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Abstract

Understanding the evolutionary processes that influence fitness is critical to predicting species’ responses to selection. Interac-

tions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation

or maladaptation especially in heterogeneous landscapes. Populations experiencing novel environments or resources are ideal

for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We

used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes

significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used

whole genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found

signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic

differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single popula-

tion between habitats with and without the lethal plant, highlighting the effects of strong selection. Our work highlights the

potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.
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Abstract  16 

 Understanding the evolutionary processes that influence fitness is critical to predicting 17 

species’ responses to selection. Interactions among evolutionary processes including gene flow, 18 

drift and the strength of selection can lead to either local adaptation or maladaptation especially 19 

in heterogenous landscapes. Populations experiencing novel environments or resources are ideal 20 

for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally 21 

co-evolved interactions. We used the interaction between a native herbivore that oviposits on a 22 

patchily distributed introduced  plant that in turn causes significant mortality to the larvae to test 23 

for signatures of local adaptation in areas where the two co-occurred. We used whole genome 24 

sequencing to explore population structure, patterns of gene flow and signatures of local 25 

adaptation. We found signatures of local adaptation in response to the introduced plant in the 26 

absence of strong population structure with no genetic differentiation and low genetic variation. 27 

Additionally, we found localized allele frequency differences within a single population between 28 

habitats with and without the lethal plant, highlighting the effects of strong selection. Our work 29 

highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene 30 

flow and low genetic variation. 31 

Keywords 32 

evolutionary traps, novel resources, maladaptation, Pieris, Brassicaceae, gene flow - selection 33 
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Introduction 35 

 Strong spatially heterogenous selection can lead to locally adapted populations. The 36 

ability of populations to adapt to local conditions depends on substantial genetic variation, large 37 

effective population sizes and the changes in their habitat (Franch-Gras et al., 2018; Hedrick, 38 

2011; Lande, 1976; Lenormand, 2002; Perrier et al., 2020; Simons, 2011). Additionally, local 39 

adaptation is maintained through the balance of strong selection and limited gene flow between 40 

divergently adapted populations (Blanquart et al., 2013; Hereford, 2009; Savolainen et al., 2013; 41 

Whitlock, 2015). Across a heterogeneous landscape, the interplay between gene flow and 42 

selection can lead to a geographic mosaic with varying levels of adapted and maladapted sub-43 

populations (Gomulkiewicz et al., 2000; Thompson, 1999a, 2005). 44 

 Novel environments can derail adaptative evolution by decreasing the fitness of formerly 45 

locally adapted individuals (Brady, Bolnick, Angert, et al., 2019; Reed et al., 2003; Robertson & 46 

Hutto, 2006; Schlaepfer et al., 2002, 2005). The outcome of interactions  between native 47 

populations and novel environments depends strongly on population connectivity among 48 

divergently adapted populations as well as the population's potential to adapt to novel conditions 49 

(Bolnick & Nosil, 2007; Farkas et al., 2015, 2016; Nosil et al., 2019). This often results in 50 

persistent mismatches with or maladaptation to the new resources or conditions (Brady, Bolnick, 51 

Angert, et al., 2019; Chew, 1977b; Cotto & Ronce, 2014; Singer & Parmesan, 2018; Steward et 52 

al., 2022; Steward & Boggs, 2020).  Such cases provide unique opportunities for understanding 53 

the process of local adaptation because the character, scale and timeline of the environmental 54 

change are often well known (Chew, 1977b; Singer & Parmesan, 2018, 2019; Steward et al., 55 

2022; Steward & Boggs, 2020).  Identifying and understanding these interactions are critical to 56 
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understanding species responses to novel environments, especially in the face of anthropogenic 57 

disturbance and climate change.  58 

 Herbivorous insects have a narrow range of hostplants that support development, and 59 

those insects form tightly co-evolved interactions with their hosts (Ehrlich & Raven, 1964; Hardy 60 

& Otto, 2014; Jaenike, 1990; Joshi & Thompson, 1995; Thompson, 1999b). Non-native or 61 

invasive species can break down long-standing interactions and lead to maladaptation in either or 62 

both of the interacting partners, either by outcompeting and replacing native species or through 63 

eco-evolutionary traps (LaForgia et al., 2020; Richard et al., 2019; Saul & Jeschke, 2015; 64 

Schlaepfer et al., 2005; Schweiger et al., 2010). Eco-evolutionary traps arise when previously 65 

adaptive traits become maladaptive in the face of novel resources or environments, such that the 66 

organisms prefer the low fitness-value novel resource instead of the high fitness-value native 67 

resources (Robertson et al., 2013; Robertson & Chalfoun, 2016; Robertson & Hutto, 2006; 68 

Schlaepfer et al., 2002).  69 

 Eco-evolutionary traps resulting from maladaptive oviposition choice have been 70 

documented in many insects (Horváth et al., 2007, 2010; Singer & Parmesan, 2018). Lepidoptera, 71 

specifically butterflies, are susceptible to laying eggs on low quality novel hosts plants (Nakajima 72 

& Boggs, 2015; Singer & Parmesan, 2010, 2019; Steward et al., 2022; Steward & Boggs, 2020; 73 

Yoon & Read, 2016). Hence, butterflies serve as an ideal system to test the impacts of novel 74 

resources on local adaptation in species interactions. We here use a landscape genetics approach 75 

to identify genomic signatures of local adaptation in the specialist herbivore Pieris 76 

macdunnoughii Remington, 1954 (Pieridae; formerly P. napi macdunnoughii) (Chew & Watt, 77 

2006) in the presence of the toxic invasive plant Thlaspi arvense (Brassicaceae). Pieris 78 
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macdunnoughii females recognize T. arvense as a potential host plant due to chemical cue 79 

similarity with the native brassicaceous hosts and lay eggs on it (Chew, 1977b, 1977a, 1980; 80 

Nakajima, 2014; Steward et al., 2019, 2022). However, larvae from eggs laid on T. arvense have 81 

significant mortality due to the toxicity of the plant (Chew, 1977b; Steward et al., 2019). We 82 

sampled P. macdunnoughii in the East River Valley, Gunnison County, Colorado, where the 83 

butterfly oviposits on both native host plants and T. arvense.  84 

 Using genome-wide data from whole genome resequencing of individuals from areas 85 

where both the plants occur and from areas where T. arvense is absent, we identified candidate 86 

single nucleotide polymorphisms (SNPs) that are under selection in relation to the presence of T. 87 

arvense in the habitat. We specifically quantify: i) population structure of P. macdunnoughii in 88 

the East River Valley, ii) gene flow patterns of P. macdunnoughii between areas with and without 89 

T. arvense and iii) underlying signatures of selection in P. macdunnoughii in response to the 90 

presence of P. macdunnoughii in the landscape. Our work builds on decades of existing research 91 

on this system to address the genetic basis underlying maladaptive behavior in the face of novel 92 

resources. 93 

Materials and methods 94 

Study organisms 95 

 Pieris macdunnoughii is a montane butterfly distributed across the southern Rocky 96 

Mountains in North America. Pieris macdunnoughii is a specialist herbivore, and females 97 

oviposit on and the larvae feed on several native Brassicaceae (mustard) plants including 98 

Boechera spp., Cardamine cordifolia, Draba aurea and Descurainia incana (Chew, 1977b, 99 

1977a, 1980). Pierine larvae have evolved resistance to the toxicity of glucosinolates (secondary 100 

metabolites) found in the Brassicaceae by modifying the glucosinolate hydrolysis pathway to 101 
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form thiocyanates and epithionitrilies that are less toxic, instead of forming isothiocyanates 102 

(Edger et al., 2015; Wheat et al., 2007). Although pierine butterflies are resistant to glucosinolate 103 

toxicity, they are susceptible to species whose glucosinolate concentration or composition differs 104 

from the ones with which they have co-evolved locally (Keeler & Chew, 2008). 105 

 Thlaspi arvense (L.) (Brassicaceae) is native to Eurasia and was introduced to the 106 

Gunnison basin, Colorado in 1880s (Chew, 1977b). It is an early successional plant and is found 107 

in heavily disturbed areas. It has colonized elevations up to 2900m (Best & McIntyre, 1975; 108 

Warwick et al., 2011). Pieris macdunnoughii females recognize and lay eggs on T. arvense as a 109 

potential host plant in areas where they both co-occur due to similarity of glucosinolates, and 110 

other cues shared among the native and nonnative host plants. However, none of the larvae reared 111 

on T. arvense in the lab survive, thus leading to an evolutionary trap (Nakajima, 2014; Steward & 112 

Boggs, 2020). Previous research has indicated that the chemical profile of T. arvense is 113 

comprised mostly of the aliphatic glucosinolate sinigrin, whereas native mustards (e.g., C. 114 

cordifolia) that contain both aliphatic and aromatic glucosinolates (Rodman & Chew, 1980). 115 

Additionally, recent research has indicated that sinigrin acts as a pre-ingestive deterrent and 116 

larvae exhibit delayed feeding on T. arvense compared to C. cordifolia (Steward et al., 2019). 117 

Population sampling and study area 118 

 The study area is situated in the East River valley, Gunnison County, Colorado spanning 119 

an altitude from ca. 2800 to 3400m a.s.l. (Figure 1). We sampled 100 female adult butterflies 120 

during June - August 2016 from 5 locations and 235 adult butterflies of both sexes during June - 121 

August 2019 from 7 locations. Our final sample size consisted of 335 individuals from 11 122 

locations. The distance between sampling sites ranged from 1km to 28km. All butterflies were 123 
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caught using an aerial net. We collected whole body specimens of females and stored them in 124 

98% ethanol in 2016. In 2019, 2mm x 2mm square of hindwings and a pair of midlegs were 125 

clipped and stored in 98% ethanol, after which the butterflies were marked and released. We also 126 

surveyed the presence/absence of T. arvense in all our sampling locations. We recorded T. 127 

arvense as present in 2 sites in 2016 (of 5 sites sampled) and 2019 (of 7 sites sampled). Our final 128 

sampling list consisted of 3 sites where T. arvense was present (of 11 sites sampled).  129 

DNA extraction and WGS library preparation 130 

 We extracted genomic DNA from thorax (2016 samples) and from wing clips and a pair 131 

of midlegs (2019 samples) using the DNeasy Blood & Tissue Kit (Qiagen, USA). We followed 132 

the manufacturer's protocol, with the following modifications: We increased the Proteinase K 133 

incubation step to 16 hours, used ice-cold ethanol to precipitate DNA, and heated the elution 134 

buffer to 57 ºC before DNA elution. We quantified the DNA concentration using a NanoDrop ™ 135 

2000/2000c. We used an in-house Tn5 tagmentation protocol following Andolfatto et al. (2011) 136 

for our library preparation. 2-10ng/ul of genomic DNA was tagmented with 1:4 diluted Tn5 137 

transposase and 40uM pre-annealed oligonucleotides. The tagmentation was carried out in a final 138 

volume of 20uL containing 4uL of 5x TAPS buffer. Samples were incubated at 55 ºC for 7 139 

minutes followed by rapidly lowering the holding temperature to 10 ºC. The Tn5 transposase was 140 

deactivated using 2.5uL 0.2% SDS at 55 ºC for 7 minutes with a heated lid. PCR-based barcoding 141 

and enrichment was carried out in a reaction mixture of 20uL consisting of 2 uL of the 142 

tagmentation reaction product, 10uL of 2x OneTaq Hot Start DNA polymerase, 4uL of nuclease 143 

free water and 2uL (10uM) each of i7 and i5 Illumina primer. The thermocycling conditions 144 

included initial denaturation at 72ºC for 3 minutes followed by denaturation at 94ºC, followed by 145 
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10 cycles with 10s at 94ºC, 15s at 62ºC, 30s at 68ºC and final extension for 5min at 68ºC. We 146 

constructed 5 replicate libraries for each sample, then pooled all the replicates and samples (1920 147 

libraries). Size selection of 300-500 bp was carried out using 0.8x volume and 0.6x volume 148 

AmpureXP beads. All the libraries were sequenced at MedGenome on an Illumina Novaseq S4 149 

platform, generating 150bp paired end reads. 150 

SNP (Single nucleotide polymorphisms) calling 151 

 Demultiplexed raw Illumina reads and adapter sequences were trimmed using fastp (Chen 152 

et al., 2018) and mapped against the reference genome (Steward et al., 2021) using bwa mem 153 

with default parameters (Li, 2013). The resulting SAM files were converted to BAM format, 154 

sorted and indexed using samtools (Li et al., 2009). Duplicates were marked and identifier groups 155 

were added using PICARD TOOLS with default parameters (“Picard Toolkit,” 2019). The 156 

genome dataset had a coverage of 6.84x ± 2.42x  (mean ± s.d) and was quantified using genozip 157 

(Lan et al., 2021). Single nucleotide polymorphisms (SNPs) were called across all samples using 158 

GATK HaplotypeCaller to generate individual intermediate gVCF files that were then imported 159 

using GATK GenomicsDBImport and were finally genotyped using GATK GenotypeGVCFs. 160 

We used GATK VariantFilteration to further hard filter SNPs and Indels separately using the best 161 

recommended workflow practices (Van der Auwera et al., 2013), and finally used GATK 162 

SelectVariants to include only those variants that met the criteria: QD > 2, base quality > 30, 163 

SOR < 3.0, FS < 60, MQ > 40, MQ Rank Sum > 12.5, Read Pos Rank Sum > 8.0 . We then used 164 

VCFtools to retain only high quality bi-allelic variants using the following parameters: minimum 165 

allele count = 4, max missing = 0.20, min q= 30, min-mean DP = 6, max mean DP = 60, minDP 166 

= 6, max DP = 60. We further used PLINK (Purcell et al., 2007) to prune those loci that were at 167 
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LD with the following parameters: r2>0.2 in a window of 50bp. Our final sample size consisted 168 

of 335 individuals and 768,339 SNPs. 169 

Population structure 170 

 We used a subset of 735,000 putatively neutral SNPs that were obtained after removing 171 

outlier loci (see below) to discern the population structure. Principal Component Analysis (PCA) 172 

clustering was carried out using PLINK (Purcell et al., 2007). We complemented our PCA 173 

analysis with archetypal analysis following Gimbernat-Mayol et al. (2022), to test biases in the 174 

PCA analysis due to irregular sample sizes  and to identify latent factors. We removed multi-175 

allelic SNPs prior to running archetypal analysis and performed the analysis with k ranging from 176 

2 to 4. We picked the k whose PC1 and PC2 axes together accounted for the most variance. We 177 

additionally used ADMIXTURE to corroborate the results from PC and archetypal analysis and 178 

to assess population structure and ancestry (Alexander et al., 2009). We performed 179 

ADMIXTURE analysis for ancestral clusters K ranging from 1 to 6 and selected the K value with 180 

the lowest cross-entropy as the best estimate of population admixture. 181 

Nucleotide summary statistics 182 

 We used geoVar (Biddanda et al., 2020) to assess if alleles were shared among 183 

habitats/sites or if they were localized to each habitat/site. We estimated allele frequency 184 

distribution (site frequency spectrum) in a) all 11 sites in the East River Valley and b) in areas 185 

with and without T. arvense. We converted our VCF into a frequency table using geoVar (n = 186 

768339 SNPs), then calculated the cumulative fraction of variants that contributed to the allele 187 

frequency pool for each site/habitat. We used the allele frequency distribution in geoVar in place 188 

of widely used SFS  (Site Frequency Spectrum) methods (Gutenkunst et al., 2009), since geoVar 189 
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permits simultaneous comparisons of SFS for more than 2 populations. Furthermore, geoVar 190 

allows us to classify minor alleles into common (>5% frequency among all samples), low (1 - 5% 191 

frequency), rare (<1% frequency) and unobserved (allele not present).   192 

 Using VCFtools (Danecek et al., 2011) on our SNP dataset (consisting only of variant 193 

sites, n = 768339 sites), we calculated expected and observed heterozygosity of butterflies for 194 

sites where T. arvense is present and sites where T. arvense is absent. We used pixy (Korunes & 195 

Samuk, 2021) to estimate genome-wide nucleotide (π) diversity. For the input for pixy, we 196 

specifically used both the invariant and variant sites in our input VCF file (n = 69339609 sites) as 197 

recommended by the authors to prevent bias in our estimates. We used a 10kb sliding window 198 

with a 50bp step to calculate π estimates. We used Bartlett's test to test for differences in 199 

heterozygosity and nucleotide diversity between the habitats. We used VCFtools on our SNP 200 

dataset (consisting only of variant sites, n = 768339 sites) to calculate pairwise Fst for all 201 

combinations of sites in the East River Valley. We used a sliding window approach with an 202 

interval window of 1kb with a 50bp step for estimating pairwise Fst.  203 

Migration surface/gene flow 204 

 We used divMigrate from the diveRsity package (Keenan et al., 2013) in R (R Core 205 

Team, 2020) to estimate directional relative migration rates among sampling sites and 206 

PGDSpider (Lischer & Excoffier, 2012) to process the input for divMigrate. The relative 207 

migration network was scaled to the largest estimated magnitude based on Nm as a measure of 208 

genetic distance. We assessed the significance of the migration network by running 1000 209 

bootstrap iterations.  210 
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 We used EEMS (Petkova et al., 2015) to examine spatial variation in migration among 211 

populations (demes) and genetic diversity within populations. EEMS estimates genetic 212 

differentiation using an isolation-by-distance model of geo-referenced samples to visualize 213 

patterns of potential barriers and corridors of gene flow. We used PLINK to convert the VCF file 214 

to BED files and calculated a genetic dissimilarity matrix using bed2diff in EEMS. We ran 215 

EEMS using 400 and 800 demes and a MCMC run with 1.5 million burn-in iterations followed 216 

by 15 million sampling iterations. We ran multiple iterations and adjusted the proposal variance 217 

rates after each run until runs converged (Figure S1). The parameters used for the final run are 218 

provided in the supplementary file (Table S1). We then combined the final output of all the 219 

demes to produce a composite migration and diversity landscape. Migration and diversity rates 220 

were illustrated on a log10 scale relative to the overall migration and diversity across the entire 221 

landscape, such that a rate of one indicated tenfold higher migration and diversity rates relative to 222 

the average.  223 

Genotype-environment association (GEA) analysis 224 

 Genome-wide scans for outlier loci were carried out in BayPass (Gautier, 2015). We 225 

converted our VCF file into an allele count matrix (n=768339 SNPs) using an in-house python 226 

script for BayPass input. We first used the standard covariate model with the Importance 227 

Sampling (IS) approximation (-covis) in BayPass to obtain the following parameters: a) the 228 

population scaled covariance matrix and b) the XTX (SNP-specific Fst that corrects for observed 229 

population covariance) score of overall differentiation among sites. We then used the auxiliary 230 

covariate model using the MCMC approximation along with the Bayesian auxiliary variable to 231 

identify loci that were associated with the presence/absence of T. arvense. We additionally 232 
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simulated 100,000 loci using the BayPass sim to calibrate the top 1% significance threshold for 233 

XTX. For environmental association, we used the Bayes Factor (BF) metric in deciban units (dB) 234 

as a measure of support for association with T. arvense. We used a cut-off of db>20 (decisive 235 

evidence) in favor of association based on Jefferey's rule (Jeffreys, 1961). Loci associated with T. 236 

arvense as well as those under adaptive differentiation were used as input in SNPEff (Cingolani 237 

et al., 2012) and BlastX (Altschul et al., 1990) to identify the underlying genes and their effects 238 

on protein structure. 239 

Results 240 

Population structure and admixture  241 

 Our Principal Component Analysis (PCA) and archetypal analysis using neutral loci 242 

failed to separate individuals into distinct clusters and hence did not reveal any population 243 

structure among all sites in the East River Valley (PCA: PC1=6.56% and PC2=5.65%; Figure 2a; 244 

archetypal analysis: PC1=52.92%, PC2=47.08%; Figure 2b). Our ADMIXTURE analysis 245 

corroborated the PCA and archetypal analysis. The lowest Cross Validation (CV) indicated K =1 246 

(Table S1). Together, these results indicate that P. macdunnoughii sampled from sites throughout 247 

the East River valley comprise a single population.  248 

Genetic variation and differentiation 249 

 We quantified the relative abundance of private and shared alleles in a) between all sites 250 

where T. arvense is absent or present (i.e. between habitats) and b) pairwise comparison among 251 

individual sites. The allele frequency distribution for P. macdunnoughii in habitats with and 252 

without T. arvense were mostly low frequency alleles that were localized to each habitat (Figure 253 

3a; 26% of cumulative fraction of variants), followed by 22% of shared and common alleles. The 254 
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rest of the variants were either rare or low frequency alleles that were localized to each habitat 255 

(Figure 3a). In contrast to the habitat-based allele frequency distribution, pairwise comparison of 256 

allele frequencies among sites consisted of alleles that were shared/common amongst all the sites 257 

(Figure 3b; 14% of the cumulative fraction of variants).  258 

 Overall, we found higher genetic variation among P. macdunnoughii in areas without T. 259 

arvense compared to areas with T. arvense (Figure 4a; Bartlett's K2=6.95; df=1; p=0.008). The 260 

observed heterozygosity was less than expected in areas without T. arvense (Figure 4a; Bartlett's 261 

K2=39.63; df=1; p<0.001) and the observed vs expected heterozygosity was similar in areas with 262 

T. arvense. Our genome-wide average estimates of nucleotide diversity (π) diversity indicated a 263 

significant increase in π in sites without T. arvense compared to sites with T. arvense (Figure 4b;      264 

Bartlett's k2=9.611; df=1; p=0.001).  265 

 Our estimate of genome-wide mean pairwise Fst among all combinations of sites was less 266 

then <0.001 (Figure S2), indicating low genetic differentiation and high relatedness among sites. 267 

A correlation map based on the population co-variance matrix indicated that all sites were weakly 268 

positively correlated. Accordingly, the Mantel test did not reveal any signs of isolation by 269 

distance (p=0.14, r=0.05).  270 

Migration 271 

 We observed significant variation in the magnitude and direction of relative migration of 272 

P. macdunnoughii among all sites (Figure 5). The estimated relative migration rates ranged from 273 

0 to 1 with an average of 0.56. We observed unidirectional and bidirectional migration from areas 274 

with T. arvense to areas without T. arvense and vice versa. The highest rates of gene flow 275 

(Nm>0.85) were observed from Gothic Townsite to Elko Park (Nm=0.89) and vice versa 276 
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(Nm=1), and from Quigley Creek to Gothic Townsite (Nm=0.96). Additionally, we observed 277 

high rates of relative gene flow to and from Gothic Townsite compared to other sites (Figure 5). 278 

Estimated effective migration surface (EEMS) contours revealed the low relative effective gene 279 

flow of P. macdunnoughii in the East River Valley (Figure 6a). Most of the potential barriers also 280 

showed high posterior probabilities in the Bayesian estimation of migration parameters (Figure 281 

S3). Posterior probabilities of migration parameters for sites in the Upper East River valley 282 

(Copper Creek, Copper Creek 1st Crossing, Gothic Townsite, Rustler's Gulch, Quigley Creek, 283 

and Elko Park) were higher (>0.95) compared to the sites in the Lower East River valley (Lower 284 

and Upper Brush Creek and Lower and Upper Cement Creek), which had lower posterior 285 

probabilities <.90. We also estimated the relative effective genetic diversity of P. macdunnoughii 286 

in the East River valley. Our analysis highlighted low relative effective genetic diversity of P. 287 

macdunnoughii in all sampled sites (Figure 6b). All sites showed a posterior probability of >.90 288 

(Figure S4). 289 

Genotype-environment association (GEA) analysis 290 

 The BayPass core model (-covis) allowed us to estimate the scaled covariance matrix of 291 

population allele frequencies that quantify genetic relationship among pairs of sites. The results 292 

of Ω estimates agreed with our Fst estimates indicating that all sites are genetically similar (Figure 293 

S2).  294 

 To identify outlier loci, the XtX (SNP specific Fst) estimates were calibrated by analyzing 295 

a POD (pseudo-observed data set) of 100,000 SNPs. At the 1% threshold (XtX >26) for POD, we 296 

identified 8600 outlier SNPs (Figure S5). Our analysis that included presence/absence of T. 297 

arvense (as the environmental covariate) under the auxiliary covariate model identified 1008 298 
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SNPs that were associated with the presence of T. arvense (BF >20) (Figure S6). Overall, we 299 

identified nine SNPs that were shared by both the XtX outlier loci analysis and environmental 300 

association analysis (Figure 7).  301 

 Our SNPeff analysis indicated that of the nine SNPs, one was identified as a low impact 302 

protein coding change in the exon (unlikely to change protein behavior) with the rest of the SNPs 303 

impacts classified as modifiers (effects on non-coding regions and/or effects of gene regulation). 304 

The BlastX analysis of these regions revealed that these genes were primarily involved in 305 

cytoskeletal organization, DNA damage repair, lipidation of chylomicrons in the intestines, eye 306 

development, epithelial development, and catalysis of phosphoric acid. Importantly, regions that 307 

were under selection and associated with the presence of T. arvense have previously been linked 308 

to larval development and metabolism (Table 1, S2). 309 

Discussion 310 

 Pieris macdunnoughii butterflies in the East River Valley comprise a single admixed 311 

population. Allele frequency differences between habitats (i.e., presence or absence of Thlaspi 312 

arvense) were largely driven by localized alleles, whereas pairwise allele frequency differences 313 

among sites were driven by geographically widespread alleles. Additionally, heterozygosity of 314 

butterflies was lower in areas where T. arvense occurred compared to areas where the plant was 315 

absent. Examining relative and effective gene flow patterns revealed bidirectional, asymmetric 316 

relative gene flow and low effective gene flow across the East River valley. Finally, we identified 317 

signatures of selection in P. macdunnoughii in response to T. arvense. Based on our annotation of 318 

the assembly, it appears that selection is affecting loci involved in larval ability to feed on T. 319 

arvense, not the adult females’ recognition and discrimination of potential hosts. In sum, we 320 
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identified genetic signatures of local selection in a native herbivore in response to a novel toxic 321 

hostplant at a fine geographic scale despite absence of strong population structure and genome-322 

wide differentiation.  323 

Evidence for a single population among sites 324 

 Our results did not separate individuals into distinct clusters and indicated that all sites 325 

comprise a single population, which accords with previous dispersal estimates for P. 326 

macdunnoughii in this area. Mark-release-recapture surveys in the 1970s and early 2000s 327 

estimated P. macdunnoughii mean dispersal between 400m and 700m (among dispersants, with 328 

approximately 0.42% of recaptures being dispersants) (Nakajima, 2014) which generally exceeds 329 

the extent of T. arvense in invaded areas (Nakajima et al., 2013). P. macdunnoughii disperses 330 

along large elevational gradients (Nakajima, 2014), occurring up to 4500m.a.s.l. Several species 331 

of  butterflies are known to disperse larger distances, thus increasing gene flow and blurring 332 

population boundaries across heterogeneous environments (Kitahara, 2016; Spieth & Cordes, 333 

2012; Takami et al., 2004).  334 

Distinct allele frequency distribution patterns between habitats and among sites 335 

 Recent research has highlighted the utility of allele or site frequency spectra (AFS/SFS) to 336 

identify outlier loci, understand population structure, infer demographic changes, and identify 337 

signatures of positive selection. In our study, AFS differences of P. macdunnoughii between 338 

areas with and without T. arvense was largely driven by alleles that were localized or private to 339 

each habitat, even in the absence of strong population structure. However, overall differences 340 

among sites in general were largely due to differences in shared, common alleles. This is in 341 

contrast with theoretical and empirical work in other systems, which showed that pairwise 342 
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differences among sites within a population were driven by shared, common alleles (Biddanda et 343 

al., 2020; Gutenkunst et al., 2009). For instance, analysis of large-scale human genomic data 344 

from the 1000 Genomes Project (1KGP) showed that allele differences between populations were 345 

due to localized and rare alleles and differences between pairs of individuals regardless of 346 

population origin were due to common variants found globally (Biddanda et al., 2020). Allele 347 

frequency differences between populations can result due to local adaptation and/or new 348 

mutations specific to the population (Günther & Coop, 2013). In our case, the abundance of 349 

localized, low frequency alleles between the habitats could be due to the selection imposed by T. 350 

arvense leading to putative adaptive alleles.    351 

Mechanism underlying local adaptation with high gene flow and low genetic variation. 352 

 Our results highlight important mechanisms that underly local adaptation. Population 353 

genetics theory suggests that local adaptation occurs in the absence of gene flow and that high 354 

gene flow often leads to homogenization and maladaptation (Bachmann et al., 2020; Farkas et al., 355 

2016; Gandon et al., 1996; Garant et al., 2007; Kirkpatrick & Barton, 1997; Lenormand, 2002). 356 

However, recent studies showed that local adaptation occurs in the presence of strong gene flow 357 

in certain scenarios (Fitzpatrick et al., 2015; Tigano & Friesen, 2016). For example, in spatially 358 

and temporally varying habitats, gene flow augments standing genetic variation and thus 359 

increases local adaptation (Blanquart et al., 2012, 2013). Local adaptation can also occur in the 360 

presence of gene flow through adaptive introgression and strong selection against the immigrant 361 

alleles (Griffiths et al., 2021; Leroy et al., 2020; Rendón-Anaya et al., 2021).  362 

Our results indicated that all sites in the East River Valley were panmictic, with high gene 363 

flow, low genetic differentiation, and low genetic variation within the population. Nonetheless, 364 
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we were able to identify strong signatures of local adaptation in P. macdunnoughii where T. 365 

arvense occurred. Eggs laid on T. arvense die before pupation, which introduces fitness costs for 366 

immigrant individuals that prefer T. arvense (Nakajima, 2014; Nakajima & Boggs, 2015). 367 

Similarly, local adaptation in lava flow lizards (melanism) occurred in the presence of strong 368 

gene flow and low genetic variation (Krohn et al., 2019). This is in line with recent theoretical 369 

and empirical work that suggests that environmentally driven local adaptation does not lead to 370 

genome wide differences or require substantial standing genetic variation unless the underlying 371 

traits are linked to reproduction (Feder et al., 2012; Krohn et al., 2019; Shafer & Wolf, 2013).  372 

Selection on oviposition vs larval performance. 373 

 We did not find that the fitness costs for naïve females ovipositing on T. arvense 374 

translated into signatures of selection at the genomic level. Rather, loci under selection were near 375 

or in genes annotated with functions that support larval feeding and performance. Recent studies 376 

have found that genomic bases of herbivorous insects’ response to novel hostplants are 377 

polygenic, involving genes underlying oviposition, larval feeding, larval metabolism, and 378 

detoxification (Egan et al., 2015; Gompert et al., 2022; Vertacnik & Linnen, 2017). Similarly, we 379 

identified a polygenic response to selection from T. arvense, including 9 loci distributed across 380 

five chromosomes, causing 25 variant effects. Identification using SNPeff and BlastX revealed 381 

that the majority of the genes were involved in larval development and metabolism and most of 382 

the variant changes affected non-coding regions. Non-coding regions in the genome contain 383 

regulatory elements that play a critical role in protein assembly, gene expression and regulation 384 

and are under purifying selection (Andolfatto, 2005; Bird et al., 2006; Loehlin et al., 2010). 385 
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Therefore, these variant changes might have significant effects in larval feeding and 386 

detoxification.  387 

 We did not identify any loci under selection that were associated with sensory (olfactory, 388 

gustatory, or visual) functions that underlie female oviposition choice (de Fouchier et al., 2017; 389 

Engsontia et al., 2014; Ramaswamy et al., 1987; K. Yang et al., 2020). Lepidopteran females use 390 

a combination of sensory receptors to identify a potential hostplant (Haverkamp et al., 2018; 391 

Renwick & Chew, 1994; Thompson & Pellmyr, 1991). Females use olfaction and visual cues for 392 

long range detection of hostplants and the final decision is made after gustatory tactile contact 393 

with the hostplant using the first pair of foretarsi in their legs (Ozaki et al., 2011; Ryuda et al., 394 

2013). Differences in oviposition choice in females are driven by underlying differences in their 395 

chemosensory repertoire. Thus, our failure to identify chemosensory genes in our outlier analysis 396 

suggests that selection might be acting on larvae instead of the females. Existing evidence 397 

suggests that error prone oviposition in Lepidoptera females can drive hostplant range expansions 398 

and adaptation to new hosts, since repeated oviposition on less suitable/non hostplants imposes 399 

selection on the larvae to evolve to feed on the plant (Janz et al., 1994; Nylin et al., 2000; Nylin 400 

& Janz, 2009; Stefanescu et al., 2012). Furthermore, P. macdunnoughii larvae that survive to 401 

later instars can be rescued when they are provided with suitable host plants (C. cordifolia or D. 402 

incana) and individual based models have suggested that fine-grained distribution of T. arvense 403 

and native host plants can alter population dynamics of the butterfly (Nakajima & Boggs, 2015). 404 

Thus, we hypothesize that selection is acting on larvae for longer survival on T. arvense 405 

potentially enabling later instar larvae to find suitable native host plants. 406 

Evolutionary constraints on oviposition preference and larval performance  407 
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  Pieris macdunnoughii and its sister taxa in North America are derived from the Eurasian 408 

P. napi during the last Holarctic speciation event (Chew & Watt, 2006). Pieris napi larvae can 409 

develop successfully on T. arvense and other invasive Eurasian mustards found in the Eastern US 410 

including Alliaria petiolata (Forsberg, 1987; Friberg & Wiklund, 2019; Prasai & Karlsson, 411 

2011). Pieris oleracea, another North American species in the Pieris species complex has 412 

reduced fitness when feeding on A. petiolata due to its toxicity to the larvae (Chew, 1977b; 413 

Haribal et al., 2001, 2001; Haribal & Renwick, 1998; Huang et al., 1994; Keeler & Chew, 2008). 414 

Thus, the North American Peiris larvae have lost the ability to develop or have reduced fitness on 415 

introduced mustards from Eurasia while females have retained the ancestral preference for 416 

hostplants. This mismatch in preference-performance is the underlying cause for maladaptation in 417 

the larvae. Our results suggest that any adaptation by P. macdunnoughii to be able to use the 418 

plant will likely involve evolution of larval ability to develop on T. arvense and not of the 419 

females' avoidance of oviposition on T. arvense. Adaptation in response to T. arvense in the 420 

larvae would involve longer survival on T. arvense followed by rescue in the later instars. Indeed, 421 

 after decades of maladaptation of P. oleracea on A. petiolata, the larvae are now able to develop 422 

on the plant during its bolting stage but not the rosette stage (Keeler & Chew, 2008). This 423 

highlights the importance of understanding the interactions between plant phenology, plant 424 

chemical composition and larval performance. Our results suggest that a similar outcome may 425 

occur in P. macdunnoughii in the event of rapid evolution due to selection. Future research 426 

quantifying fine scale spatial and temporal patterns of larval performance coupled with 427 

quantifying T. arvense distribution and variation in plant chemical profiles might provide insights 428 

on the escape from or persistence of the evolutionary traps. 429 
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Conclusions: 430 

 Instances of interactions between native and non-native species are projected to increase 431 

across the globe due to range shifts, competition from invasive species and climate change. 432 

Understanding the effects of these interactions requires careful dissection of the ecological and 433 

molecular processes that mediate these interactions. Our results build upon decades of research 434 

aimed at understanding the causes and maintenance of evolutionary traps, to elucidate the 435 

molecular response and potential for adaptation to novel resources (Brady, Bolnick, Barrett, et 436 

al., 2019; Farkas et al., 2015; Gilroy & Sutherland, 2007; Robertson et al., 2013; Schlaepfer et al., 437 

2002, 2005). As insects are currently experiencing a global decline (Hallmann et al., 2017; 438 

Nakajima & Boggs, 2015; Wagner et al., 2021), the Pieris macdunnoughii - Thlaspi arvense 439 

system can serve as a model to understand and predict the outcomes of these interactions in 440 

insects even at a fine geographical scale. This work identifies the molecular mechanisms that 441 

underlies the evolutionary trap, thus pioneering Pieris macdunnoughii - Thlaspi arvense as a 442 

model system to understand maladaptation and evolutionary traps in the face of climate change 443 

(Chew, 1977b; Nakajima, 2014; Steward et al., 2019, 2021, 2022; Steward & Boggs, 2020). Our 444 

work also highlights the potential of adaptation to occur in a fine-grained landscape in the 445 

absence of genetic variation and high gene flow.  446 
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Tables 901 

Table 1: Annotation of outlier loci identified by BayPass XtX (XtX > 26) and BF(dB > 20), 902 
associated isoforms and predicted effects. Annotation was carried out using SNPeff and BlastX.903 
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Loci 

(SNP) 

position 

Chromosome Codon 

affected 

Intervals affected BlastX 

identification 

Annotation 

156011 1 STOP 153581 - 153583 cilia- and 

flagella-

associated 

protein 410 

isoform 

Regulation of cell morphology and 

cytoskeletal organization (Bai et al., 2011); 

Involved in DNA damage repair (Lai et al., 

2011).  

3430127 7 STOP 3428853 - 

3428855 

uncharacterized 

protein 

 

11523752 9 START 11545167 - 

11545169 

ARFRP 1 Lipidation of chylomicrons in the intestine 

and required for VLDL lipidation in the liver 

(Jaschke et al., 2012). 

4595201 9 START 4592359 - 

4592361 

homeobox 

protein Hox-

A3-like 

Part of a developmental regulatory system 

that provides cells with specific positional 

identities on the anterior-posterior axis 

(Gaudet et al., 2011). 

4595201 9 STOP 4595024 - 

4595026 

homeobox 

protein Hox-

A3-like 

Part of a developmental regulatory system 

that provides cells with specific positional 

identities on the anterior-posterior axis 

(Gaudet et al., 2011). 

4595201 9 START 4597927 - 

4597929 

retinal 

homeobox 

protein Rax-

like 

Plays a critical role in eye formation by 

regulating the initial specification of retinal 

cells and/or their subsequent proliferation 

(Kimura et al., 2000).  

4595201 9 STOP 4599618 - 

4599620 

retinal 

homeobox 

protein Rax-

like 

Plays a critical role in eye formation by 

regulating the initial specification of retinal 

cells and/or their subsequent proliferation 

(Kimura et al., 2000).  

11703864 14 START 11697968 - 

11697970 

DOCK 4 Functions as a guanine nucleotide exchange 

factor (GEF) that promotes the exchange of 

GDP to GTP, converting inactive GDP-
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bound small GTPases into their active GTP-

bound form (Yan et al., 2006). 

11703864 14 STOP 11701979 - 

11701981 

inx3 Structural components of the gap junctions. 

Essential for proper epithelial development 

of the epidermis (Lehmann et al., 2006). 

5741973 14 START 5730927 - 

5730929 

mediator of 

RNA 

polymerase II 

transcription 

subunit 15  

Required for activated transcription of the 

MtnA, MtnB and MtnD genes. Negatively 

regulates sex comb development (Boube et 

al., 2000); Required for cholesterol-

dependent gene regulation. Positively 

regulates the Nodal signaling pathway (F. 

Yang et al., 2006). 

5741973 14 STOP 5742219 - 

5742221 

tripartite motif-

containing 

protein 45 

May act as a transcriptional repressor in 

mitogen-activated protein kinase signaling 

pathway (Wang et al., 2004). 

261573 xfSc0000009 STOP 261794 - 261796 protein ALP1-

like 

Encodes an alkaline phosphatase. Alkaline 

phosphatases catalyze the hydrolysis of 

monoesters of phosphoric acid and a 

transphosphorylation reaction in the 

presence of large concentrations of 

phosphate acceptors (Harper & Armstrong, 

1972). 

261573 xfSc0000009 STOP 263610 - 263612 Transposase 
 

577356 xfSc0000009 START 573908 - 573910 uncharacterized 

protein 
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Figure legends 905 

Figure 1: Map of sites where butterflies were collected in the East River valley. Sites in red 906 
represent areas where Thlaspi arvense does not occur and sites in brown represent areas where T. 907 
arvense is present. The size of the circle represents the magnitude of sample sizes from each 908 
location. 909 
Figure 2: a) Genome-wide Principal Component Analysis (axes 1 and 2) using neutral loci 910 
indicating a mixed population without distinct clustering by site. b) Archetypal analysis (axes 1 911 
and 2) with k=3 again showing a mixed population without site-specific clusters. 912 
Figure 3: a) Relative abundance of allele frequency variants of P. macdunnoughii in areas with 913 
T. arvense and areas without T. arvense. The codes depicted in the figure represents the 914 
frequency of the minor allele in the habitat (U-undetected: No alleles present, R-rare: <1% minor 915 
allele frequency (MAF), L-low frequency: 1%-5% MAF, C-common: >5% MAF). The 916 
percentages and their corresponding numbers indicate the number of variants in each class and 917 
are grouped based on SNP identity.  Grey rows represent alleles whose contribution was not 918 
significant to the differences between comparisons. b) Relative abundance of variants of P. 919 
macdunnoughii in our study area. Ucc: Upper Cement Creek, Ubc: Upper Brush Creek, Cc: 920 
Copper Creek, 1c: 1st Crossing, 401: 401 site, Rg: Rustler's Gulch, Qc: Quigley Creek, Ep: Elko 921 
Park, Lcc: Lower Cement Creek, Lbc: Lower Brush Creek, Gt: Gothic townsite. 922 
Figure 4: a) Genome-wide variance in expected and observed heterozygosity of P. 923 
macdunnoughii in the East River valley.Bartlett's tests were used to compare observed 924 
heterzygosity between habitats where T. arvense was present or absent, and observed versus 925 
expected heterozygosity within each of these habitat types. b) Genome-wide variance in 926 
nucleotide diversity (π) of P. macdunnoughii in habitats without and with T. arvense (Bartlett's 927 
test, ***P < 0.001). . 928 
Figure 5: Relative migration rates of P. macdunnoughii among the 11 sites in the East River 929 
valley estimated using divMigrate based on the number of migrants per generation (Nm)). Colors 930 
indicate migration levels (low = blue, high = red), and arrows indicate direction of migration. 931 
Solid lines represent unidirectional migration and dashed lines represent bi-directional migration. 932 
Colors in bidirectional migration correspond to the migration level of the closest arrow. 933 
Migration routes are only shown for Nm > 0.55 and migration routes from areas with T. arvense 934 
to areas without T. arvense and vice-versa. 935 
Figure 6: a) Estimated Effective Migration Surfaces and b) Estimated Effective Diversity 936 
Surfaces for P. macdunnoughii in the East River Valley. The migration and diversity rates, 937 
log(m) and log(q) represent gene flow or genetic diversity barriers and corridors in the habitat, 938 
respectively. Each value corresponds to a 10-fold increase (blue) or decrease (orange/brown) in 939 
migration or genetic diversity compared to the null hypothesis of isolation by distance (white).  940 
Figure 7: Pairwise comparison of median SNP XtX and BFmc values from three  independent 941 
BayPass analyses for adaptive differentiation associated with T. arvense presence in the habitat. 942 
The vertical dashed line represents the 1% POD (Pseudo Observed Dataset) significance 943 
threshold (XtX=26), and the horizontal dashed line represents the 20-dB threshold for BFmc. 944 
Blue dots represent the 9 loci of interest (outliers for both XtX and BFmc).   945 
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Figure 2 948 
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Figure 3 950 
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Figure 4 952 
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Figure 5 954 
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Figure 6a 956 
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Figure 6b 958 
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Figure 7 960 
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