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Abstract

Potential misclassification of a binary outcome measure is often ignored in study design, causing considerable loss of power,
and threatening the quality of research. Although there exist studies taking misclassification into account in data analysis, we
argue that it should be accounted for already in sample size calculation. We illustrate this by comparing sample sizes needed
with and without misclassification in case of the binomial test. Our sample size procedure, implemented as an R function,
calculates exact power, and accounts for non-monotonicity of power as a function of sample size, and for potential drop-out or
lack of data in the study. The necessary sample size is computed from the null proportion p o, the assumed true proportion pq,
and the probabilities of correct classification, sensitivity ( Se) and specificity ( Sp). Our results show that misclassification may
drastically affect the necessary sample size. For p ¢<0.5, the effect of specificity is stronger than that of sensitivity, whereas for
p 0>.5 it is the other way round. Effects are strongest when p o is near 0 or 1, especially for one-sided tests with p, located
farther from 0.5 than the null value p o. For example, even with Se = Sp = 99%, p ¢ = 0.01, and left-sided alternative, sample
size is more than fourfold of that without misclassification (3-fold if p ¢=0.02; 1.4-fold if p c=0.05).

Title:

The effect of misclassification on sample size: one-sample proportion test
Author information:

Corresponding author: Péter Hérsfalvi, PharmD

Affiliation(s): 1. University of Veterinary Medicine Budapest, Department of Biostatistics, Budapest, Hun-
gary 2. BiTrial Clinical Research, Budapest, HungaryE-mail address:harsfalvipeter@gmail.comORCID
no.: 0000-0002-6048-5017Author: Prof. Dr. Jens ReiczigelAffiliation(s): 1. University of
Veterinary Medicine Budapest, Department of Biostatistics, Budapest, HungaryE-mail ad-
dress: Reiczigel. Jeno Qunivet. hruORCID no.: 0000-0003-4232-6386

Abstract

Potential misclassification of a binary outcome measure is often ignored in study design, causing considerable
loss of power, and threatening the quality of research. Although there exist studies taking misclassification
into account in data analysis, we argue that it should be accounted for already in sample size calculation. We
illustrate this by comparing sample sizes needed with and without misclassification in case of the binomial
test. Our sample size procedure, implemented as an R function, calculates exact power, and accounts for
non-monotonicity of power as a function of sample size, and for potential drop-out or lack of data in the
study. The necessary sample size is computed from the null proportion p ¢, the assumed true proportionp,
, and the probabilities of correct classification, sensitivity (Se) and specificity (Sp) . Our results show that
misclassification may drastically affect the necessary sample size. For p ¢<0.5, the effect of specificity is
stronger than that of sensitivity, whereas forp ¢>.5 it is the other way round. Effects are strongest when p



o is near 0 or 1, especially for one-sided tests with p, located farther from 0.5 than the null value p 3. For
example, even with Se = Sp = 99%,p ¢ = 0.01, and left-sided alternative, sample size is more than fourfold
of that without misclassification (3-fold ifp ¢=0.02; 1.4-fold ifp ¢=0.05).
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Potential misclassification of a binary outcome must be considered in study design
Power of binomial test is non-monotonic: larger samples may lead to smaller power
Misclassification rates of 1-2% may imply 3-4-fold increase in sample size
Increase of sample size is greatest if probability of outcome is near 0 or 1
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1. Introduction

One-sample inference for binary data is one of the most common task in epidemiology and medical statistics
(Bland, 2015). One-sided testing is used more often than two-sided one, among others when assessing
freedom from disease or approving diagnostic tests, and in industrial quality control, evaluation of medical
devices, and in clinical trials of rare diseases (Cameron & Baldock, 1998; Cheng & Zhen, 2021; Feld et al.,
2015; Khan, Sarker, & Hackshaw, 2012; Lu, Li, & Xu, 2020). The left-sided alternative (H ¢: p = p o
againstH, : p < p ) is applied for example in proving freedom from disease, while the right-sided one (H
0:p = po againstH, : p > p o) is used if one wants to prove that a particular exposure increases the
probability of getting a disease. There exist several different tests, exact as well as asymptotic, for all testing
scenarios. Sample size calculation is available for each method, it needs the prescribed alpha and power, the
null proportion p o, and the assumed true proportion p, for which the prescribed power should be reached
(Chow, Shao, & Wang, 2008; Suresh & Chandrashekara, 2012).

In many cases, the outcome may be wrongly classified. When the outcome is disease status and a diagnostic
test is applied, the two usual measures of test quality are sensitivity, the proportion of correct diagnosis given
the subject has the disease, and specificity, the proportion of correct diagnosis given the subject does not have
the disease (Yerushalmy, 1947). Usually, a diagnostic test has less than 100% sensitivity and specificity which
must be accounted for in both the design and analysis of a study. There are analysis methods accounting
for misclassification (Lang & Reiczigel, 2014; Reiczigel, Foldi, & Ozsvari, 2010; Harsfalvi & Reiczigel, 2023)
but the sample size needed for the same power is higher than it would be without misclassification. Thus,
ignoring the possibility of misclassification in the sample size calculation may result in an underpowered,
inconclusive study, causing considerable financial loss and raising ethical concerns.

Most books on sample size calculation do not mention misclassification at all. Others have a short note
declaring this as a problem advised to account for but none of them have clear instructions for researchers.
(Chow et al., 2008; Julious, 2009; Kieser, 2020; Ryan, 2013). Intuition may suggest that if probability of
misclassification is as low as a few percent in both directions, the increase in sample size is ignorable, but
this is not true. To show this, we develop sample size calculation for the one-sample proportion test under



misclassification and investigate how the necessary sample size depends on the sensitivity, specificity, and
effect size.

2. Methods

In this study we focus on the exact binomial test (a.k.a. the Clopper and Pearson test) (Chow et al., 2008;
Clopper & Pearson, 1934). For a short description of the test, let X denote a variable from a binomial (n, p )
distribution and z its observed value. Letn be the sample size andb,, , (z ) = P (X =z )andB,, (vt ) =P
(X < z) denote the probability mass function and the cumulative distribution function of the binomial
distribution with parameters p andn . Assume that based on the observation of x we test forH o: p = p g
againstH, : p [?] p o(two-tailed test) orH, : p < p gorH, : p > p o(one-tailed tests). The alpha level critical
region of the test, calculated by inverting the Clopper-Pearson exact confidence interval, is as follows:

{z : Yot obnp (i) <a}.(left-tailed  test){z : Sor by (i) < a }(right-tailed
test){z: > _gbnp (i) <a/2}U{x:Y 0 bn,p (i) <af2} (two-tailed test)

If the outcome is subject to misclassification with known sensitivity and specificity, the so-called Rogan and
Gladen formula can be applied to calculate the true proportion from the observed one (Rogan & Gladen,
1978). The formula for this adjustment looks like

Padj — (pobs + Sp* 1) / ( Se + Sp - 1)

where Se and Sp denote the sensitivity and specificity of the diagnostic test and pyq; andp,ss denote the
adjusted and observed proportions.

Reiczigel et al (Reiczigel et al., 2010) showed that applying the Rogan & Gladen formula to the endpoints
of a confidence interval for the sample proportion results in a valid confidence interval for the true propor-
tion. Furthermore, the adjustment preserves exactness of the CI. These properties of the Cls have similar
implications on testing.

We carried out the investigations setting the alpha error rate to 5% and power to 80%. For some selected
null proportionsp ¢ in H ¢ and assumed true proportions p, (Table 1) we determined the necessary sample
size n by exact power calculation. For eachn we calculated the power so that we determined the alpha-level
critical region C' of the test and calculated the probability of C' assuming a binomial distribution withp =p,

We calculated sample sizes for sensitivity and specificity values 1, 0.99, 0.98, 0.95, 0.90. As we suspected
that increase in necessary sample size may differ for the two one-tailed tests (even for the two-tailed test
depending on whether p, is located left or right from p o), we investigated each one separately. Thus, we
set up two p, for each p ¢: one left and the other right fromp o (see Table 1). These were selected so that
the sample size in case of no misclassification takes a few hundreds. We did not include p ¢ values above 0.5
because results for p ¢>0.5 are mirror-images of those for p o< 0.5. For example, power of test for p (=0.9
withp, =0.96, Se =0.99, and Sp =.95 is same as that for p (=0.1 withp, =0.04, Se =0.95, and Sp =.99.

It is known that the power of the binomial test does not depend monotonically on sample size but displays
a saw-tooth pattern (Chernick & Liu, 2002), thus, it may occur that for some n the power is above 80% but
for a greater sample size it falls again under 80%. An example of this is shown in Figure 1.
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Figure 1. Power of the binomial test is not a monotonic function of sample size (p ¢ = 0.5, p, = 0.4,
alternative = "left-sided”, Se = Sp = 1)

Unfortunately, the actual sample size of a study, despite the hardest efforts, may differ from the planned one,
and non-monotonicity of power invalidates the simplest method of handling this “to play safe, add 10% to
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the calculated sample size”, which works well for continuous outcomes. Even though the saw-tooth pattern
of the power function is well known, it is easy to find clinical trials still using this simple but risky method
of handling potential drop-out patients (clinicaltrials.gov, NCT01693614 and NCT02844582). To avoid this
trap, some authors recommend choosing the smallest n so that for eachm [?] n the power is at least 80%
(Chernick & Liu, 2002). However, if it can be ensured that the drop-out rate remains under a certain limit A
, say, under 5%, a smaller sample size than that is sufficient. Therefore, we propose a sample size procedure
that searches for the minimal sample size n so that even in case of some drop-out, not exceeding the specified
proportion A , the power reaches the prescribed value. That is, for each sample sizem from (n —A -n ) to n
the power reaches the prescribed value, say 80%.

For the analyses, we prepared an R function that carries out the sample size calculation in case of known
sensitivity and specificity of the diagnostic test used for the prevalence estimation. The function can compute
sample size for five tests: Clopper-Pearson exact test, Wald-test, Wilson’s score test, Agresti-Coull-test, and
Blaker’s exact test. It has an additional argument to specify the highest proportion of data loss A (due to
drop-out or other reasons), which still must not result in power less than the prescribed value. The function
returns the minimal sample size n so that prescribed power is reached for each sample size from (n — A n )
to n . The function is available at GitHub:https://github.com/Ragnar0ss/.

We calculated sample sizes assuming a drop-out rate of A =0.15, that is, power remains at least 80% up to
15% drop-out.

Table 1. Null and assumed true probabilities used in the study. Left- and right-sided tests were evaluated
separately.

Do .01 .02 .03 .05 .10 .20 .30 .50

por, 0005 .001 .003 .01 .04 .12 .20 .40
Dar 04 07 .09 12 18 32 42 .62

3. Results and discussion

We found that even small misclassification probabilities may result in considerable increase of sample size
necessary to reach the prescribed power. Table 2 illustrate dependence of sample size onp o, Se , and Sp .
Full details of the results are given in the supplementary material.

Hosted file

image2.emf available at https://authorea.com/users/630849/articles/650461-the-effect-of-
misclassification-on-sample-size-one-sample-proportion-test

Figure 2. Dependence of the necessary sample size on sensitivity and specificity for p ¢=0.05, with left- and
right-sided alternative. Sensitivity is coded by letters (a-100%, b-95%, c-90%, d-85%, e-80%)

For p ¢<0.5 specificity has a stronger effect on the sample size. It is strongest if p ois close to 0 and decreases
towards 0.5. Effect of specificity is stronger for left-sided than for right-sided alternative (Figure 2). Effect
of sensitivity is about the same in the whole range ofp ¢, for left- as well as right-sided alternative.

Due to symmetry, for p ¢>0.5 it is the other way round, influence of sensitivity is stronger than that of
specificity. The latter does not depend much onp o, nor on the alternative, whereas the former has the most
dramatic effects for p ¢ near 1, with right-sided alternative.

Se / Sp pO (alternative = left-sided) pO (alternative = left-sided) pO (alte
0.01 0.02 0.03

1 352 176 185

0.99 1440 520 312
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Se / Sp pO (alternative = left-sided) pO (alternative = left-sided) pO (alte:

0.98 2376 762 436

0.95 5437 1526 840

Se / Sp pO (alternative = two-sided with pa < p0) pO (alternative = two-sided with pa < p0) pO0 (alte
0.01 0.02 0.03

1 433 216 217

0.99 1830 623 386

0.98 2971 922 562

0.95 6846 1903 1051

Table 2. - Sample sizes for all alternatives in scenarios with equal sensitivity and specificity

Although the most dramatic effects of misclassification were observed when p o was near 0 or 1 (more than
fourfold increase in sample size for p ¢=0.01 with left-sided alternative and Se = Sp = 99%), even in the
best case, that is when p ¢=0.5, the increase in necessary sample size was 22% with Se =Sp =95%, and 9%
with Se =Sp =98%.

For the two-sided alternatives, results differ depending on whether the assumed true proportion p, is smaller
or greater than p ¢. Increase of necessary sample size is greater than that for the respective one-sided
alternative illustrated by the extreme sample size increase of more than 6400 individuals (from an initial
433) in case of the two-sided alternative withp ,<pg whenp (=0.01 with Se =Sp =95%.

Our results showed that ignoring even small misclassification probabilities may result in considerable power
loss. Here we studied the exact binomial test in detail, but results are similar for other tests for the binomial
proportion. Our R function enables sample size calculation for any test given an R function for the test
is available. Presumably similar tendencies could be observed in the comparison of two or more binomial
samples, which will be investigated later.

Although not presented in the article, we performed the same calculations for several asymptotic methods
as well (Agresti-Coull, Wald and Wilson) resulting in similar amount of sample size increase.

4. Conclusion

Potential misclassification must be considered in sample size calculation for the one-sample binomial test.
Even if sensitivity and specificity are high (98-99%), necessary sample sizes may be much higher than without
misclassification.
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