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Abstract

Histidine (His) is the most reactive amino acid at enzyme active sites. Multiple post-translational modifications (functions)

are reported for His side chains. The high-throughput sequencing techniques produce a large number of protein sequences

without functional annotations at the amino acid level. Experimental characterization of His functions in proteins is laborious

and time-consuming. Computational characterization based on protein sequences may complement the need. There are only a

handful of Histidine function prediction tools available and those annotate only a single function. Here we curated a dataset of

active Histidine with known functions based on protein sequences obtained from UniProt database (sample size n=1584) and

trained against four machine learning methods. The convolution neural network (CNN) model (“ Hist-i-fy”) performed the

best with 75% overall accuracy. The external validation of Hist-i-fy on phosphorylated histidine data (sample size 34) showed

94.1% prediction accuracy. For the first time, we report multiple His function prediction, based on protein sequences using deep

neural networks. The inputs to the model are i) protein sequence containing His, and ii) the His residue number. The model

predicts one out of the eight histidine functions, namely, acetylation, ribosylation, glycosylation, hydroxylation, methylation,

oxidation, phosphorylation, and protein splicing. The novelty of the work is, it predicts maximum number of histidine functions

at a time with optimal performance. There is a scope of improvement in the model upon availability of a larger dataset. The

model is available as a web application ([https://histify.streamlit.app/](https://histify.streamlit.app/)) and a stand-alone code

[https://github.com/dibyansu24-maker/Histify](https://github.com/dibyansu24-maker/Histify)).
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ABSTRACT

Histidine (His) is the most reactive amino acid at enzyme active sites. Multiple post-translational modi-
fications (functions) are reported for His side chains. The high-throughput sequencing techniques produce
a large number of protein sequences without functional annotations at the amino acid level. Experimental
characterization of His functions in proteins is laborious and time-consuming. Computational characteriza-
tion based on protein sequences may complement the need. There are only a handful of Histidine function
prediction tools available and those annotate only a single function. Here we curated a dataset of active
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Histidine with known functions based on protein sequences obtained from UniProt database (sample size
n=1584) and trained against four machine learning methods. The convolution neural network (CNN) model
(“Hist-i-fy ”) performed the best with 75% overall accuracy. The external validation of Hist-i-fy on phos-
phorylated histidine data (sample size 34) showed 94.1% prediction accuracy. For the first time, we report
multiple His function prediction, based on protein sequences using deep neural networks. The inputs to the
model are i) protein sequence containing His, and ii) the His residue number. The model predicts one out
of the eight histidine functions, namely, acetylation, ribosylation, glycosylation, hydroxylation, methylation,
oxidation, phosphorylation, and protein splicing. The novelty of the work is, it predicts maximum number of
histidine functions at a time with optimal performance. There is a scope of improvement in the model upon
availability of a larger dataset. The model is available as a web application (https://histify.streamlit.app/ )
and a stand-alone codehttps://github.com/dibyansu24-maker/Histify).

KEYWORDS:

Histidine; post-translational modifications; Artificial Neural Network (ANN); Convoluted Neural Network
(CNN); Long Short-term Memory (LSTM); Logistic Regression; protein sequence; UNIPROT database,
accuracy, recall, precision

1. Introduction: Enzyme functions are primarily executed through the catalytic residues. With the
availability of the high-throughput sequence data, a large number of protein sequences are known without
functional characterizations [1]. Computational characterization would facilitate rapid initial screening that
can be verified further with experimental observations. Cysteine (Cys) and Histidine (His) are the two most
important amino acid residues observed at the catalytic sites of all enzyme classes[2] [3]. The thiol group
of cysteine amino acid side chain can undergo oxidation leading to various chemical and post-translational
modifications that impact the structure and function of proteins in different capacities. A histidine imidazole
is an electron-deficient heteroaromatic ring (pKa = 6.8) that makes it a suitable candidate for proton buffer-
ing, metal ion chelation, and antioxidant agents. Due to the similar values of the imidazole ring pKa and the
physiological pH (= 7.4), His efficiently participates in enzyme catalysis. His residue is particularly important
in acid base catalysis due to its amphoteric character. Apart from that, it participates in elimination-addition
and redox reactions. Experimental characterizations are done for various His post-translational modifications
those are involved in protein-protein interactions and catalysis. Extensive computational characterization
of the cysteine functions has been done by our group [4], [5], [6]. However, the post-translational modi-
fication of His is less explored compared to that of Cys or Lys. The computational characterizations of
His functions, so far, were reported for single modifications only. For example, histidine phosphorylation
sites were predicted using a convoluted neural network (CNN) - based model, PROSPECT [7], and support
vector machine-based model, pHisPred [8]. Transition metal-binding sites for Cys and His were predicted by
exploiting position-specific evolutionary profiles using support vector machines and neural networks [9]. The
CNN-based prediction model, PROSPECT, inputs a protein sequence and returns predicted histidine sites
with 72% accuracy. The transition-metal-binding sites of histidine and cysteine were predicted from protein
sequences with 73% precision. To the best of our knowledge, prediction of multiple His post-translational
modifications is not reported. For the first time, we attempt to predict eight post-translational modifica-
tions of His from, i) protein sequence and ii) His residue position only, using deep neural networks. The
convolution neural network (CNN) performed the best. The output of the models yields the most probable
His modification. The internal evaluation accuracies are comparable to the single prediction methods, albeit,
our results showed better performances than the existing ones. The model was blindly tested for external
evaluation on independent phosphorylated Histidine data points.

2. METHODS AND MATERIALS

2.1. Histidine Chemical and Post-translational Modifications There are eight chemical and Post-
Translational Modifications (PTM) (functions) annotated in this work (Figure 1). These His modifications,
namely, acetylation, ribosylation, glycosylation, hydroxylation, methylation, oxidation, phosphorylation, and
protein splicing, are discussed below.
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FIGURE 1: Post-Translational Modifications of Histidine Residues considered in this study

2.1.1 Acetylation

Acetylation is a process of transferring an acetyl group (-CH3CO) to a molecule, mainly to N- or O- atoms,
known as N-acetylation or O-acetylation. Acetylation of His is recently reported for Histidine-Tyrosine (HY)
and Tyrosine-Histidine (YH) dyads treated with acetic anhydride [10]. His undergoes N-acetylation at its
imidazole ring.

2.1.2 ADP-Ribosylation

Histidine ADP-ribosylation is a stress-induced rare phenomenon [11], unlike frequently observed serine-ADP-
ribosylation. Mimetics of ADP-ribosylated Histidine was recently studied [12].

2.1.3 Glycosylation

Different amino acids may undergo different types of glycosylation, namely, C-linked, N-linked, O-linked, or S-
linked [13]. Histidine undergoes N-linked glycosylation.2.1.4 Hydroxylation Protein hydroxylation, a post-
translational modification, is carried out by 2-oxoglutarate-dependent dioxygenases. This post-translational
modification can be induced by hypoxia-induced-factor alpha (HIF-a) on proline [14]. Hydroxylation may
also involve protein-protein interactions and downstream signalling. Apart from proline, lysine, asparagine,
aspartate, and histidine can also undergo hydroxylation modification [15].2.1.5 Methylation The actin and
myosin proteins undergo the post-translational modification (PTM) of histidine methylation. There are two
different locations where it can happen: 1-methyl histidine (1MeH) and 3-methyl histidine (3MeH) [16].2.1.6
Oxidation Under unusual or stressed conditions histidine undergoes oxidation to 2-oxo-histidine (2-oxo-His)
(Figure 1). Photo-induced oxidation of Histidine leading to various cross-links, including intact His, Lys and
Cys, was observed in high-molecular weight (HMW) fractions of monoclonal anti-bodies [17]. Oxidation of
His residue is also observed in proteins from cells undergoing oxidative stress [18]. The 2-oxo-His changes
the dissociation pattern of peptide ions in Mass-spectroscopy studies [19].2.1.7 Phosphorylation His phos-
phorylation is crucial step in various cellular processes, such as signal transduction, cell cycle, proliferation,
differentiation, and apoptosis, Phosphorylated His contributes 6% to all the phosphorylated amino acids.
However, phosphorylation of His is less explored compared to phosphorylated serine, threonine and tyrosine.
Recently a consolidated database on phosphorylated His (HisPhosSite) is available [20]. Histidine Kinase
(HK)s is one of the classical non-animal kingdom kinases that phosphorylate His, although, in a 2-step
manner - i) transfer phosphate from ATP to His and ii) then transfer the phosphate to an aspartate residue
[21].2.1.8 Protein Splicing Protein splicing is triggered via acid-base catalysis that involves multiple con-
served His at the active site. Histidine probably plays dual role in protein splicing, first as a general base
to start acyl shift splicing and next as a general acid to break the scissile bond at the N-terminal splicing
junction [22].2.2 Sequence signatures around different His post-translational modifications:

Many of the His post-translational modifications were identified with specific sequence signatures or motifs.
For example, His hydroxylation motif is a part of Hydrogen-bond (H-bond) cluster that is brought into
the register by GXXG motif [23]. For His methylation, the common motif observed in short methylated
peptides was GHXHXH [24]. Histidine acetylation motif deduced from mass spectrometry data based on
diacetyl-fed rat lung proteins was GXPGXXGHXGXXG [25]. However, some of the Histidine post-translation
modifications do not carry sequence signatures. For example, no specific sequence motif is reported for His
glycosylation. For His phosphorylation, no clear sequence motif was identified [26].

2.3 Training dataset generation for Histidine post-translational modifications

There are eight His post-translational modifications (Figure 1) annotated in this work based on the avail-
ability of protein sequences from the UniProt database [27]. From the “Keyword” subsection of UniProt,
category name ”PTM” was selected to track all possible post-translational modifications. The text filters
(not case sensitive) – “His”, or “Histidine” were used to identify the experimentally annotated His functions
from the PTM category, curated on November 2022. A total of sixteen modifications were identified, some
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of those have very few data points. Finally, eight modifications were selected for the training dataset with
a number of data points more than or equal to twenty (Table 1).

Modifications Number of Datapoints
Methylation 303
Acetylation 172
Ribosylation 20
Glycosylation 105
Phosphorylation 532
Oxidation 101
Protein splicing 329
Hydroxylation 22

Table 1: Statistics of the His post-translational modifications obtained from UNIPROT database

2.4 Test dataset generation:

Test dataset was curated from the mass spectroscopy data [28], available from the Supplementary Table 1
of that reference. The UniProt ID was used to retrieve the sequence from the UniProt database and the
corresponding His residue number. All these His residues are phosphorylated. This independent test dataset
consists of 34 phosphorylated His.

2.5 Processing of the training dataset 2.5.1 Selection of input parameters for deep learning
models:The training dataset was pre-processed by selecting a stretch of amino acids from each protein
sequence with His of interest at the centre and that is flanked by amino acids with a variable window size,
from three to ten. The length of the amino acid sequence will be 2(n)+1 for window size n. For example,
amino acid sequence length will be seven for window size three. Hence, all the training sequences will have
equal number of amino acids with His (of interest) at the centre, for a given window size. This set of sequences
(per window size) were used as the input (X-parameter) for deep neural network models. The Y-parameters
were the post-translational modifications. A representative input file to the deep neural network model is
shown (Table 2). The relative performances of variable window sizes were tested.

S.No Modified sequence Residue No. Modifications
0 PPGRRMGHAGAIIAG 299 Acetylation
1 RTIYLCRHGESEFNL 257 Acetylation
2 YKLIMLRHGEGAWNK 11 Acetylation
3 YKLIMLRHGEGAWNK 11 Acetylation
4 RSIYLCRHGESELNL 259 Acetylation
. . . . . . . . . . . . . . . .
1579 VSFGSSCHGAGRKMS 882 protein-splicing
1580 VSFGSSCHGAGRKMS 881 protein-splicing
1581 DALFSTVHGAGRVMS 781 protein-splicing
1582 EALFSTVHGAGRVMS 790.0 protein-splicing
1583 AALRSTIHGAGRVMS 758.0 protein-splicing

Table 2: Representation of the input file used in the deep neural networks. The total number of datapoints
(including all the modifications) is 1584 and 3 input parameters (2 X-Parameters and 1 Y-parameter) were
used

2.5.2 Tokenization of the data:Character tokenization was performed to convert text (Table 2) into a list
of characters using keras pre-processing library [29]. It builds a corpus of all characters and assigns a number
to each character. After tokenization, 1584x15 dimension matrix was converted to a string of integers (Table
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3). (15 corresponds to the sequence length, that is of window size 7). Finally, these integers were considered
as X parameters, rather than the alphabetical characters (column 2 of Table 2). The Y-parameter was
processed using Label Binarizer [30] which accepts categorical data as input and returns a NumPy array.
The training dataset was randomly split into train and test dataset in a ratio of 2:1 using the Sklearn library
function train test split. Thus, 1584 data points produced 1061 entries for training, and 523 for testing.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 15 15 1 9 9 16 1 2 4 1 4 7 7 4 1
1 9 5 7 17 6 20 9 2 1 10 3 10 13 14 6
2 17 12 6 7 16 6 9 2 1 10 1 4 19 14 12
3 17 12 6 7 16 6 9 2 1 10 1 4 19 14 12
4 9 3 7 17 6 20 9 2 1 10 3 10 6 14 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1579 8 3 13 1 3 3 20 2 1 4 1 9 12 16 3
1580 8 3 13 1 3 3 20 2 1 4 1 9 12 16 3
1581 11 4 6 13 3 5 8 2 1 4 1 9 8 16 3
1582 10 4 6 13 3 5 8 2 1 4 1 9 8 16 3
1583 4 4 6 9 3 5 7 2 1 4 1 9 8 16 3

Table 3: Tokenized 1584*15 matrix (1584 entries x 15 amino acids)2.6 Algorithms Four classification
models (namely, Logistic regression and Deep learning algorithms - Convolutional Neural Networks (CNNs),
Artificial Neural Networks (ANNs), and Long Short-Term Memory (LSTM) networks) were used to train and
benchmark the dataset. These models can adjust the weights of the input data to produce a value for each
class, either positive or negative, and can learn complex non-linear relationships between features and the
target variable. Logistic regression is a simple and efficient algorithm that can be used for binary classification
problems. It works well when the relationship between the features and the target variable is approximately
linear. Deep learning algorithms like ANNs, LSTMs, and CNNs are more powerful than logistic regression
for complex classification problems. They are designed to automatically learn hierarchical representations of
the data, which can capture complex non-linear relationships between the features and the target variable.
In general, deep learning algorithms require more data and computing resources than logistic regression but
can produce results with higher accuracy on complex classification tasks.2.6.1 Logistic regression It is
commonly used for prediction and classification problems. In the current study the model consists of eight
classes (eight His modifications). As logistic regression is a binary classification method, One-Versus-Rest
(OVR) logistic regression method was used where the model is trained separately for each class to determine
if an observation is part of that class or not (making OVR a binary classification problem). The method
assumes that every classification issue (whether involving class 0 or something else) stands on its own.2.6.2
ANN Artificial neural network (ANN) is a single hidden layer neural network (consists of input layer, hidden
layer and output layer) that attempts to categorize each observation as one out of many discrete classes. The
input to the model could be either categorical or numeric and the dependent variable (Y-parameter) should
be categorical.2.6.3 LSTM Long-Short Term Memory (LSTM) recurrent neural networks are specialized
recurrent neural networks. Recurrent neural networks (RNN) run in cycles that receive the input of network
activations to the current time step from the previous time step. These activations are stored (for an amount
of time, not fixed a priori) in the internal states of the network, known as long-short-term memory. Thus
LSTM-RNNs can exploit a dynamically changing contextual information to transform an input sequence to
an output sequence. LSTM has multiple hidden layers, in contrast to a single hidden layer in ANN.2.6.4
CNN A convolutional neural network consists of an input layer, multiple hidden layers and an output layer.
At least one or more hidden layers should perform convolutions between the convolution kernel and the layer
of input matrix. (Convolution is a mathematical operation, that is a dot product of two functions.) The
convolution operation generates a feature map, as the convolution kernel slides along the input matrix for
the layer and prepare the input of the next layer. This layer is followed by pooling layers, fully connected
layers, and normalization layers those enable spatial hierarchical feature learning by backpropagation, in an
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automated manner.FIGURE 2 Workflow of CNN Model. The number of input and output features, and
the number of batch normalization are shown in parenthesis. A “None” value in the shape represents any
size (large than or equal to 1) in that dimension.The workflow of the CNN model on the training dataset
is shown with the number of input and output features and the batch normalization (Figure 2). The first
layer, input layer, consists of neurons that are connected to individual inputs those are passed to the next
layer (embedding layer), without having any weights (or biases). Embedding layer transforms each word
into a vector of a pre-determined length. (The vocabulary is first encoded as a series of integers, and then
the embedding layer retrieves the embedding vector for each word-index.) Convolutional layer is the core
component of a CNN. It has a collection of filters (128 in this case, Figure 2) whose settings will be learnt as
part of the training process. In most of the cases, the length of the sequence is less than the size of the filters.
Each filter is used to generate an activation map by convolving with the input. Average pooling is used
to construct a down-sampled (pooled) feature map by computing the average for each patch of the feature
map. Normalization in a Neural Network is called ”Batch Norm,” and it takes place between the layers of
the network rather than with the raw data itself. Mini-batches are processed instead of the entire dataset
at once. Learning is simplified as the pace of the instruction is increased. The Global Average Pooling-1D
layer is used to reduce the dimensionality of the input data after the convolutional layers. Dense Layer is
a layer of neurons within which each neuron gets input from all the neurons in the preceding layer, thus
becomes “dense” and fully connected. Output layer is typically the last layer in the network, and it consists
of neurons that represent the different classes or categories that the network is trained to predict. Here,
two dense layers were added, each with RELU activation function and batch-normalization. The first dense
layer has 256 units, and the second dense layer has 128 units respectively. The final Dense layer has 8 units,
representing the number of classes in the classification task. The activation function used here is softmax,
which converts the output into probabilities for each class. The output layer neurons are connected to all
the neurons in the previous layer, and the weights and biases of the neurons in the output layer determine
the strength of the predictions for each class.

7

2.7 Evaluation meters To evaluate the efficacy of the models, the confusion matrix and the classification
report were used. The confusion matrix is a compact representation of the results of a classification task
prediction. It is used to evaluate the overall performance in terms of accuracy, precision, recall, and F1-score.
A combination of correct (True) and incorrect (False) classifications is used to determine these measures.
In this context, the projected classes may be generally referred to as ”Positive” or ”Negative.” Total
four parameters are used, True Positive (TP) (case is positive, prediction is also positive), True Negative
(TN) (case is negative and prediction is also negative), False Positive (FP) (case is negative and prediction
is positive) and False Negative (FN) (case is positive and false negative). Using these four parameters
evaluation meters, namely, accuracy, precision, recall and F1-score, were computed.

Accuracy = (TP + TN)/ (TP + TN + FP + FN) Eq 1

Accuracy is the proportion of the true positive and false negative instances predicted correctly by the classifier
with respect to all the data points.

Precision = TP/ (TP + FP) Eq 2

Precision is the proportion of the true positive instances predicted correctly by the classifier, with respect to
all the data points.Recall = TP/(TP+FN) Eq 3Recall is the proportion of the true positive instances
predicted correctly out of the true positive and false negative data points. In other words, the ability of
a classifier to retrieve all appropriate examples is called recall (also known as sensitivity).F1 Score =
2*(Recall * Precision) / (Recall + Precision) Eq 4F1 scores include both precision and recall into
their calculation, they are often regarded as inferior to accuracy metrics. It ranges from 0.0 to 1.0. To
compare classifier models, it is recommended to utilise the weighted average of F1 rather than overall accu-
racy.Weighted average F1-score =

∑8
i=1 F1−score ∗ (no. of instances))/8Eq 53 RESULTS AND

DISCUSSION3.1 Selection of the optimal window size based on the neural network model
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performances:To address the objective of the study - prediction of multiple His modifications based on a
given protein sequence - we initially attempted to optimize the target amino acid sequence length (variable
window size from three to ten, as described in the method section). The results were shown for CNN model.
The accuracy of CNN models follows a Gaussian distribution between window sizes three to ten (Table
4). The maximum accuracy on the training dataset was observed for window size seven (that is sequence
length of 15 [2x7=+1] amino acids). Hence, window size seven was as selected default for subsequent model
creation, training and validation.

Window size Respective Accuracy of CNN Model
3 73.60%
4 73.80%
5 72.23%
6 75.14%
7 75.47%
8 69.20%
9 70.70%
10 71.70%

Table 4: Performance of the CNN model on the training dataset with variable window size3.2 Selection of
the optimal neural network model on the training dataset:The training dataset was benchmarked
against four different classifiers, namely, Logistic regression, ANN, LSTM and CNN. Some of these classifiers
are simple and computational less expensive and two others (LSTM and CNN) are complex.3.2.1 Logistic
regression The overall performance of logistic regression is shown (Table S1). The precision, recall and
F1-score vary for different modifications. Logistic regression was unable to predict methylation and phos-
phorylation based on the current validation dataset. The possible reasons could be that i) the target label
has no linear correlation with the features and/or ii) the sample sizes (in the validation dataset) are uneven
with respect to different classes (Table S1). The accuracy from this classifier on the validation dataset was
0.67.3.2.2 ANN The accuracy achieved using ANN model was 70%, slightly better than that of the logistic
regression. This is presumably due to the presence of three layers in ANN (an input layer, a hidden layer
and an output layer) in contrast to the logistic regression. Moreover, performance of logistic regression
reduces when trained on noisy data or the samples are unevenly distributed between classes. Variation was
observed in the prediction results for different modifications (Table S2). ANN model was unable to predict
oxidation modification from the current dataset, although, it has successfully predicted methylation and
phosphorylation modifications, unlike logistic regression. To note, the modifications in validation dataset
varies across the classifier, as the train to test (validation) dataset was randomly split into 2:1 ratio and each
random split contains different ratio of His modifications. For example, in logistic regression, support (the
number of validation data point) value for phosphorylation was only 8 in contrast to 175 in ANN model.
This could presumably justify why logistic regression was unable to predict phosphorylation whereas ANN
has accomplished it successfully.3.2.3 LSTM The accuracy obtained from LSTM was 71%, better than
those obtained from logistic regression and ANN models. The results produced by LSTM were better, most
likely due to feed data back while training. LSTM works the best on a known set of patterns or sequences.
As mentioned above, His hydroxylation and methylation were observed with characteristic sequence motifs
[23] [24]. Moreover, protein splicing involves multiple conserved His at the enzyme active sites [22]. The
conserved patterns for these three His modifications lead to improved recall value (that is, high rate of true
positive prediction with respect to false negative values) (Table S3). Despite of improved performance of
LSTM, the classifier was unable to compute precision, recall and F1-score for ribosylation and oxidation
modifications.3.2.4 CNN The overall accuracy obtained from CNN model was the 75.47%, best out of all
the classifiers. The notable observation was that the CNN model was capable of predicting all the modifi-
cations, unlike other classifiers (Table 5). The variation in predicting different modifications also exists in
CNN model as in other classifiers. The superior performance of the CNN model is most likely due to the
application of convolutional layers, those automatically lowers the dimensionality of sequences, yet preserv-
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ing the information. The logistic regression works the best with a predefined relation between input and
output, that was not so explicit in the training dataset. As ANN is a simple neural network model with only
one hidden layer, learning was less accurate. LSTM works the best with pattern recognition thus the model
was capable of better prediction of hydroxylation, methylation and protein splicing with known patterns.
However, the performance of acetylation prediction was consistently poor across all the classifiers, although
sequence-specificity of His acetylation was reported in literature [10][25]. Comparing the overall performance
from the above benchmarking exercise (Table S4), CNN model was selected for further His modification pre-
diction for an unknown protein. This model, termed as Hist-i-fy, was tested on an independent dataset of
His phosphorylation, obtained from mass spectroscopy.

PTM precision Recall f1-score Support#
Acetylation 0.32 0.20 0.24 46
Ribosylation 0.31 0.62 0.42 8
Glycosylation 0.73 0.77 0.75 35
hydroxylation 0.67 1.00 0.80 4
methylation 0.78 0.54 0.64 103
oxidation 0.53 1.00 0.69 45
phosphorylation 0.80 0.79 0.80 175
protein-splicing 1.00 1.00 1.00 107
macro avg 0.64 0.74 0.67 523
weighted avg 0.76 0.75 0.74 523

Table 5: Classification report for CNN model; #number of instances from validation dataset

3.3 Comparison of the results from the present study and the literature reports:

Currently, there are only a few His post-translational modification prediction tools reported in the literature,
namely, pHisPred, iPhosH-PseAAC, Prospect and His-Cys metal binding prediction. All of these tools can
predict one His function at a time. His-Cys metal binding prediction tool can predict metal-binding of His
and Cys amino acids. The training data sets used to develop these prediction tools were small enough and
the sizes were comparable to the dataset used in this study (Table 6). The internal prediction accuracies
for iPhos-PseAAC, Prospect and pHisPred were 33%, 72% and 73% respectively. His-Cys metal binding
sites (predicting two amino acids at a time) have reported 73% precision and 61% recall values. The best
internal prediction accuracy was obtained from the current model, Hist-i-fy. However, there is a scope of
improvement for the model performance upon availability of larger data sets. For external validation, we
have tested the Hist-i-fy model on an independent dataset of histidine phosphorylation, generated from mass
spectroscopy, sample size, 34. The prediction accuracy of the Hist-i-fy model on the test dataset was 94.1%
only. To note, the training and the test datasets are independent of each other and the test dataset consists
of only one modification, phosphorylation. Moreover, the training accuracy was a cumulative accuracy for
all the modifications and the test accuracy was only for phosphorylation. Thus, the accuracy observed in the
test dataset was higher than that in the training dataset. For comparison purpose, the same test dataset was
used for histidine phosphorylation prediction using pHisPred tool. The prediction accuracy from pHisPred
was 94.0, comparable to the results from Hist-i-fy. For the first-time we report prediction of eight histidine
modifications from a given protein sequence, with a reasonably high accuracy.

Single Histidine Prediction Single Histidine Prediction Single Histidine Prediction
Name of the software No. of sequences used to train the model Performance of the algorithms (on the test dataset, size = 34)
iPhosH-PseAAC 795 Not working
PROSPECT 172 Not working
pHispred 560 94.0%
Multiple amino acid Prediction Multiple amino acid Prediction Multiple amino acid Prediction
His-Cys metal binding prediction 2982 Not working
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Multiple Histidine Prediction Multiple Histidine Prediction Multiple Histidine Prediction
Hist-i-fy 1584 94.1%

Table 6: Histidine function prediction models

3.4 Availability of Hist-i-fy:

The source code for Hist-i-fy is available athttps://github.com/dibyansu24-maker/Histifyand can be easily
operated on any platform, following the instructions on GitHub. Moreover, Hist-i-fy enables users to train
the model with the user-defined data.

Hist-i-fy prediction server is hosted onhttps://histify.streamlit.app/ using Streamlit, a powerful Python li-
brary for building interactive web applications. Through the intuitive and user-friendly interface of Stream-
lit, users can predict sequence modifications in two modes: single sequence or multiple sequences (to be
uploaded as a CSV file containing sequences and Histidine residue numbers). Streamlit seamlessly inte-
grates with GitHub, facilitating the hosting process and ensuring a smooth user experience. The Hist-i-fy
model processes the input data and generates predictions for the respective sequences, providing users with
comprehensive insights into their sequence modifications.

4. CONCLUSION:The functional characterization of the proteins and their amino acids lag behind the
protein sequence determination. Experimental characterization is time-consuming and laborious, those can
be complemented by computational methods. Histidine being one of the most important amino acid at
the enzyme active site, functional characterization would potentially address many biological problems. His
undergoes multiple modifications, sixteen such was reported in the UNIPROT database. However, only a
handful of His (single) function prediction tools are available. Objective of this study was to predict multiple
histidine modifications (functions) based on protein sequences. Here we trained and validated eight histidine
modifications using Convoluted Neural Network model. The training dataset was curated from UNIPORT
database. The overall accuracy produced by the CNN model was 75%, although, prediction of individual
modifications varies, depending on the data size, existing sequence pattern etc. The external validity of the
model was tested on an independent phosphorylation dataset obtained from proteomics study. Accuracy of
phosphorylation prediction (external validation) was 94.1% much higher than that of accuracy (including all
the eight modifications) from internal validation. The external validity result was comparable from existing
His phosphorylation prediction tool - pHisPred. The final CNN model (termed as Hist-i-fy) is publicly
available as a web application and a stand-alone program.5. REFERENCE:
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