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Abstract

There can be numerous electronic components on a given PCB, making the task of visual inspection to detect defects very

time-consuming and prone to error, especially at scale. There has thus been significant interest in automatic PCB component

detection, particularly leveraging deep learning. However, deep neural networks typically require high computational resources,

possibly limiting their feasibility in real-world use cases in manufacturing, which often involve high-volume and high-throughput

detection with constrained edge computing resource availability. As a result of an exploration of efficient deep neural network

architectures for this use case, we introduce PCBDet, an attention condenser network design that provides state-of-the-art

inference throughput while achieving superior PCB component detection performance compared to other state-of-the-art efficient

architecture designs. Experimental results show that PCBDet can achieve up to 2× inference speed-up on an ARM Cortex

A72 processor when compared to an EfficientNet-based design while achieving 2-4% higher mAP on the FICS-PCB benchmark

dataset.
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PCBDet: An Efficient Deep Neural Network
Object Detection Architecture for Automatic
PCB Component Detection on the Edge

B. Li, S. Palayew, F. Li, S. Abbasi, S. Nair, and A. Wong

There can be numerous electronic components on a given PCB,
making the task of visual inspection to detect defects very time-
consuming and prone to error, especially at scale. There has thus been
significant interest in automatic PCB component detection, particularly
leveraging deep learning. However, deep neural networks typically
require high computational resources, possibly limiting their feasibility
in real-world use cases in manufacturing, which often involve high-
volume and high-throughput detection with constrained edge computing
resource availability. As a result of an exploration of efficient deep
neural network architectures for this use case, we introduce PCBDet,
an attention condenser network design that provides state-of-the-art
inference throughput while achieving superior PCB component detection
performance compared to other state-of-the-art efficient architecture
designs. Experimental results show that PCBDet can achieve up to 2×
inference speed-up on an ARM Cortex A72 processor when compared to
an EfficientNet-based design while achieving ∼2-4% higher mAP on the
FICS-PCB benchmark dataset.

Introduction: A crucial process in printed circuit board assembly is the
visual inspection of electronic components for potential defects. This can
help avoid functional failure of devices, user data leakage, or even system
control taken by adversaries [1]. Given that there can be hundreds of
electronic components on a given PCB, the task of visual inspection can be
extremely time-consuming and prone to operator error, especially during
large assembly runs. Therefore, the ability to automatically detect different
electronic components on a PCB board for automated inspection purposes
is highly desired. As a result, there has been significant interest in the
research community in automatic PCB component detection, particularly
leveraging deep learning [2, 3]. However, one consideration that has been
largely left unexplored in research literature in this area is computational
efficiency, which is particularly critical for real-world visual quality
inspection scenarios involving high-volume, high-throughput electronics
manufacturing use-cases under constrained edge computing resources.
Motivated by the need for both high efficiency and high accuracy for
automatic PCB component detection, this study explores efficient deep
neural network object detection architectures for the purpose of automatic
PCB component detection on the edge. As a result of this exploration,
we introduce PCBDet, a highly efficient, performant self-attention deep
neural network architecture design. This architecture notably makes use
of the recently introduced AttendNeXt backbone, which has been shown
to achieve state-of-the-art performance for TinyML, and is integrated here
into RetinaNet [4, 5].

The paper is organized as follows. In Section 2, details about the
architecture of PCBDet, the training procedure, the evaluation procedure,
and the data used for training and evaluation are described. In Section 3,
experimental results in terms of component detection performance, model
size, and inference speed on different computing hardware are presented.
Finally, conclusions are drawn and future directions are discussed in
Section 4.

Methods:

Dataset

To appropriately explore the quality and impact of our network design,
a dataset that can facilitate the training and validation of robust models
is essential. With this in mind, models were trained and tested using the
DSLR images of the FICS-PCB dataset, a public, comprehensive, and
diverse PCB component dataset that includes a number of challenging
cases. The dataset itself consists of a total of 31 PCB boards containing
over 77 thousand components to detect, with capacitors and resistors
being the most widely represented pieces [1]. Each board in the FICS-
PCB dataset was further truncated into square patches, reducing train-time
resource demand but maintaining component-wise resolution, with each
patch being reshaped for additional size reduction further in the input
pipeline. Figure 1 demonstrates several examples of such patches with
annotated ground truth component labels.

Fig. 1. Examples of PCB patches annotated with ground truth bounding boxes.

Division of the dataset into distinct train, validation, and test
splits is another crucial element in confirming the soundness of our
experimentation. The preservation of exclusivity in the test set here is
integral, since it allows for performance evaluation on a strict holdout set,
and thus all of the image patches extracted from seven of the 31 PCBs
were used as the test set. With the exception of one of the boards, which
was excluded due to a lack of DSLR pictures, patches from the remaining
boards (which total to 23) were used for the train/validation splits. From
this set, 87.5% of the patches were taken for the train set, while the
other 12.5% were used for the validation set (for post-epoch performance
validation).

Architecture

As seen in Figure 2, the proposed PCBDet possesses an efficient self-
attention architecture design inspired by two different architecture design
paradigms: 1) RetinaNet bounding box prediction structure [5], and 2)
double-condensing attention condenser architecture [4]. As a single-stage
detector architecture design, the RetinaNet structure encompasses a more
efficient object detection process when compared to state-of-the-art two-
stage object detectors like R-CNN [5]. RetinaNet has also seen increased
performance when compared to one-stage detectors such as SSD or YOLO
[5]. As such, the proposed PCBDet architectural design takes inspiration
from the RetinaNet structure, looking to adopt an efficient single-stage
approach without seeing substantial tradeoffs in performance.

Without an efficient backbone, however, our network cannot maximize
on the possible efficiency-based benefits of the RetinaNet framework.
More specifically, the backbone architecture within a RetinaNet structure
is the feature encoder that feeds into the convolutional sub-nets, and while
a larger, complex backbone may enable increased performance gains, this
can lead to substantial losses in efficiency. The design of a small, efficient
backbone architecture is thus crucial in creating an effective and efficient
object detection network.

PCBDet’s backbone architecture takes inspiration from the AttendNeXt
double-condensing attention condenser architecture design, which has
shown top of the line performance among other state-of-the-art
efficient architectures for ImageNet classification [4]. This self-attention
architecture design features double-condensing attention condenser
modules, applied within a convolutional network structure, to increase the
speed and efficiency of standard convolutional architectures for feature
extraction, thus serving as the basis for an efficient backbone for RetinaNet
[4]. The AttendNeXt feature encoder used in our study was first pretrained
on ImageNet, establishing a basis for the weights to be used in our object
detection task. The classification head was then removed, and stage outputs
were taken as inputs for a feature pyramid network (FPN), whose layers
respectively feed into classification and regression subnets as per general
RetinaNet structure. To further increase the efficiency of our designed
network, the first of four stages of the feature encoder was omitted from
the construction of the FPN, decreasing the amount of subnet operations
performed per pass. The resultant network from this design process is
dubbed PCBDet.

We also tried integrating an EfficientNetB4-based backbone into
RetinaNet and compared the performance of this architecture with
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Fig. 2 Overview of PCBDet architecture. PCBDet consists of A) a double-condensing attention condenser feature encoder feeding a FPN, and B) classification
and box regression convolutional sub-nets for bounding box prediction.

PCBDet. EfficientNets are a family of convolutional models generally
designed for, as the name implies, efficiency, with the model seeing
upscaling as it progresses from B0 through B7 [6]. EfficientNet-B4 shows
improved top-1 ImageNet performance when compared to other state-
of-the-art convolutional classifiers while maintaining a lower number of
parameters, and was thus chosen as an efficient but potent backbone to
explore with RetinaNet [6]. As with PCBDet’s AttendNeXt backbone,
the EfficientNet feature encoder had its classification head removed and
block outputs were used as inputs for an FPN. To provide a fair point of
comparison for PCBDet, the integration of this feature encoder with the
FPN once again seeks to achieve greater efficiency, with the first three
of seven blocks of the EfficientNet-B4 feature encoder being excluded
from FPN construction. The network designed here is referred to as
EfficientNet-Det.

Training

Proper exploration of our architectures requires thorough training, and
for compact networks such as PCBDet in particular, slower, gradual weight
learning is crucial to appropriately search for effective weights in the
training process. As such, PCBDet and EfficientNet-Det were each trained
for 300 epochs, with a base learning rate of 2e-4 and a proprietary learning
rate scheduler, along with Adam optimization. While potential overfitting
could arise from slow, gradual learning, this issue was combated with the
use of image augmentation, including vertical and horizontal flipping and
translation, colour degeneration, and random cutouts (patch removal), as
well as the monitoring of network performance on the validation set. It is
also essential to address the disproportionate representation of components
in the FICS-PCB dataset. To do so, network training uses the focal
loss metric, which accounts for class imbalances by adding a focusing
parameter to the standard cross-entropy loss, resulting in greatly decreased
weighting for easy, well-classified data points [5].

During training, the first and second blocks of the AttendNeXt feature
encoder in PCBDet were frozen, allowing for the encoder to retain its
memories of low-level features from ImageNet pretraining while also
tuning higher-level feature blocks to better recognize the shapes and
objects associated with PCB components. Similarly, the first four of seven
blocks were frozen for the EfficientNet-B4 encoder in EfficientNet-Det.

Evaluation

Given the goal of efficient model design, we need a method that can
effectively measure the complexity and compactness of a model. Inference
time, or the time taken per forward pass, is a method that can reveal how
quickly a network can perform as a predictor; in our work, inference time
was taken for both PCBDet and EfficientNet-Det using an Intel Core i7-
10750H processor and a NVIDIA GeForce RTX 1650 Ti, both within a
Dell XPS 15 9500 laptop, as well as a Jetson Nano and a 64-bit ARM
Cortex A72 processor, altogether providing an image of the on-the-edge
inference speeds of the two networks. The number of parameters was also

taken for each of the two networks, providing an additional measure for
model compactness.

The predictive power for bounding boxes of our networks is another
necessary measure to analyze, in order to compare the model performance
of the PCBDet and EfficientNet-Det architectures. This performance
assessment was realized using the mean average precision (mAP) for
bounding box predictions, over IOU thresholds from 0.5 to 0.95 with
a 0.05 step size, commonly known as mAP@[0.5:0.95]; this mAP
metric is also known as COCO mAP, the standard performance metric
for COCO challenges [7]. Averaging performance over a range of
IOU thresholds provides a more generalized sense of object detection
performance across resolutions, as lower IOU thresholds test for more
roughly correct box predictions while higher thresholds solely reward
exact bounding box location. The validation and test performances of
PCBDet and EfficientNet-Det were taken to be the mAP@[0.5:0.95] on
the validation and holdout test sets respectively; this general AP metric
helps to determine the predictive accuracy of our networks during and after
training.

While individual differences in network performance and compactness
can be seen through inference time and COCO mAP measures, a collective
assessment can provide a better picture of the difference in the accuracy-
complexity balance achieved in PCBDet and EfficientNet-Det. This unified
analysis can be performed using the NetScore metric, which acts as a
quantitative method of assessing this very balance [8]. In this calculation,
the coefficient values used were α = 2, β = 1, and γ = 1, in accordance with
the original NetScore study [8]. The inference-time multiply-accumulate
(MAC) operations measure was also replaced with the experimental
inference time (in seconds) using the ARM Cortex A72 in the calculation,
as this experimental metric of complexity provides a more practical
measure for edge performance than MAC operations, while the COCO
mAP was used as the accuracy metric for the calculation. The calculation
used for NetScore was

NetScore=
(mAP ∗ 100)2

(MParams)(Inference time (s))
(1)

Results: The efficacy of the proposed PCBDet for PCB component
detection is compared here with EfficientNet-Det across the following
metrics: 1) COCO mAP, 2) model size, and 3) inference speed on various
low-power computing hardware.
COCO mAP. It can be observed in Figure 3 that the proposed PCBDet
achieves noticeable gains in terms of test and validation COCO mAP by
approximately 4 % and 2 %, respectively, when compared to EfficientNet-
Det. This gain in mAP is particularly interesting especially given the
fact that PCBDet is significantly smaller and faster than EfficientNet-Det,
which we will discuss in greater detail. As such, these results illustrate that
a high level of performance can be achieved with the proposed PCBDet for
the purpose of automatic PCB component detection on the edge.
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Model Size. As shown in Figure 4, it can be observed that the proposed
PCBDet possesses less than half the number of total parameters, as
well as trainable parameters, when compared to EfficientNet-Det. This is
particularly important for edge based applications such as automatic on-
the-edge PCB component detection where memory resources are limited.

Fig. 3 COCO mAP on validation and test data for PCBDet and EfficientNet-
Det.

Fig. 4 Number of total and trainable parameters for PCBDet and EfficientNet-
Det.

Fig. 5 Inference time for PCBDet and EfficientNet-Det across different
hardware.

Inference Speed. As shown in Figure 5, it can be observed that the
proposed PCBDet is more than 30% faster than EfficientNet-Det on the
NVIDIA Geforce RTX 1650 Ti, with an even greater speed gain on slower
hardware such as the Jetson Nano (almost 65% faster) and Intel Core i7-
10750H (over 45% faster). As seen in Figure 6, the performance gains of
the proposed PCBDet on lower-power hardware were especially apparent
when evaluated on an ARM Cortex A72, where PCBDet was more than
2× faster than EfficientNet-Det. These inference speed results demonstrate

Fig. 6 Inference time for PCBDet and EfficientNet-Det on ARM Cortex A72
processor.

the efficacy of the proposed PCBDet for high-throughput PCB component
detection on the edge.

Finally, using the above results, PCBDet was found to achieve
a NetScore of 28.2670 while EfficientNet-Det achieved a NetScore
of 13.5749, supporting our findings that PCBDet achieves a superior
accuracy-complexity balance when compared to EfficientNet-Det.

These results demonstrate overall that PCBDet shows significantly
greater efficacy than RetinaNet with EfficientNet-B4, which is currently
considered a state-of-the-art backbone for TinyML. Ultimately, we have
developed a model for PCB object detection that shows very strong
performance despite its small size and high inference throughput.

Conclusion: Here, we conducted an exploration of efficient deep neural
network object detection architectures for the purpose of automatic PCB
component detection on the edge. The resulting network architecture,
which we coin PCBDet, methodically integrates the recently introduced
AttendNeXt backbone into RetinaNet. This results in an architecture
which can achieve up to a 2x inference speed-up on low power hardware
compared to other state-of-the-art efficient architectures, while still
achieving a higher mAP on the FICS-PCB benchmark dataset. This makes
PCBDet very well-suited for component detection in high-throughput
manufacturing scenarios with limited computational resources. Future
work may include seeing if a similar strategy involving the methodical
use of the AttendNeXt backbone could be employed to develop high
performance, efficient deep neural network object detection architectures
for other applications.
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