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Abstract

The segmentation of histopathological images is an important problem in the field of medical image processing. However, the

high cost of manual annotation and the lack of large-scale annotated data are important factors that restrict the application of

deep learning methods in this field. To overcome these challenges, we propose a two-stage weakly supervised semantic segmen-

tation model based on pathological tissue relationships. Our framework leverages the potential relationships between various

tissues in histopathological images through a similar Graph Parsing Attention Mechanism to improve segmentation performance.

At the segmentation stage, we validate the effectiveness of our cyclic pseudo-mask strategy for denoising and segmentation, and

further enhance segmentation performance through multi-resolution supervision. Our model exhibits advanced performance on

both BCSS and LUAD histopathology datasets, demonstrating the superiority of our framework. The contribution of our paper

lies in the introduction of prior knowledge about the potential relationships between tissues into the weakly supervised semantic

segmentation domain, which realizes high-quality histopathological image segmentation on small sample datasets. Moreover,

we propose novel strategies such as cyclic pseudo-masks and multi-resolution supervision to improve segmentation performance.

Our framework has significant application value and theoretical significance, providing accurate diagnostic support for doctors.
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Abstract

The segmentation of histopathological images is an important problem in the field
of medical image processing. However, the high cost of manual annotation and the
lack of large-scale annotated data are important factors that restrict the application
of deep learning methods in this field. To overcome these challenges, we propose
a two-stage weakly supervised semantic segmentation model based on pathologi-
cal tissue relationships. Our framework leverages the potential relationships between
various tissues in histopathological images through a similar Graph Parsing Atten-
tion Mechanism to improve segmentation performance. At the segmentation stage,
we validate the effectiveness of our cyclic pseudo-mask strategy for denoising
and segmentation, and further enhance segmentation performance through multi-
resolution supervision. Our model exhibits advanced performance on both BCSS
and LUAD histopathology datasets, demonstrating the superiority of our framework.
The contribution of our paper lies in the introduction of prior knowledge about the
potential relationships between tissues into the weakly supervised semantic segmen-
tation domain, which realizes high-quality histopathological image segmentation on
small sample datasets. Moreover, we propose novel strategies such as cyclic pseudo-
masks and multi-resolution supervision to improve segmentation performance. Our
framework has significant application value and theoretical significance, providing
accurate diagnostic support for doctors.

KEYWORDS:
Histopathological Images; Weakly Supervised Semantic Segmentation; Image-level Labels; Denoising
processing

1 INTRODUCTION

Computer-aided pathology diagnosis1 combines computer vision techniques and digital pathology technology to simulate the
diagnostic process of doctors on pathological images, quantitatively analyze pathological images, and provide references for
pathologists. However, computer-aided pathology diagnosis only uses computer technology as an auxiliary means, and the final
decision is still made by pathologists. The purpose of assisted diagnosis is to improve the efficiency of pathological diagnosis
and alleviate the problem of insufficient pathological diagnosis resources. Therefore, to alleviate the pressure of computational

†This is an example for title footnote.
0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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histopathology, the use of patch-level label supervision, scribbled2, and other weakly supervised semantic segmentation3 meth-
ods have attracted attention in the field of computational pathology. In the case of sparse supervision, generating more dense
label data is crucial for pre-training pixel-level labels. A common approach is the two-stage framework4: first, generate pseudo-
pixel labels from training data through classification networks5 and other means, and then use the generated pseudolabels as
training labels to input and train a segmentation network6. At this point, the segmentation network is directly used, unrelated to
the classification network. It can be seen that the quality of the generated pseudo-pixel labels directly affects the performance
of the final segmentation model. Therefore, improving the effectiveness of generating pseudo-pixel labels has become a very
important issue.
Based on the characteristics of weakly supervised semantic segmentation and histopathological image segmentation, and

considering the bottleneck problem of improving the quality of pseudo-labels in the two-stage weakly supervised semantic
segmentation based onClassActivationMapping (CAM), we found the following issues: First, the image-levelmulti-label binary
vector7 contains limited information, and how to maximize the value of this sparse labeling becomes a key issue. Second, there
is a significant information gap from image-level labeling to pixel-level labeling via CAM, and there will be some interference
of noise. Especially in cancer pathology images, the problem is amplified due to the relatively random spatial arrangement of
different tissue types8, as shown in Figure 1 (a)(b).Most importantly, tumors9 are heterogeneous tissues with different cell types,
including cancer cells, fibroblasts, and lymphocytes, and tumor morphological features are critical for diagnosis and prognosis.
However, histopathological types10 reflect different biological cytological features and differ in growth patterns, tumor volume,
morphology, and surrounding tissue relationships five-one. The relationship between the underlying molecular events11 and
tumor morphology and genetics remains unclear, as shown in Figure 1 (c). Existing studies such as pathologic ultrasound signs
and grading of pathologic histologic types suggest12,13,14 that there is some association between pathologic tissues. Therefore,
studying the tissue relationships around pathological tissue types is crucial for the classification and segmentation of pathological
tissue types.

(a) (b) (c)

FIGURE 1 The comparison of (a) and (b) shows that the pseudo-label generated by CAM creates information gaps with the
standard, which adversely affects the segmentation performance. The three color lines in (c) indicate the boundaries of the three
tissues, but their boundaries are blurred and poorly related.

The focus of our research in this paper is on the targeted design of the classification model to generate higher-precision
pseudo-labels before generation, as well as post-processing to denoise the generated pseudo-labels to improve their quality and
input them into the segmentation model. We use weakly supervised learning with patch-level image labels to reduce annotation
work. In the classification stage, we designed a class-specific parsing attention mechanism that enables the neural network
to learn the potential relationships between various tissues in histopathological images from sparse patch-level image labels.
Meanwhile, we adopted a multi-resolution supervision strategy. In the training of the segmentation model, we proposed a cycle-
weighted suppression strategy to suppress the loss of noisy labels in the pseudo-mask to effectively utilize the pseudo-mask,
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and the strategy can suppress the loss of noisy labels in the pseudo-mask. Finally, we evaluated the model on a validation
dataset. We cyclically updated the mask when the model’s prediction was better than the pseudo-mask, instead of using the fixed
pseudo-mask generated in the first step. We believe that these methods can effectively improve the accuracy and efficiency of
histopathological image segmentation, thus providing better support and services for the medical field.
In summary, our main contributions are as follows:

• In the classification stage, we propose a Similar Graph Parsing Attention Mechanism to enhance tissue features and model
potential relationships between tissues, thus improving the accuracy of histopathological image segmentation.

• In the segmentation stage, we adopt a multi-resolution supervision strategy and propose the Cycle-Weighted Suppression
strategy to effectively utilize pseudo-masks, suppress the influence of noisy labels, improve the quality of pseudo-masks,
and avoid the loss of noisy labels in pseudo-masks.

• Experimental results demonstrate that our proposed methods outperform state-of-the-art weakly supervised methods on
two segmentation tasks and are comparable to some fully supervised baselines.

The remaining sections of this paper are organized as follows: Section 2 surveys the current research status of histopathological
image segmentation and two-stage weakly supervised semantic segmentation based on class activation maps. Section 3 provides
a detailed introduction to the proposed algorithm framework, including the classification stage, segmentation stage, and the
connection between the two stages. Section 4 presents experimental training data, parameter settings, ablation experiment results,
and analysis. Finally, Section 5 summarizes the work of this paper and points out directions for future work.

2 RELATEDWORK

Histopathological image segmentation is an important task for the diagnosis, treatment, and prediction of tumor prognosis. In
order to alleviate the burden of annotation, researchers have recently explored various techniques to improve weakly supervised
semantic segmentation based on CAM. In Section 2.1, we introduce the research status of histopathological image segmentation.
In Section 2.2, we introduce some two-stage weakly supervised semantic segmentation based on class activation maps and
analyze the obstacles used for histopathological image segmentation.Section 2.3 introduces the current applications of GNN in
information propagation for medical image processing.

2.1 Histopathological Image Segmentation
The tumor microenvironment (TME)15 in histopathological images includes surrounding blood vessels, immune cells, vari-
ous signaling molecules, and extracellular matrix (ECM), which are of great significance for the occurrence, development, and
metastasis of tumors, and play an important role in the diagnosis, prevention, and prognosis of tumors. However, due to the
heterogeneity of malignant tumors16, the same type of tumor may exhibit completely different morphologies, which makes it
difficult for those without solid clinical backgrounds to perform this task. The whole slide image (WSI)17provides global infor-
mation on the tumor microenvironment18, but WSI takes up a large amount of memory and requires high processing equipment,
so processing WSI into patches can meet memory limitations.In order to prepare sufficient manual labeling to train the network,
pathologists need to draw pixel-level labels on gigabytes of patches, which is very time-consuming. Recently, researchers have
attempted to reduce the high labeling burden using different techniques such as active learning19, rough segmentation through
patch-level classification20, semi-supervised learning21, and weakly supervised learning, including digital pathology22.
In histopathological image segmentation, Kurmi et al.23 proposed a content-based image retrieval algorithm for the recogni-

tion and extraction of cell nuclei, which is used for histopathological image segmentation and provides cell nucleus segmentation
in three cascading stages. Jun et al.24 proposed a novel histopathological image data augmentation strategy, which assisted a deep
attention feature fusion generative adversarial network (DAFF-GAN) to improve the effectiveness of cell nucleus segmentation.
Sun et al.25 proposed a gastric histopathological image segmentation (GHIS) method based on a hierarchical conditional ran-
dom field (HCRF) model, which can locate abnormal (cancerous) areas in gastric histopathological images to assist pathologists
in their medical work. Chen et al.26 proposed a novel end-to-end weakly supervised learning framework called WESUP, which
can perform accurate segmentation using only sparse point annotations and performs well in generalization. Li et al.27 proposed
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a multi-scale conditional GAN for generating and segmenting high-resolution, large-scale histopathological images, demon-
strating that synthetic images and their masks can be used to improve segmentation performance, especially in semi-supervised
scenarios.
However, there are still some challenges in digital pathology, such as tissue class imbalance28, limited labeled data, and noisy

labels29, which have a negative impact on performance in pathological recognition, reproducibility, and tissue classification. In
order to alleviate these critical issues of deep learning-based histopathological image data hunger, we can use image-level labels
instead of relying on expensive pixel-level labels or bounding box annotations.

2.2 Two-Stage Weakly Supervised Semantic Segmentation Based on Class Activation Maps
CAM provides discriminative object localization information30 and is therefore a natural choice to enhance weakly supervised
semantic segmentation models. A common approach is to pretrain a classification network for image classification and then
use the normalized31 CAM as pseudo-labels to train the segmentation network. However, CAM highlights the feature region of
each class rather than the global context, and partial activation may lead to unsatisfactory segmentation results. To solve this
problem, we can retrain the classification model to optimize the quality of CAM pseudo-labels, thus more accurately locating
the target segmentation area, or introduce techniques to improve the segmentation network to better adapt to the pseudo-labels.
Recent research has proposed some new techniques. Youngmin et al.32 proposed a new pooling method called BAP, which

uses bounding box annotations to generate high-quality pseudo-labels and proposes a noise-aware loss to train CNN for semantic
segmentation. Xie et al.33 introduced the powerful functionality of the contrastive language pre-training (CLIP) model and
designed a novel cross-lingual image matching framework for WSSS, generating high-quality class activation maps for each
category. Zhang et al.34 connected FCN and GCN through dynamic superpixel operations to achieve end-to-end training of
the FGNet model.Chikontwe et al35 proposed a weakly supervised histopathology segmentation framework by self-supervised
refinement of CAM to improve the performance of the segmentation model using only image-level labels.However, capturing
detailed targets with scattered, irregular, narrow, and indistinct cancerous features36 remains challenging when applying low-
resolution CAM localization maps to pathological images. In addition, the core calculations of CNN are mainly dependent
on convolutional operations37, aiming to increase the receptive field by fusing more spatial features or extracting multi-scale
spatial information. However, there may be multiple objects of interest in pathological images, and according to morphological
features38, there are certain relationships between these tissues, such as tumor epithelium with tumor-associated stroma, tumor-
associated stroma with lymphocytes, etc., which requires more operations to avoid false positives or negatives.

2.3 Application of Information Propagation Based on GNN
Despite the significant breakthroughs that CNN has achieved in the field of computer vision and image processing, it is still
limited by the size of the receptive field, especially for high-resolution organizational pathology image patches, which are more
likely to lead to the loss of global information. Graph Neural Networks (GNN) not only allow irregular receptive fields but also
explore the relationships between components in images by propagating contextual information from adjacent patch levels to
guide image segmentation.
In recent years, an increasing number of GNN-based methods have been applied to medical image analysis and processing.

Antonio et al.39proposed an end-to-end deep learning segmentation method for lung adenocarcinoma screening by combining
the 3D-UNet architecture with theGNNmodel and achieved good results. Chong et al.40 used superpixels as basic units andGNN
to learn brain tissue structure for brain tissue segmentation. Camillo et al.41proposed a Joint GNN-CNN network for the BrasTS
challenge. Similarly, Xiayu et al.42 proposed a cascade neural network based on optical coherence tomography angiography
(OCTA) for automatic segmentation and differentiation of retinal arteries and veins. Ping et al.43 proposed a multi-scale random
walk driven GNN to address the problem of fuzzy segmentation boundaries and large differences in CT volumes. For breast
cancer applications, Guillaume et al.44designed a supervised GNN based on multiscale images to predict binary classes for each
input image. It can be seen that combining GNN with CNN can perform better in fusing information and modeling relational
data and obtain better results on small datasets compared to directly using CNN. Therefore, we propose to apply the powerful
role of GNN to the segmentation of organizational pathology, modeling the potential relationships between tissues in pathology
image patches to improve the effectiveness of pathology image segmentation.
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3 METHODOLOGY

The quality of the pseudo-labels is crucial for the accuracy improvement of two-stage weakly supervised semantic segmentation
models based on CAM. We propose a model architecture as shown in Fig. 2 . In Section 3.1, we use a proposed class-attention
mechanism to train the classification network and generate pixel-level pseudo-masks. In Section 3.2, we propose a cyclic
weighted suppression strategy to cyclically denoise the generated pseudo-masks and train the segmentation network. In Section
3.3, we introduce a unique form of multi-resolution group output to hierarchically supervise the training of the segmentation
network. The details are elaborated as follows.

Yi

                     dis

CWSS         sca

                  main

Lseg

Input images
Backbone

BAF
SDAM

R8

R16

R32

R64
Backbone

Output

SGP-Attention

Phase I   Classification

Phase II Segmentation

Multi-resolution 

supervision

Conv2d

: Data Flow : Gradient Supervision

Circular pseudo-mask

FIGURE 2 The framework of our network. In Phase I, a SGP-Attention model is utilized to generate pseudo masks of multi-
resolution groups, which are input into Phase II. In Phase II, the cyclic weighted suppression strategy is employed to achieve
the cyclic update of the pseudo mask using the denoising mechanism, and to train the segmentation network.

3.1 Similar Graph Parsing Attention Mechanism(SGP-Attention)
We propose the SGP-Attention model for generating pseudo masks based on CAM, and the complete structure of this model
is illustrated in Fig. 3 . To model the relationships between various tissues, we design a branch attention focusing module to
replace the last three bottleneck layers of GNN.The core of this attention mechanism is a three-branch relationship analysis
structure. This structure uses convolutional layers to extract and enhance local information in the image, and then uses a Similar
Diagram Analysis Module to model the relationships between various tissues in pathological images. Unlike the traditional
CAMmethod, which performs image-level supervision by applying average features to the global average pooling (GAP) layer,
we use convolutional layers instead of pooling and fully connected layers as shown in Fig. 2 , directly generating activation
maps for each class under the supervision of the convolutional model.



6 AUTHOR ONE ET AL

3.1.1 Branching Attention Focus Module (BAF)
BAF is designed as a sequential operation consisting of Vertical Attention (Vett), Horizontal Attention (Hott), and Squared
Attention (Squt). BAF is defined as:

FBAF (x) = vett(x) ∪ hott(x) ∪ squt(x) (1)

where vett(x) = x ⊗ MLP (poolc(x)), MLP () is a multi-layer perceptron with two sigmoid activation functions, x is the
input feature, poolc() represents global pooling for each feature map, and “⊗” represents dimension multiplication. Similarly,
ℎott(x) = x ⊗ MLP (poolc(x)). In addition, squt(x) = x ⊗ conv(pools(x)), where conv() represents a 3*3 convolution layer
with padding=1 followed by the sigmoid activation function, pools() represents global max pooling at each position along the
vertical channel of the feature map, and “∪” represents a parallel relationship.
For each branch, we construct a new kernel 
i

�i
F (i), add a bias−�i
i

�i
+�i, and combine the outputs of the three branches into the

output of BAF according to the following formula. The outputs of the three branches can be correspondingly represented as:

Fi =

( c
∑

k=1
xj ∗ F

(i)
j − �i

)


i
�i

+ �i (2)

where �i and �i represent the channel mean and standard deviation for each batch normalization,
i and �i are scaling factors
and offsets,represents the size of the U × V feature map for x′s jtℎ channel,and F (i)

j represents theH ×W feature map for the
jtℎ channel. As shown in Fig. 3 , we applied a corresponding BAF for tumor tissue on each resolution backbone feature and

128×128

64×64

32×32

16×16

8×8

BAF

BAF

BAF

Y64

BatchNorn2d Relu Conv2d(1×1)

BAF Y8

U U

U U

Input images

256×256

Vett

Hott

Squt

Messaging 

Information  

exchange

The complete structure of SGP-Attention

Parallel processing

SDAM

FIGURE 3 Overview of the SGP-Attention model. The incorporates BAF and SDAM enhance features and model potential
relationships among tissues. The green modules represent the complete structure of the model. The figure also demonstrates the
form of multi-resolution parallel supervision.
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produced enhanced feature maps of various tissues in the vertical, horizontal, and squared directions. Then, the graph parsing
module independently processed the relationships between each resolution group to obtain the output of various tissues. The
supervised gradients of the ground truth for each tissue will be backpropagated to the corresponding BAF.

3.1.2 Similar Diagram Analysis Module (SDAM)
Fig. 3 shows several graphs that parallelly process cross-level analysis of various tissue nodes at different resolutions. As
mentioned earlier, the tissue outputs from various resolutions of BAF contain different depth levels and tissue spatial regions. To
obtain complementary information from these features, we treat the output endpoints of each branch in BAF as corresponding
nodes in the graph and use the message passing and information exchange mechanisms of GNN for graph parsing. The GNN
model propagates messages through the graph to comprehensively consider the relationships with surrounding nodes and self-
information at each node representation.Specifically, for the ith group of nodes, Yi represents the output of SDAM, bj represents
the bias, F∼(i),F

−
(i) and F∧(i) represents the output on the horizontal branch, on the vertical branch, and on the squared branch, and

“⊕” represents the weighted relationship of the three branches. By using this operation, we can parse the self-information of the
starting node and the cross-information of the connecting nodes and gradually extract relevant information and relationships to
learn feature embeddings to infer the relationships between different organizations:

F(i) =

∼i
�∼i

F∼(i) ⊕

−i
�−i

F−(i) ⊕

∧i
�∧i

F∧(i) (3)

bi = −
�∼
i 


∼
i

�∼i
−
�−
i 


−
i

�−i
−
�∧
i 


∧
i

�∧i
+ �∼i + �−i + �∧i (4)

Thus, we obtain the output representation of any group node i as:

Y∼
i + Y−

i + Y∧
i =

c
∑

k=1
xk ∗ F(i)k + bi (5)

whereY∼
i ,Y

−
i andY∧

i epresents the original output of the three branches. The operation process of the SDAM is shown in Fig. 3 .

3.2 Circular Weighted Suppression Strategy (CWSS)
The method of segmentation by obtaining high-quality CAM has attracted much attention. Although this method can i mprove
segmentation accuracy to some extent, there are still some challenges and difficulties. For example, noise in the pseudo-masks
is inevitable and will hinder the training of the segmentation model. The noise dataset studied in this paper includes data with
incorrect labels, segmentation errors caused by classification, and data with noise points. Therefore, we propose a cyclic weighted
suppression strategy to remove noise by reweighting the loss of noisy pixels during model training. Unlike other methods, our
approach is dynamic, robustly using noisy labels to cope with segmentation model training. Specifically, we divide the CWSS
loss into three intervals, and perform different loss operations when the CWSS loss value is in different intervals, i.e., discarding
these pixels, scaling with an exponential function, and keeping unchanged, respectively. The formula is as follows:

!(L) =
{

mean(L) mean(L) >= �
mean(CWS(L)) mean(L) < �

(6)

Here, L ∈ RH×C represents the pixel loss map of the image in cross-entropy loss, and ! represents the circular weighted
suppression loss. The function CWS() means that if the average value of L is lower than the preheat value �, the CWSS is
implemented.
The CWSS has the following operations:

CWS(L)
⎧

⎪

⎨

⎪

⎩

cwsdis(L) = Lh,w ⋅ k
Lh,w

Lh,w > k
cwssca(L) = Lk Lh,w = k
cwsmain (L) = Lh,w Lh,w < k

∀h,w (7)

Set themaximumL as the hyperparameter k, and discard the corresponding pixels whenL exceeds k.Use an exponential function
cwssca() for scaling, cwsmain () representing keeping unchanged.Through these operations, noise can be effectively removed, and
the quality of pseudo masks can be improved, thereby helping the segmentation model to better accomplish the task.



8 AUTHOR ONE ET AL

3.3 Multi-Resolution Supervision
Deep neural networks often perform extensive downsampling and reduce spatial range, resulting in highly localized predictions,
and may even lead to missing or incomplete segmentation of tissue. In addition, in graph convolutional neural networks, early
layers extract finer detail features such as texture and edges, which contain rich spatial information, while intermediate and
later layers retain more semantic information details from the original image. Only using the later layers feature map of graph
convolutional neural networks with Grad-CAMmay generate low-quality pseudo-masks at boundaries due to the lack of spatial
information. In this paper, we introduce a multi-resolution supervision strategy aimed at narrowing the gap between image-level
labels and pixel-level labels. Our proposed model uses multiple graph parsing modules to extend the SGP-Attention model,
with each module containing backbone network features from different depths. By concurrently running multiple graph parsing
modules to process specific aggregation and parsing levels of organ pairs at each resolution, a set of multi-level features are
obtained, and the output nodes of each parallel graph are fused through channel concatenation, followed by using 1*1 convolution
and sigmoid activation function to obtain the prediction of each node, as shown in Fig. 3 . Specifically, we utilize the multiple
sets of Class Activation Mapping (CAM) pseudomasks generated in the first stage as inputs for the second stage. This approach
allows us to simultaneously leverage global semantic information provided by high-, mid- and low-level features, as well as
benefit from the local detailed features retained from middle and low-level features. We then compute cross-entropy losses
between the semantic segmentation result and all pseudomasks, which narrows the gap between the segmentation result and the
ground-truth label.It is worth noting that there is no connection between the various parallel graphs in the parsing process, but
fusion is performed at the output node because each graph is designed for a specific resolution analysis group.

4 EXPERIMENTS

In this section, we conducted a series of experiments to evaluate the semantic segmentation ability of our proposed model.
Section4.1 introduces the datasets used and implementation details. Section4.2 shows a comparative analysis of the results with
the latest fully supervised and weakly supervised methods. Section4.3 conducted some ablation experiments to evaluate the
effectiveness of the proposed SGP-Attention, CWSS, and the impact of the multi-resolution supervision strategy. We evaluate
the performance of the proposed model using classic pathological image segmentation standards45, such as Pixel Accuracy
(Pixel Acc), Mean Accuracy (Mean Acc), and Mean Intersection over Union (Mean IoU). The metrics are defined as follows:

P ixel Acc =
∑k
i=0 pii

∑k
i=0

∑k
j=0 pij

(8)

Mean Acc = 1
k + 1

∑k
i=0 pii

∑k
i=0

∑k
j=0 pij

(9)

Mean IoU = 1
k + 1

k
∑

i=0

pii
∑k
j=0 pij +

∑k
j=0 Pji − pii

(10)

Where i denotes the ground-truth label, j denotes the predicted label, and pij is the number of pixels that are predicted as j but
actually belong to i.

4.1 Implementation Setup
4.1.1 Datasets
Breast Cancer Semantic Segmentation (BCSS):The dataset consists of 151 whole-slide images (WSI) stained by hematoxylin
and eosin (H&E) for histopathologically diagnosed breast cancer cases. Researchers randomly cropped patches from the region
of interest (ROI)46and generated multi-label binary vector encodings, with main tissue categories divided into five classes
including tumor (TUM), stroma (STR), lymphocyte infiltration (LYM), necrosis (NEC), and others (OTR), as shown in Fig. 4 .
In this study, 5422 patch-level labels were used as the training set, 2857 pixel-level labels were used as the validation set, and
3497 pixel-level labels were used as the test set.
Lung Adenocarcinoma Weakly Supervised Semantic Segmentation (LUAD-HistoSeg): The dataset consists of 54 lung

adenocarcinoma patients from the Pathology Department of Guangdong Provincial People’s Hospital. The researchers zoomed
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FIGURE 4 Some situations in which the existence and relationships of various tissues are illustrated in the BCSS dataset.

in onWSI where tumor blocks were marked and randomly sampled patches at a magnification of 10x47. They generated a multi-
label binary vector including tumor epithelium (TE), tumor-associated stroma (TAS), lymphocytes (LYM), and necrosis (NEC)
through a series of operations such as annotators, as shown in Fig. 5 . In this study, 6,678 patch-level labels were used as the
training set, 300 pixel-level labels were used as the validation set, and 307 patch-level labels were used as the test set.

4.1.2 Implementation Details
This study was mainly implemented using the Python and PyTorch frameworks. All code was run on a Ubuntu 16.04.1 platform
equipped with two NVIDIAGTX 1080Ti GPUs. In the classification stage, we optimized the classification model based on GNN
improvement and used stochastic gradient descent (SGD) algorithm with an initial learning rate of 0.01 to train the model for 30
epochs on each dataset. Then, in generating pseudo masks, we generated four sets of pseudo masks labeled as R8, R16, R32, and
R64 at resolutions of 88, 1616, 3232, and 6464, respectively, and input them into the segmentation model, the results of which
are shown in Fig. 8 . Finally, in the segmentation stage, we added a cycle-weighted suppression denoising mechanism based on
DeepLabV3+ and optimized it using the Adam optimizer with an initial learning rate of 5e-4 and 20 epochs for training.

4.2 Comparison with popular methods
In this section, we compared our TSWS-TR model for histopathological images with some currently advanced fully supervised
and weakly supervised methods. For the comparison method of BCSS, we included fully supervised DeepLabV3+, weakly
supervised PDA48, Xception49, LBP50, and Mitko.al51. For the comparison method of LUAD, we included fully supervised
DeepLabV3+, weakly supervised PDA, ResNet32-RF52, and CroSIn53. We used the same experimental settings as our model
and provided all best pseudo mask results from different methods to avoid comparing different methods through different thresh-
olds. The results of the assessment are shown in Table 1 , in which we found that our framework achieved the best performance
among the weakly supervised methods on both histopathological image datasets and performed very close to the fully super-
vised methods. Specifically, in the segmentation task of BCSS, our method outperforms fully supervised methods on both Pixel
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FIGURE 5 Some situations in which the existence and relationships of various tissues are illustrated in the LUAD dataset.

Acc and Mean IoU metrics, while achieving results close to fully supervised methods on Mean Acc. Compared to these weakly
supervised methods, our approach achieves a performance increase of over 1.1% on Pixel Acc and Mean Acc metrics, and over
1.3% on Mean IoU metric. In the segmentation task of LUAD, our method surpasses fully supervised methods on all metrics.
Compared to these weakly supervised methods, our method achieves a performance increase of about 1% on Pixel Acc and
Mean IoU metrics, and over 1.5% on the Mean Acc metric. Moreover, the effectiveness of the first stage is particularly signifi-
cant.Therefore, the TSWS-TR model proposed in this study outperforms the current state-of-the-art fully supervised and weakly
supervised methods in several performance metrics. The segmentation results are shown in Fig. 6 . As can be seen from the
figure, our method is closer to the training images themselves and has a segmentation effect that is close to that of the fully
supervised method. The partially supervised PDA has significantly better performance in some regions.

4.3 Ablation Study
In this section, we conducted detailed ablation experiments, and all results demonstrated the effectiveness of our model. Specif-
ically, we conducted ablation experiments by comparing the scenarios without SDA-Attention and CWSS for denoising, as well
as different depths of feature extraction. The results of these experiments on the BCSS dataset are presented in Table 2 and
Table 3 .

4.3.1 Ablation 1: Similar Graph Parsing Attention Mechanism
This study evaluated the effectiveness of the BAF and SDAM modules. We achieved this by removing the attention mechanism
component while retaining the denoising mechanism and remaining parts of the model in the second stage, using four sets
of resolution pseudo masks for supervision.The BAF block aims to extract enhanced features of individual tissues and their
boundaries through the proposed end-to-end trainable attentionmechanism network, which utilizes backpropagation. The SDAM
module is designed to perform reasoning modeling on the three branches through information propagation mechanisms based on
class graphs. As shown in Table 2 on the BCSS dataset, the results demonstrate that our model with SGP-Attention significantly
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FIGURE 6 The quantitative comparison of segmentation results with existing methods.The figure shows a comparison of the
performance of our method with the fully supervised DeepLabV3+ and the weakly supervised representative PDA.The top three
rows compare the effects of tissue types in patches with two, three, and four types, respectively, for the BCSS dataset; the bottom
two rows compare the effects of tissue types in patches with two and three types for the LUAD dataset (patches with four tissue
types simultaneously present are rare, so they are not shown).The highlighted boxes indicate the parts where the comparison is
obvious.
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TABLE 1 Quantitative comparison results with existing methods.

BCSS
Phase Phase1 Classification Phase2 Segmentation

Methods Mean Acc Mean Iou Pixel Acc Mean Acc Mean Iou
Ours 0.9233 0.8335 0.8594 0.8254 0.6989

DeepLabV3+ 0.9251 0.8346 0.8576 0.8258 0.6862
PDA 0.9003 0.7854 0.8481 0.8144 0.6852

Xception 0.9030 0.7881 0.8472 0.8150 0.6850
LBP 0.8257 0.7136 0.8211 0.7693 0.6415

Mitko.al 0.8031 0.7334 0.7437 0.7114 0.6248
LUAD

Ours 0.8942 0.8288 0.8668 0.8784 0.7656
DeepLabV3+ 0.8576 0.6862 0.8588 0.8653 0.7531

PDA 0.8450 0.7426 0.8570 0.8634 0.7560
ResNet32-RF 0.8107 0.7251 0.7283 0.7051 0.6751

CroSIn 0.6940 0.6542 0.6977 0.6845 0.6310

TABLE 2 Ablation results for the SGP-Attention.

SGP-Attention Phase1 Phase2

Mean Acc Mean Iou Pixel Acc Mean Acc Mean Iou
0 0.8971 0.8003 0.8339 0.7986 0.6803
1 0.9233 0.8335 0.8594 0.8254 0.6989

improves Mean Acc and Mean IoU of the first stage by approximately 3%, as well as Pixel Acc, Mean Acc, and Mean IoU of
the second stage by approximately 2%. On the other hand, we removed the information related to constructing the relationship
model between tissues in the network and constructed the segmentation network. The results showed that without supervision
of the potential relationships between tissues, the model could not achieve ideal results, further demonstrating the importance
of potential relationships between tissues for pathological image segmentation tasks.

4.3.2 Ablation 2: Circular Weighted Suppression Strategy
This study evaluated the impact of CWSS on the segmentation results. To ensure the scientificity and optimality of the ablation
experiments, we retained SGP-Attention in the first stage and conducted experimental comparisons under four groups of reso-
lutions.As shown in Fig. 7 , the phenomenon of noise and confusion is more obvious when multiple tissues coexist. Therefore,
in the figure, we present BCSS patches with three and four tissue types, and compare the pseudo-masks at three levels of reso-
lution: R8, R16, and R64. It can be seen that in the pseudo-masks at the bottom level, there are coexisting features of noise and
tissue edges, which may disrupt the sensitivity of the segmentation model to tissue recognition and cause some false positives or
false negatives. However, these noise features no longer exist in the high-resolution pseudo-masks, which proves the necessity
of our CWSS method and further demonstrates the importance of applying complementary resolution levels for supervision of
the segmentation network in the ablation experiment in the next section. As shown in the last two rows of Table 3 , the improved
Mean IoU increased from 0.6611 to 0.6989, while Pixel Acc and Mean Acc increased from 0.8224 and 0.7963 to 0.8594 and
0.8254, respectively, representing an improvement of 3.7% and 2.9%. We also verified the effectiveness of the cyclic pseudo-
mask, and found that it needs to be updated once on the BCSS dataset and twice on the LUAD dataset in our experiments.This
phenomenon demonstrates that our proposed weighted suppression strategy can achieve specific performance adjustments for
different tissue pathology datasets. Therefore, this module has broad and flexible applicability.
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FIGURE 7 An example of the denoising effect of CWSS is shown in the figure. The patches are of three and four tissue types,
respectively. The yellow circles highlight the noise at the same position in BCSS patches of different resolution levels, and the
yellow lines indicate the alignment.

TABLE 3 Ablation results of CWSS and Multi-resolution Supervision.

CWSS R64 R64+R32 R64+R32+R16 R64+R32+R16+R8 Pixel Acc Mean Acc mIou
√ √

0.8388 0.8002 0.6786
√ √

0.8344 0.8023 0.6815
√ √

0.8468 0.8139 0.6899
√ √

0.8594 0.8254 0.6989
√

0.8224 0.7963 0.6611

4.3.3 Ablation 3: Supervision with Different Numbers of Resolutions
Due to the significant difference in information amount between image-level weak labels and pixel-level strong labels, as well
as the incomplete and insufficient information of pseudo masks generated through patch-level annotation, it is necessary to
extract features from different resolution levels to be used in segmentation models. In this study, we proposed a multi-resolution
supervision method for extracting features from different resolution levels for use in segmentation models. We evaluated the
impact of this method on the final segmentation performance by using pseudo masks at different resolutions as the input to
the second stage segmentation model.In this ablation experiment, we also retained SGP-Attention in the first stage and applied
CWSS in the second stage for experimentation. At the same time, through our extensive experiments, we found that using
deep-level resolution pseudo-masks generally yields better results than using shallow-level ones. Therefore, in this ablation
experiment, we combined different numbers of deep-level resolution pseudo-masks to achieve the desired ablation effect. The
results in Table 3 showed that the model from the lowest resolution R64 had the best performance when training with a single
layer pseudo mask because it was closest to the inference layer and had the most detailed semantic information. The model
trained with two different layers (R64 + R32) of pseudo masks showed better results. Meanwhile, the model trained with all
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FIGURE 8 The multi-resolution segmentation results of semantic segmentation,and he top three rows represent pseudo-masks
for the BCSS dataset, while the bottom two rows represent those for the LUAD dataset. The corresponding colors of each tissue
are: BCSS [red, cyan, blue, black], LUAD [red, cyan, yellow, blue], and pink for other tissues.R8 and R16 mainly preserve local
detailed features, while R32 and R64 mainly embody global semantic information.

four layers performed better than all baseline models. Although noise introduced at shallow layers may have negative effects on
the model, the multi-resolution supervision method narrowed the gap between image-level and pixel-level labels and achieved
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optimal semantic segmentation performance, as shown in Fig. 8 . The experiment proved that usingmulti-resolution supervision
can provide more information than using only a single-layer pseudo mask.
Through ablation experiments, we found that the model performance decreased without SGP-Attention. This suggests that

tissue relationships should be considered to improve model accuracy in tissue pathology image segmentation tasks. Additionally,
we found that the addition of CWSS further improved the denoising effect of the model, enabling more accurate identification
of subtle cancer features. Finally, the ablation results of different resolution feature extraction showed that using multiple deep
feature layers can significantly improve the mean IoU while maintaining high pixel accuracy and mean accuracy. Therefore, our
ablation experiments demonstrated the effectiveness of our proposed SGP-Attention and CWSS, as well as the superiority of
the multi-resolution feature extraction strategy, providing important guidance and support for the design of our approach.

5 CONCLUSION AND FUTUREWORK

This paper proposes a two-stage weakly supervised organizational pathology image segmentation framework with an innovative
class-specific attention mechanism that can utilize the potential relationships among tissues in organizational pathology images
to promote more accurate segmentation. The cyclic weighting suppression strategy further optimizes the segmentation model
and verifies the effectiveness of the cyclic pseudo mask in denoising and segmentation. By supervising at multiple resolution
levels, we further enhance the comprehensiveness of tissue features, thereby promoting the improvement of segmentation results.
The model shows advanced performance on two organizational pathology image datasets, demonstrating the superiority of our
framework.
Although the two-stageweakly supervised semantic segmentation framework based on image-level patch labels is the standard

for weakly supervised methods, its lengthy inference time and lack of global context reasoning may be limited by time and
memory. This study found that combining GNN with weakly supervised segmentation is feasible for histopathological images
with image-level labels.In the future, we will conduct further research in this direction and extend it to 3D models to further
improve performance. In contrast to existing methods that use multi-stage training schemes, we will also attempt to design a
single-stage method that produces comparable performance in complex designs.
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