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Abstract

A new method for the design of event-triggered stabilizing state feedback controllers for nonlinear fractional-order interconnected

systems is proposed in this paper. A new condition for the existence of state feedback controllers ensuring the closed-loop system

is asymptotically stable is established based on fundamental mathematical transformations and linear matrix inequalities. A

numerical example with simulation results is provided to demonstrate the effectiveness of the proposed design method.
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SUMMARY

A new method for the design of event-triggered stabilizing state feedback controllers for nonlinear fractional-
order interconnected systems is proposed in this paper. A new condition for the existence of state feedback
controllers ensuring the closed-loop system is asymptotically stable is established based on fundamental
mathematical transformations and linear matrix inequalities. A numerical example with simulation results is
provided to demonstrate the effectiveness of the proposed design method.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unlike traditional calculus, which considers integrals and derivatives of integer orders, fractional
calculus considers integrals and derivatives of any order. Fractional order systems describe a large
of systems that are more complicated than classical integer order systems. They often appear in
various practical applications such as electrical circuits [1], chaotic Lu systems [2], diffusion of
heat [3], fractional-order systems of PID, sliding mode, adaptive and cement mill controllers [4],
image encryption [5], Cohen-Grossberg BAM neural networks [6], viscoelastic mechanical systems
[7], electrochemistry [8], economy [9], biology systems [10] and so on [11]. Due to its importance in
both theoretical study and practical applications, such systems attract increasing attention, especially
with respect to state feedback control [12, 13, 14, 15, 16, 17, 18].

In contrast to the traditional control [12, 13, 14, 15, 16, 17, 18], where the control signal
is transferred to the actuator in actual time, which may lead to unnecessary sampling and
communication, event-triggered control can eliminate unnecessary sampling and transmission.
It thus can improve the efficiency in resource utilization of the network components (see,
for example, [19], [20], [21], [22], [23], [24], [25]). In particular, event-triggered stabilization
problem [19], event-triggered tracking problem [20], event-triggered output regulation problem
[21], continuous-time event-triggered control [22], [23], [24], discrete-time event-triggered control
[25]. Nevertheless, the methods reported in [19], [20], [21], [22], [23], [24], [25] are only applicable
to integer-order dynamical systems. Since the Leibniz rule does not hold for fractional-order
derivatives, it is not easy to extend the methods of designing event-triggered control from integer-
order systems to fractional-order ones. Recently, by combining the Lyapunov function and the
dynamic surface control design technique, the authors of the work [26] proposed an adaptive fuzzy
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Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using ocaauth.cls [Version: 2010/03/27 v2.00]



2 DINH CONG HUONG

output-feedback event-triggered control algorithm for a class of fractional-order nonlinear system,
while an event-triggered control scheme for fractional-order linear multi-agent systems is introduced
in [27]. However, to the best of our knowledge, the method reported in [26] and [27] can not be
applied to design an event-triggered control to stabilize the nonlinear fractional-order interconnected
systems, which motivates the present study.

In this study, we propose a new method for the design of event-triggered stabilizing state feedback
controllers for nonlinear fractional-order interconnected systems. Firstly, a new event-triggered
mechanism without the Zeno phenomenon is designed and used in the framework of designing state
feedback control for nonlinear fractional-order interconnected systems. Secondly, a new condition
in terms of a linear matrix inequality is proposed to ensure the existence of the event-triggered
controller. Thirdly, a numerical example with simulation results is provided to demonstrate the
effectiveness of the proposed design method.

In the next section, we present some preliminaries and the problem statement. The design of an
event-triggered mechanism and a state feedback controller is presented in Section 3. A numerical
example with simulation results is presented in Section 4. In Section 5 we provide the conclusion
of the paper.

Notation: XT denotes the matrix transpose. || · || is the Euclidean norm. Rn is the
n− dimensional linear vector space over R. ∗ is the entries of a matrix implied by

symmetry and diag is a block-diagonal matrix. Γ(ν) =
∞∫
0

e−ttν−1dt is the gamma function.

Iαv(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1v(τ) dτ denotes the Riemann-Liouville fractional integral operator of

order α > 0. Dαv(t) = 1
Γ(1−α)

∫ t
0
(t− τ)−αv̇(τ)dτ denotes the Caputo derivative of function v(t)

with order α ∈ (0, 1).

2. PRELIMINARIES AND PROBLEM STATEMENT

We now consider the following fractional-order time-varying interconnected system with time-
varying delays:

Dαixi(t) = (Aii + ∆Aii(t))xi(t) +Biui(t) +

N∑
j=1,j 6=i

Aijxj(t) + fi(xi(t)), t ≥ 0, (1)

xi(0) = φi(0), (2)

where N ∈ N, N ≥ 2, 0 < αi ≤ 1, xi(t) ∈ Rni , xj(t) ∈ Rnj and ui(t) ∈ Rmi are the local state,
remote state, and control input vectors, respectively. Each φi(0) ∈ Rni is an initial condition.
Matrices Aii ∈ Rni×ni , Aij ∈ Rni×nj , and Bi ∈ Rni×mi are constant matrices. ∆Aii(t) =
EiFi(t)Hi, where Ei, Hi, are known real constant matrices of appropriate dimensions, Fi(t) is
unknown real time-varying matrix satisfying

FTi (t)Fi(t) ≤ I,∀t ≥ 0. (3)

By Dαixi(t) we meant that Dαixi(t) =


Dαixi1(t)
Dαixi2(t)

...
Dαixini(t)

. In (1), the nonlinear function fi(xi(t))

is assumed to be satisfied conditions fi(0) = 0 and

||fi(v1)− fi(v2)|| ≤ Li,∀v1, v2 ∈ Rni , i = 1, 2, . . . , N, (4)

where Li ∈ (0,∞).

Copyright c© 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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EVENT-TRIGGERED STATE FEEDBACK CONTROL FOR... 3

In the following, we will propose an ETM and design a robust state feedback controller based on
the proposed ETM to stabilize the fractional-order interconnected system.

We first express the system (1)-(2) into the following form

Dαx(t) = (A+ ∆A(t))x(t) +Bu(t) + f(x(t)), t > 0, (5)
x(0) = φ(0), (6)

where n =
∑N

i=1 ni, m =
∑N

i=1mi, and

x(t) =


x1(t)
x2(t)

...
xN (t)

 , u(t) =


u1(t)
u2(t)

...
uN (t)

 , Dαx(t) =


Dα1x1(t)
Dα2x2(t)

...
DαNxN (t)

 ,

A =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
... . . .

...
AN1 AN2 . . . ANN

 , f(x(t)) =


f1(x1(t))
f2(x1(t))

...
fN (xN (t)))

 ,
∆A(t) = diag(∆A11(t),∆A22(t), . . . ,∆ANN (t)), B = diag(B1, B2, . . . , BN ).

Remark 1. The following conditions hold:

f(0) = 0, ‖f(x)− f(y)‖ ≤ L‖x− y‖ (7)

for any x, y ∈ Rn, L = nmax{L1, L2, . . . , LN}, and

∆A(t) = EF (t)H, (8)

where E = diag(E1, E2, . . . , EN ), F (t) = diag(F1(t), F2(t), . . . , FN (t)), H =
diag(H1, H2, . . . ,HN ), and FT (t)F (t) ≤ I, ∀t ≥ 0.

To reduce the data transmission as much as possible while keeping the desired control
performance, we propose the following event-triggered mechanism (ETM):

t0 = 0, tk+1 = inf
{
t > tk : ||x(t)− x(tk)|| ≥ γ||x(t)||

}
, (9)

where γ ∈ (0,∞) will be designed.
Provided that the ETM (9) is designed, we propose an event-triggered controller u(t) = Kx(tk),

such that the following closed-loop system is asymptotically stable

Dαx(t) = (A+ ∆A(t) +BK)x(t) +BKε(t) + f(x(t)), t ∈ [tk, tk+1), (10)
x(0) = x0 ∈ Rn, (11)

where K ∈ Rm×n is determined later and ε(t) is the error between x(t) and x(tk), i.e. ε(t) =
x(tk)− x(t), t ∈ [tk, tk+1).

3. MAIN RESULTS

Lemma 3.1
The distance between two arbitrary triggering instants tk and tk+1 of the dynamic ETM (9) is
satisfied condition inf

{
tk+1 − tk} > 0, i.e. there is no Zeno-behavior for this ETM.

Copyright c© 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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4 DINH CONG HUONG

Proof. For t ∈ [tk, tk+1), taking the right-hand upper Dini fractional-order derivative (see [28]) with
note that Dαx(tk) = 0, the following inequality is obtained

Dα+||ε(t)|| ≤ ||Dαx(t)|| ≤ ||(A+ ∆A(t))x(t) +Bu(t) + f(x(t))||
≤ δ1||ε(t)||+ δ2||x(tk)||, (12)

where δ1 = sup{||A+ ∆A(t)||+ L} and δ2 = sup{||A+ ∆A(t)||+ L+ ||BK||}.
By integrating inequality (12) from tk to t, one gets

||ε(t)|| − ||ε(tk)|| ≤ 1

Γ(α)

(∫ t

tk

δ1||ε(s)||(t− s)α−1ds

+

∫ t

tk

δ2||x(tk)||(t− s)α−1ds
)

≤ 1

Γ(α+ 1)
δ2||x(tk)||(t− tk)α

+
1

Γ(α)

∫ t

tk

δ1||ε(s)||(t− s)α−1ds. (13)

Since ||ε(tk)|| = 0 and limt→t−k+1
||ε(t)|| = ||ε(t−k+1)|| ≥ ||ε(t)||, t ∈ [tk, tk+1), the following

inequality is obtained

||ε(t)|| ≤ 1

Γ(α+ 1)
δ2||x(tk)||(t− tk)α

+
1

Γ(α)

∫ t

tk

δ1||ε(t−k+1)||(t− s)α−1ds

≤
δ2||x(tk)||+ δ1||ε(t−k+1)||

Γ(α+ 1)
(t− tk)α. (14)

Letting t→ t−k+1 on both side of (14), we obtain

||ε(t−k+1t)|| ≤
δ2||x(tk)||+ δ1||ε(t−k+1)||

Γ(α+ 1)
(tk+1 − tk)α. (15)

It follows from (15) and the event-triggered condition in (4) that

γ||x(tk)|| ≤ ||ε(t−k+1)|| ≤ δ2||x(tk)||(tk+1 − tk)α

Γ(α+ 1)− δ1(tk+1 − tk)α
. (16)

Inequality (16) implies that

(tk+1 − tk)α ≥ γΓ(α+ 1)

γδ1 + δ2
. (17)

Therefore, we obtain

tk+1 − tk ≥ e
1
α ln

(
γΓ(α+1)
γδ1+δ2

)
> 0. (18)

The proof is completed.
We first obtain the following result which provides a sufficient condition to guarantee the

stabilizability of the nonlinear system (10).

Theorem 3.2
Given a positive scalar ξ. The closed-loop system (10) is globally asymptotically stable if there exist
positive scalars ν1, ν2, θ, a symmetric positive definite matrix P, and a matrix Y with appropriate

Copyright c© 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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dimensions such that the following LMI is satisfied:
Ω11 P−1HT LP−1 P−1 BY
∗ −ν1I 0 0 0
∗ ∗ −ν2I 0 0
∗ ∗ ∗ −θI 0
∗ ∗ ∗ ∗ ξ(1− 2P−1)

 < 0, (19)

where γ = 1√
θξ

and

Ω11 = AP−1 + P−1AT +BY + Y TBT + ν1EE
T + ν2I.

Moreover, the event-triggered controller is obtained as follows:

u(t) = Y Px(tk), t ∈ [tk, tk+1). (20)

Proof. Let us consider the following Lyapunov functional candidate:

V (t) = xT (t)Px(t). (21)

By taking the Caputo derivative of V (t) along the trajectories of the closed-loop system (10) and
using Theorem 2 in [29], we obtain

DαV (t) ≤ 2xT (t)Dαx(t) = xT (t)

[
PA+ATP + PBK +KTBTP

]
x(t)

+ 2xT (t)EF (t)Hx(t) + 2xT (t)PBKε(t) + 2xT (t)Pf(x(t)).

(22)

Combining inequality (7) with the Cauchy matrix inequality yields

2xT (t)PEF (t)Hx(t) ≤ ν1x
T (t)PEETPx(t) + ν−1

1 xT (t)HTHx(t), (23)

2xT (t)Pf(x(t)) ≤ ν2x
T (t)PPx(t) + ν−1

2 fT (x(t))f(x(t)) ≤ ν2x
T (t)PPx(t) + ν−1

2 L2xT (t)x(t).

(24)

and

2xT (t)PBKε(t)) ≤ ξeT (t)ε(t) + ξ−1xT (t)PBKKTBTPx(t)

≤ ξγ2xT (t)x(t) + ξ−1xT (t)PBKKTBTPx(t).
(25)

It follows from (22) to (25) that

DαV (t) ≤ xT (t)Ωx(t), ∀t ≥ 0, (26)

where

Ω = PA+ATP + PBK +KTBTP + ν1PEE
TP + ν2PP + ξγ2I

+ ν−1
1 HTH + ν−1

2 L2I + ξ−1PBKKTBTP.

We will prove that Ω < 0. For this, by denoting Φ = P−1ΩP−1, it gives

Φ = AP−1 + P−1AT +BY + Y TBT + ν1EE
T + ν2I

+ ξγ2P−1P−1 + ν−1
1 P−1HTHP−1 + ν−1

2 L2P−1P−1 + ξ−1BY P 2Y TBT . (27)

Copyright c© 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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6 DINH CONG HUONG

It follows from the Schur complement lemma that Φ < 0 is equivalent to the following inequality
Ω11 P−1HT LP−1 P−1 BY
∗ −ν1I 0 0 0
∗ ∗ −ν2I 0 0
∗ ∗ ∗ −θI 0
∗ ∗ ∗ ∗ −ξP−2

 < 0. (28)

Now, by combining inequality I − 2P−1 ≥ −P−2 with inequality (19), one obtains inequality
(28). Thus, we can conclude that DαV (t) < 0, i.e system (10) is asymptotically stable. The proof is
completed.

Remark 2. If the assumptions of Theorem 3.2 are satisfied then the closed-loop system (10) is
globally asymptotically stable, i.e. under the event-triggered controller u(t) = Kx(tk), the state

vector x(t) =


x1(t)
x2(t)

...
xN (t)

 of (10) converges to zero as t goes to infinity. As a result, the state vector

xi(t) =


xi1(t)
xi2(t)

...
xini(t)

 converges to zero as t goes to infinity for all i = 1, 2, . . . .N .

The following algorithm allows us to design ETM (9) and matrix K.

Algorithm 1

Step 1: Given an interconnected system of the form (1)-(2). Check if conditions (3) and (4)
are satisfied. Obtain L = nmax{L1, L2, . . . , LN}.
Step 2: Given a positive scalar ξ, solve the convex problem (19) to obtain γ, P and Y .
Step 3: Obtain the event-triggered mechanism (9) and matrix K = Y P .

4. AN EXAMPLE

Let us consider the following system of the form (1)-(2), where α = 0.87 and

x1(t) =

 x11(t)
x12(t)
x13(t)

 , x2(t) =

 x21(t)
x22(t)
x23(t)

 , A11 =

 −5 0 0
0.2 −4 0
0.1 0.2 0.1

 ,
A12 =

 1 2 0
1 0 0
0 2 1

 , A21 =

 3 2 0
1 1 0
1 0 0

 , A22 =

 −4 0 0
1 −5 0.2

0.1 0 −3

 ,
B1 =

 1
1
42

 , B2 =

 1
2
1

 , E1 =

[
1

0− 0.1

]
, H1 =

[
0.1 0 0.01

]
,

E2 =

 2
0
−0.2

 , H2 =
[
0.2 0 0.02

]
, F1(t) = F2(t) = sin t, ∀t ≥ 0,

f1(x1(t)) =

 0.01 sin(x11(t))
0

0.05 sin(x13(t))

 , f2(x2(t)) =

 0.04 cos(x21(t))
0

0.04 cos(x23(t))

 .
Copyright c© 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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Figure 1. Triggering instants and intervals of ETM (9)

Now, we follow Algorithm 1 to design an event-triggered controller for this example.
Step 1: We can check that nonlinear functions f1(x1(t)) and f2(x2(t)) are Lipschitz with

L1 = 0.05 and L2 = 0.04, respectively. Therefore, we obtain L = 2 max{L1, L2} = 0.1.
Step 2: Given ξ = 0.95, the LMI condition (19) is feasible with γ = 0.0306, and

P =


0.0041 −0.0006 0.0001 −0.0015 −0.0009 −0.0002
−0.0006 0.0041 −0.0003 −0.0011 −0.0002 0.0001
0.0001 −0.0003 0.0029 0 −0.0013 −0.0006
−0.0015 −0.0011 0 0.0031 0 0.0003
−0.0009 −0.0002 −0.0013 0 0.0047 −0.0004
−0.0002 0.0001 −0.0006 0.0003 −0.0004 0.00341

 ,

Y =

[
−38.5 −33.0843 −193.5221 −38.2461 −82.3415 −54.1894

−146.8294 −112.0405 −16.7805 −189.5149 −15.5388 19.6974

]
.

Step 3: The event triggering mechanisms is

t0 = 0, tk+1 = inf
{
t > tk : ||x(t)− x(tk)|| ≥ 0.0306||x(t)||

}
,

and the event-triggered state feedback controller is obtained as

u(t) =

[
−0.0117 −0.0116 −0.4119 −0.0327 −0.0656 −0.0414
−0.2514 −0.165 −0.0148 −0.2523 0.1075 0.0453

]
x(tk),

for t ∈ [tk, tk+1).

For simulation, we choose the initial condition

 x11(0)
x12(0)
x13(0)

 =

 1
2
3

 and

 x21(0)
x22(0)
x23(0)

 =

 4
5
6

.

Figure 1 shows the triggering instants and intervals of the ETM (9). Figure 2 and Figure 3 show the
responses of x11(t), x12(t), x13(t), x21(t), x22(t), x23(t) of the open-loop system and the closed-
loop system, respectively. It is shown from Figure 1 that time intervals between two consecutive
triggering events of the measurement transmission instant sequence are positive, i.e., the Zeno
behavior does not happen for this ETM. Figure 2 and Figure 3, we see that the open-loop system is
not asymptotically stable while the closed-loop system is asymptotically stable.

Copyright c© 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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8 DINH CONG HUONG

Figure 2. Responses of the open-loop system

Figure 3. Responses of the closed-loop system

5. CONCLUSION

We have considered the design of event-triggered stabilizing state feedback controllers for nonlinear
fractional-order interconnected systems. A new Zeno-free event-triggered mechanism has been first
proposed, and then the event-triggered state feedback controller is designed in terms of a convex
linear matrix inequality. A numerical example with simulation results is provided to demonstrate
the effectiveness of the proposed design method.
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