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Abstract

This work proposes a multi-target tracking and detection algorithm Focus-MOT based on feature refinement extraction fusion,

t through the designed Field Enhancement Refinement Module and Information Aggregation Module, which effectively reduces

the number of target ID switching.Jointly learns the Detector and Embedding model method becomes the mainstream of

multi-target tracking and detection due to its fast detection speed, its Re-ID branch needs to use low-dimensional features and

high-dimensional features to accommodate both large and small targets, however, its insufficient feature extraction leads to

high ID SW. Therefore this work aims to extract features of different levels for aggregation as a way to reduce the number of

ID switching. The experimental results show a 2.7% improvement in MOTA and a 2300 times decrease in ID SW relative to

the results of the FairMOT algorithm on the MOT17 dataset.
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Abstract This work proposes a multi-target tracking and detection algorithm Focus-MOT based on feature
refinement extraction fusion, t through the designed Field Enhancement Refinement Module and Information
Aggregation Module, which effectively reduces the number of target ID switching.Jointly learns the Detector
and Embedding model method becomes the mainstream of multi-target tracking and detection due to its fast
detection speed, its Re-ID branch needs to use low-dimensional features and high-dimensional features to
accommodate both large and small targets, however, its insufficient feature extraction leads to high ID SW.
Therefore this work aims to extract features of different levels for aggregation as a way to reduce the number
of ID switching. The experimental results show a 2.7% improvement in MOTA and a 2300 times decrease
in ID SW relative to the results of the FairMOT algorithm on the MOT17 dataset.

Introduction: Deep learning based multi-target tracking and detection methods can be generally classified
into Tracking-By-Detection (referred to as TBD paradigm) and Jointly learns the Detector and Embedding
model (referred to as JDE paradigm).The TBD paradigm is represented by Faster R-CNN as the detector
of Sort, DeepSort algorithm, MOTDT algorithm, etc. [1-3]. Since the TBD paradigm treats feature vector
acquisition and target detection as two separate models and features are not shared, both parts require
separate computation time, and the total time is the sum of both, resulting in a lot of time wastage. In
contrast, the JDE paradigm uses a single network to fuse target detection and embedding learning, extracts
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Re-ID features while target detection, and reduces repeated computational inference by sharing features,
thus improving the time efficiency of the model while maintaining the same accuracy as the TBD paradigm.
For example, Fair-MOT and TADAM algorithms that improve the JDE paradigm [4-6].

The JDE paradigm relies on the feature extraction of the backbone network for recognition tracking, and
the degree of its extraction seriously affects the detection tracking accuracy.

Focus-MOT improves the feature extraction and fusion strategy under the single network multitasking model,
and adopts the JDE paradigm to design the Field Enhancement Refinement Module and Information Ag-
gregation Module, aiming at extracting features of different levels for aggregation through the backbone
network. in order to reduce the number of ID exchanges and pursue a balanced progress between detection
speed and accuracy.

Focus-MOT’s network structure

Figure 1 shows the proposed network structure of Focus-MOT. Focus-MOT uses Res2Net-50 [7] as a backbone
network to increase the perceptual field of the network layers by constructing hierarchical residual class
connections within a single residual block. The input image is normalized to 3*608*1088, and five-layer
feature maps with sizes of 64*304*544, 256*152*272, 512*76*136, 1024*38*78, and 2048*19*39 are obtained
through the backbone network, and the obtained five-layer feature maps are enhanced by the designed Field
Enhancement Refinement Module to expand the perceptual field of the high-dimensional features, while
completing the refinement of the features from the spatial dimension and the channel dimension, and then
through the Information Aggregation Module, the bottom-up feature fusion from the high level to the low
level, completing the information interaction between the high level semantic information and the low level
detail information.

Fig 1 The network structure of Focus-MOT.

Figure 2 shows the network of Field Enhancement Refinement Module. The Field Enhancement Refinement
Module first goes through five parallel modules: adaptive pooling, 3×3 convolution with hole rates of 6, 8,
and 12, and 1×1 convolution, respectively, and then stitches them together so that multi-scale information
can be captured while expanding the feature map sensory field. And after completing such an operation,
we design two parallel modules to capture rich contextual relationships to better achieve compact feature
representation within the class.

First is the branch above, A is the feature map of the input parallel module with size C × H × W. First,
A is subjected to a convolution operation to obtain new feature maps B, C (B = C, size C × H × W), and

2
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then BC are reshape to the size of C × N, where N = H × W. B is transposed and multiplied with C, and
the obtained result is then subjected to a softmax operation to obtain the feature map S of size The sum of
each row in S is 1. s ji can be interpreted as the weight of pixel at position j to pixel at position i, i.e., the
weight of all pixels j to a fixed pixel i is 1.

sji =
exp (Bi · Cj)∑N
i=1 exp (Bi · Cj)

Meanwhile, A is subjected to another convolution operation to obtain the feature map D (of size C × H ×
W), with the same reshape of size C × N. Multiply it with the transpose of S to get the result map of size
C × N, and then reshape it back to size C × H × W, multiplying it by a coefficient γ. Finally, add it to A
to get the final feature map result E incorporating location information. where γ is a weight parameter to
be learned, with an initial value of 0.

Ej = γ

N∑
i=1

(sjiDi) +Aj

Such a branch is able to build rich contextual relationships on local features, encoding broader contextual
information into local features and thus enhancing their representational power.Then comes the next branch,
where we argue that the channel graph of each high-level feature can be regarded as a class-specific response,
and by mining the interdependencies between channel graphs, the interdependent feature graphs can be
highlighted and the semantics-specific feature representation can be improved. Therefore, this branch of
the paper aims at building a channel attention module to explicitly model the dependencies between chan-
nels.Similar to the previous branch, except that instead of performing a convolution operation on the feature
map A, the operation is performed directly on A. Similarly, A is reshaped to a size of C × N, denoted as
B, and then B is multiplied with its own transpose and then subjected to a softmax operation to obtain a
feature map X of size C × C.

xji =
exp (Ai ·Aj)∑C
i=1 exp (Ai ·Aj)

The transpose of X is multiplied by B and then reshape back to the size of C×H×W, multiplied by a factor
β, denoted as D. Adding A to D gives the final feature map E with fused channel information. β also has an
initial value of 0.

Ej = β

C∑
i=1

(xjiAi) +Aj

After the input features are processed by these two parallel branches, the two feature maps are added element
by element to complete the fusion of the two feature maps, and the 1×1 convolution is used to reduce the
dimensionality, so that the whole Spatial Fusion module can enhance the fusion of the low-level features.

After completing this series of operations, we up-sample the high-level features one by one by the designed
Information Aggregation Module, and each up-sampling will be added element by element with the feature
maps of the same resolution output by Res2net-50, and then the final four feature maps will be output.
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Fig 2 Field Enhancement Refinement.

Focus-MOT has four loss functions, which correspond to the loss hm loss for heatmap, wh loss for boxsize,
off loss for offset, and id loss for Re-ID. for hm loss, we use the MSE loss function to calculate; for wh loss, we
use the L1 loss function to calculate; for off loss, we use the multivariate cross-entropy function to calculate.
use the L1 loss loss function to calculate; for off loss, we use the L1 loss function to calculate, and for Re-ID
loss we use the multivariate cross entropy function to calculate.

Then the total loss is:

loss = hm loss + wh loss + off loss + 0.1× id loss

Focus-MOT uses the training set provided by the six datasets MOT17, Caltech, Citypersons, Cuhksysu,
PRW, and ETH, and the test set of MOT15 and MOT17 is used for testing [8-12].

Experiment

Normalize all the input images to 608×1088, with an initial learning rate of 0.0001, and a batchszie of 4.
Using the Adam optimizer, the learning rate decays to one percent of the initial learning rate after 100
epochs.

Figure 3 shows a visual display of the experimental results of Focus-MOT on MOT17 versus MOT15 datasets.
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Fig 3 MOT17 and MOT15 data set results show.

We selected four types of evaluation metrics, MOTA, IDF, ID SW, and FPS, to evaluate Focus-MOT and
compare it with the methods in recent years, and the metric values are all from the published values of
their papers, which have considerable objectivity. By comparing the results, the total number of ID SW of
Focus-MOT on MOT15 dataset is 356 times. On the MOT17 dataset, the total number of IDs is 568, both
of which are the methods with the least ID SW.

Table 1. Comparison of test results for MOT15 dataset.

MOTA IDF1 FPS ID SW

MDP SubCNN 47.5 55.7 628 <1.7
AP HWDPL 53.0 52.2 708 6.7
Rar15 56.5 61.3 428 <3.4
FairMOT* 59.0 62.2 582 25.9
SFP-JDE* 48.1 60.9 626 8.7
Focus-MOT 52.7 67.4 356 6.73

* The marked * is the algorithm that takes the JED paradigm.

Table 2. Comparison of test results for MOT17 dataset.

MOTA IDF1 FPS ID SW

SST 52.4 49.5 8431 <3.9
TubeTK* 63.0 58.6 4137 3.0
CenterTrack* 67.8 64.7 2583 17.5
FairMOT* 67.5 69.8 2868 25.9
TransCenter* 58.5 - 4659 -
Focus-MOT 70.2 76.0 568 7.75

* The marked * is the algorithm that takes the JED paradigm.

Ablation experiments

A detailed ablation experiment was conducted to verify the role and magnitude of each module of Focus-
MOT. The hyperparameters and environment of the ablation experiments are consistent with those described
previously, and the test analysis is performed on the MOT15 dataset with the design shown below:A: Parallel
module without expanded feature map perceptual fields in Field Enhancement Refinement Module;B: Field
Enhancement Refinement Module without the dual attention module in the Field Enhancement Refinement
Module;C: Without Information Aggregation Module, the features in Field Enhancement Refinement Module
are upsampled and summed with the fourth layer features and output.

Table 3. The results of the ablation experiments .

A B C MOTA↑ IDF1 IDs FPS

× [?] [?] 47.3 57.7 543 7.5?¿?
× [?] 46.2 54.8 572 9.2?¿?
[?] × 48.7 60.6 445 8.2?¿?
[?] [?] 52.7 67.4 356 6.73
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From the results of the ablation experiments, it can be seen that increasing the perceptual field and refining
the filtering of features in spatial and channel dimensions can bring different gains to the accuracy of multi-
target tracking from different perspectives, while the bottom-up fusion in the information aggregation module
can fully fuse the low-level information with the high-level information, which is also the place where the
model gains the most.

Conclusion: Focus-MOT takes the extraction and fusion of features at different scales as the main direction,
which retains more effective feature information and effectively reduces the number of ID switching during
model tracking. Field Enhancement Refinement Module and Information Aggregation Module are proposed
to improve the network’s ability to extract key features of the target and enhance the model’s effect of
extracting features under different sensory fields. Moreover, it can effectively improve the tracking ability
when the target scale is small and the targets overlap, and effectively improve the accuracy of model detection
and tracking. The experimental results show that the method has a strong comprehensive performance by
effectively reducing the number of ID switching at a higher MOTA.
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