.26 0.26
Kurtosis 13.33 6.30 6.32 6.82 17.29 5.92
Std. error of kurtosis 0.52 0.52 0.52 0.52 0.52 0.52
Range 11.00 11.00 11.00 7.00 11.00 7.14

aLow-competence teams group (team average grade < 8.242)
bHigh-competence teams group (team average grade ≥ 8.242)

Table 2 Descriptive statistics regarding BRE — estimation accuracy as balanced measure of relative error

HOCGa HECGb

PP BS AE PP BS AE

N 84 84 84 84 84 84
Mean 1.17 1.71 1.59 1.18 1.24 1.46
Median 0.50 0.92 0.94 0.71 0.69 0.84
Std. deviation 1.47 2.15 1.87 1.52 1.75 1.63
Variance 2.16 4.62 3.49 2.32 3.05 2.67
Skewness 2.19 2.52 2.52 3.81 3.21 2.09
Std. error of skewness 0.26 0.26 0.26 0.26 0.26 0.26
Kurtosis 5.14 7.57 8.25 20.62 13.38 4.10
Std. error of kurtosis 0.52 0.52 0.52 0.52 0.52 0.52
Range 7.00 11.00 11.00 11.00 10.98 7.58

aHomogeneous competence teams group (variance in team average grade < 0.335)
bHeterogeneous competence teams group (variance in team average grade ≥ 0.335)

three estimation methods, high-competence teams needed significantly less time to perform effort estimation (EET) than low-
competence teams, while there was no significant difference in accuracy (BRE). Similarly, heterogeneous competence teams
needed significantly less time to perform effort estimation (EET) than homogeneous competence teams without significant
difference in accuracy (BRE), but only for Bucket System and Affinity Estimation, while there was no significant difference in
EET for Planning Poker.

5 DISCUSSION

As can be inferred from the statistical analysis presented in Section 4, the high-competence teams produced neither significantly
better nor significantly worse effort estimates than the low-competence ones, regardless of which estimation technique was em-
ployed. In other words, referring to RQ1 (Section 1), competence does not affect the accuracy of effort estimation in a statistically
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Table 3 Descriptive statistics regarding EET — the time (in minutes) that each team needed to perform effort estimation

LCGa HCGb

PP BS AE PP BS AE

N 84 84 84 84 84 84
Mean 29.00 19.14 19.36 26.50 15.50 13.71
Median 27.00 17.50 16.50 21.50 16.50 13.50
Std. deviation 11.86 7.13 8.68 14.89 5.41 6.42
Variance 140.68 50.87 75.27 221.60 29.31 41.27
Skewness 1.35 0.27 1.10 2.01 0.15 0.42
Std. error of skewness 0.26 0.26 0.26 0.26 0.26 0.26
Kurtosis 2.00 −1.04 0.67 3.91 −1.23 −0.65
Std. error of kurtosis 0.52 0.52 0.52 0.52 0.52 0.52
Range 47.00 23.00 33.00 61.00 17.00 23.00

aLow-competence teams group (team average grade < 8.242)
bHigh-competence teams group (team average grade ≥ 8.242)

Table 4 Descriptive statistics regarding EET — the time (in minutes) that each team needed to perform effort estimation

HOCGa HECGb

PP BS AE PP BS AE

N 84 84 84 84 84 84
Mean 28.50 18.29 19.57 27.00 16.36 13.50
Median 25.00 17.50 19.00 25.00 14.50 14.50
Std. deviation 15.26 6.07 9.29 11.46 6.94 5.27
Variance 232.88 36.79 86.27 131.42 48.23 27.72
Skewness 1.53 0.62 0.57 1.92 0.42 0.82
Std. error of skewness 0.26 0.26 0.26 0.26 0.26 0.26
Kurtosis 2.34 −0.26 0.19 3.95 −0.99 0.91
Std. error of kurtosis 0.52 0.52 0.52 0.52 0.52 0.52
Range 61.00 21.00 36.00 48.00 23.00 21.00

aHomogeneous competence teams group (variance in team average grade < 0.335)
bHeterogeneous competence teams group (variance in team average grade ≥ 0.335)

significant way. A similar conclusion can be drawn when considering variance in competence (RQ2): the homogeneous teams
did not fare significantly better or worse than the heterogeneous ones, and this, again, holds for all three estimation methods.

These results indicate that all three estimation methods employed in our research, i.e., Planning Poker, Bucket System, and
Affinity Estimation, are robust to deviations in competence. In this respect, all three methods are equivalent. However, they are
not equivalent in terms of time demands: Bucket System and Affinity Estimation require considerably less time than Planning
Poker. Based on these results, we may therefore recommend that software development teams pick either Bucket System or
Affinity Estimation as their method of choice. Considering the fact that these two methods, in contrast to Planning Poker, seem
to be virtually unknown (judging by the scarcity of papers and other credible resources), this conclusion came to us as a true
surprise.

Naturally, robustness to (in)competence cannot be stretched indefinitely. One cannot expect that a team composed of complete
novices and a team with years of experience on demanding projects will produce effort estimates of comparable accuracy. After
all, the subjects of our study were first-year graduate (MSc) students, all of whom had at least some exposure to programming,
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Table 5 Mann-Whitney U-test (BRE — estimation accuracy as balanced measure of relative error)

N MRa SRb Uc Wd Z Pe

Planning Poker 3398 6968 −0.413 0.680
LCGf 84 86.05 7228
HCGg 84 82.95 6968
Total 168

Bucket System 3043 6613 −1.540 0.123
LCG 84 90.28 7584
HCG 84 78.72 6613
Total 168

Affinity Estimation 3191 6761 −1.071 0.284
LCG 84 88.52 7436
HCG 84 80.48 6761
Total 168

aMean rank
bSum of ranks
cMann-Whitney U
dWilcoxon W
eP-value (2-tailed)
fLow-competence teams group (team average grade < 8.242)
gHigh-competence teams group (team average grade ≥ 8.242)

many of whom had also completed a similar project as part of the undergraduate study, but hardly anyone could claim proficiency
on the level of a senior developer in a major software enterprise. Nevertheless, the difference between the most competent
subjects and the least competent ones was still readily discernible.

While we observed no significant differences between the high-competence and low-competence teams in terms of estimation
accuracy, this was not the case with the time required to perform estimation: the high-competence teams spent significantly less
time than the low-competence ones (RQ3). This may be explained by the Dunning-Kruger effect (and its inverse counterpart,
as introduced by Jørgensen et al.22), i.e., that the low-competent tend to lack insight into their capabilities. As a consequence,
some may overestimate themselves and consider a particular user story to be easier than it is, given their actual capabilities,
while others may underestimate their own capabilities and vote for a grade that is too high. All three methods are designed in
such a way that positive and negative deviations tend to level out, so a low-competence team is, ultimately, still likely to arrive
at estimates that roughly match their actual capabilities. However, in the presence of such oscillations, the estimation process
needs more time to stabilize. By contrast, the members of a high-competence team tend to know their capabilities better and
hence reach consensus more rapidly.

Our last research question (RQ4) also refers to the duration of the estimation process, but in connection with variance in com-
petence rather than competence itself. As shown by the statistical analysis, the teams labeled as heterogeneous spent significantly
less time than those labeled as homogeneous when the user stories were estimated using Bucket System or Affinity Estimation,
but no statistically significant differences were observed in the case of Planning Poker. Further research is probably needed to
explain this phenomenon adequately, but some ‘educated guesses’ can still be made. First, let us consider how Planning Poker
is structured. After each round of voting, the member(s) who picked the highest estimate and the one(s) who picked the lowest
have to justify their decision. Since it is somewhat unlikely that all team members cast the same vote on the first round (and
thus immediately proceed to the next story), the process of estimating a user story will typically consist of at least two rounds.
However, after the ‘outlying’ members have had their say at the end of round 1, it is quite possible that in the second round the
team will have reached consensus. The third round might sometimes also be necessary, but anything more is very unlikely. This
discussion implies that Planning Poker, with its more rigid structure and a high degree of compulsory conversation, might be
less sensitive to intra-team diversity than Bucket System or Affinity Estimation.

Another point to consider in our debate on homogeneous and heterogeneous teams and their estimation efficiency is the
internal structure of those teams. In homogeneous teams, the members are approximately equivalent. No member is likely
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Table 6 Mann-Whitney U-test (EET — the time (in minutes) that each team needed to perform effort estimation)

N MRa SRb Uc Wd Z Pe

Planning Poker 2826 6396 −2.233 0.026
LCGf 84 92.86 7800
HCGg 84 76.14 6396
Total 168

Bucket System 2610 6180 −2.921 0.003
LCG 84 95.43 8016
HCG 84 73.57 6180
Total 168

Affinity Estimation 2376 5946 −3.666 0.000
LCG 84 98.21 8250
HCG 84 70.79 5946
Total 168

aMean rank
bSum of ranks
cMann-Whitney U
dWilcoxon W
eP-value (2-tailed)
fLow-competence teams group (team average grade < 8.242)
gHigh-competence teams group (team average grade ≥ 8.242)

to stand out, either in a positive or in a negative direction. However, in heterogeneous teams, such members are much more
likely. It is thus reasonable to assume that a certain percentage of heterogeneous teams has a member who is distinctly more
competent than the other three. Such a member may be readily perceived as the true leader by the rest of the team and his/her
opinions automatically gain on importance. The rest of the team then tends to adapt to the leader’s decision, resulting in a quicker
consensus. Again, things are somewhat different in Planning Poker, which requires every ‘outyling’ member to justify his/her
decision, regardless of his/her status in the team.

Is our study consistent with the findings of Jørgensen et al. and, in turn, Kruger and Dunning? In contrast to Jørgensen et al.,
who observed that the low-competent underestimated larger projects and overestimated smaller ones, we did not find a significant
difference in estimation accuracy between the high-competence and low-competence teams. However, we did discover that the
high-competence teams performed the estimation process significantly faster than the low-competence ones. This can be at least
partially attributed to the Dunning-Kruger effect: the members of the high-competence teams tend to have a better idea about the
complexity of a given user story and hence their grades tend to be close to each other; as a result, the estimation process quickly
converges. On the other hand, the low-competent tend to assign a much wider range of grades to a user story. Consequently, the
estimation process takes a longer time to converge.

Software development projects similar to the one employed in our study are a common means to acquaint computer science
students with situations that await them in their future professional life. For this reason, the results presented in this paper might
benefit not only computing professionals but also teachers and students. From our study, we might infer that teams with a larger
variance in competence (i.e., heterogeneous teams) are preferable over those having a smaller variance, as they perform no
worse in terms of estimation accuracy but tend to be more efficient in the estimation process itself. One might also argue that
being part of a heterogeneous team benefits lower-competence members, as their position in the team encourages them to catch
up with their higher-competence counterparts. In addition, involvement in a heterogeneous team enhances social skills, both for
low-competence and high-competence members36.
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Table 7 Mann-Whitney U-test (BRE — estimation accuracy as balanced measure of relative error)

N MRa SRb Uc Wd Z Pe

Planning Poker 3262 6832 −0.844 0.399
HOCGf 84 81.33 6832
HECGg 84 87.67 7364
Total 168

Bucket System 2994 6564 −1.694 0.09
HOCG 84 90.86 7632
HECG 84 78.14 6564
Total 168

Affinity Estimation 3487 7057 −0.132 0.895
HOCG 84 84.99 7140
HECG 84 84.01 7057
Total 168

aMean rank
bSum of ranks
cMann-Whitney U
dWilcoxon W
eP-value (2-tailed)
fHomogeneous competence teams group (variance in team average grade < 0.335)
gHeterogeneous competence teams group (variance in team average grade ≥ 0.335)

6 CONCLUSION

We carried out a study with the purpose of determining the influence of individual competence on the accuracy of estimating a
software project and the time required to perform estimation itself. The subjects of our study were teams of three to four students
attending a graduate-level software engineering course at the Faculty of Computer and Infomation Science at the University of
Ljubljana. Each team independently used three methods (Planning Poker, Bucket System, and Affinity Estimation) to estimate the
time required to complete individual user stories of a web application project. Based on the average grade that the team members
received in ther undergraduate study, each team was classified either as a ‘high-competence’ team or as a ‘low-competence’
team. Besides that, the teams were categorized as ‘homogeneous’ or ‘heterogeneous’, depending on the variance in competence
of their members.

We discovered that there was no significant difference in the accuracy of effort estimation between the high-competence and
low-competence teams; both categories of teams achieved a similar quality of effort prediction, regardless of which estimation
method was in effect. Likewise, there was no significant difference in estimation accuracy between the homogeneous and het-
erogeneous teams. In view of these results, all three estimation methods may be regarded as equivalent in terms of robustness
to competence and deviations in competence. However, considering the fact that Bucket System and Affinity Estimation require
substantially less time to perform than Planning Poker, one may choose to prefer the former two to the latter.

In terms of the time required by the estimation process, the high-competence teams were significantly more efficient than
the low-competence ones. Furthermore, heterogeneous teams spent less time than the homogeneous ones when using Bucket
System or Affinity Estimation; for Planning Poker, no significant difference was observed. The first result can be at least partially
attributed to the Dunning-Kruger effect: the fact that the low-competent tend to have a worse insight into their capabilities
leads to more fluctuation during the estimation process, which, in turn, takes a longer time to complete. To adequately explain
the difference in estimation efficiency between the homogeneous and heterogeneous teams (for Bucket System and Affinity
Estimation) requires further research, but a possible factor might be the existence of a (perceived) ‘team leader’ in heterogeneous
teams. The rest of the team might (unconsciously) adapt to such a member, reducing the amount of communication and hence
the duration of the estimation process.

In our study, the competence of a team member and, in turn, a team as a whole was determined by academic performance. In an
academic environment, this factor is undoubtedly important, and its additional advantage is that it can be readily obtained from
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Table 8 Mann-Whitney U-test (EET — the time (in minutes) that each team needed to perform effort estimation)

N MRa SRb Uc Wd Z Pe

Planning Poker 3438 7008 −0.286 0.775
HOCGf 84 85.57 7188
HECGg 84 83.43 7008
Total 168

Bucket System 2898 6468 −2.004 0.045
HOCG 84 92.00 7728
HECG 84 77.00 6468
Total 168

Affinity Estimation 1800 5370 −5.499 0.000
HOCG 84 105.07 8826
HECG 84 63.93 5370
Total 168

aMean rank
bSum of ranks
cMann-Whitney U
dWilcoxon W
eP-value (2-tailed)
fHomogeneous competence teams group (variance in team average grade < 0.335)
gHeterogeneous competence teams group (variance in team average grade ≥ 0.335)

students’ transcripts. However, there are other, harder-to-measure factors that may also affect effort estimation but do not neces-
sarily correlate with academic performance37,14,38: social skills, domain-specific knowledge, experience with similar projects,
etc. An interesting direction for future research would thus be to investigate the influence of different types of competence on
effort estimation.
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