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Abstract

The impacts of vertical throughflow, rotation, cross-diffusion, and vertical heterogeneous permeability on the double-diffusive

convection in a finite rotating vertical porous cylinder have been studied. The fluid in the cylinder is warmed and salted from

beneath, and its top and lower walls are taken to be isothermal, isosolutal and permeable. In the model formulation, the

Brinkman model was adopted, coupled with the Boussinesq approximation. The normal mode technique is used to perform

linear stability analysis and single term Galerkin technique is employed to solve the eigenvalue problem. Further, the influence

of vertical heterogeneity, vertical throughflow, thermal and solute Rayleigh, Taylor, and the Soret and Dufour numbers on the

fluid system instability has been investigated. We found, among other results, that vertical heterogeneity may either stabilize

or destabilize the fluid system. The Dufour number delays both the stationary and oscillatory convection onsets. The positive

Soret number is found to have a stabilizing effect on the stationary convection case, with a destabilizing effect on the oscillatory

convection case.
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Abstract
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ability on the double-diffusive convection in a finite rotating vertical porous cylinder have been
studied. The fluid in the cylinder is warmed and salted from beneath, and its top and lower walls
are taken to be isothermal, isosolutal and permeable. In the model formulation, the Brinkman
model was adopted, coupled with the Boussinesq approximation. The normal mode technique is
used to perform linear stability analysis and single term Galerkin technique is employed to solve the
eigenvalue problem. Further, the influence of vertical heterogeneity, vertical throughflow, thermal
and solute Rayleigh, Taylor, and the Soret and Dufour numbers on the fluid system instability has
been investigated. We found, among other results, that vertical heterogeneity may either stabilize
or destabilize the fluid system. The Dufour number delays both the stationary and oscillatory con-
vection onsets. The positive Soret number is found to have a stabilizing effect on the stationary
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Nomenclature

Latin Symbols

a wave number

h height of the cylinder

r0 radius of the cylinder

R aspect ratio (=
r0

h
)

T temperature

C solute concentration

t time

P pressure
#»

V fluid velocity

V0 basic flow velocity

#»g gravitational acceleration

ez z-direction unit vector

K permeability

∗Corresponding author
Email addresses: samahanwarali@gmail.com (Samah A. Ali), SibandaP@ukzn.ac.za (Precious Sibanda),

osman@aims.edu.gh (Osman A.I. Noreldin), sitholeh@ukzn.ac.za (Hloniphile Sithole Mthethwa),
munyarudziva@gmail.com (Munyaradzi Rudziva )

Preprint submitted to Journal of LATEX Templates May 25, 2023



RaT thermal Rayleigh number

RaS salinity Rayleigh number

Le Lewis number(= kT
kS

)

Du Dufour number (= DTS∆C
kT ∆T )

Sr Soret number (= DST ∆T
kS∆C )

Pr Prandtl number

Q Peclet number (= HV0

kt
)

Ta Taylor number(= 4Ω2H4

µ2 )

Greek symbols

βT thermal expansion coefficient

βS concentration expansion coefficient

KT thermal diffusivity

KS solute diffusivity

φ porosity

µ fluid dynamic viscosity

µ optimum viscosity for the Brinkman term

ν kinematic viscosity (= µ
ρ0

)

Λ effective Darcy number (= µkT
µH2 )

σ volumetric heat capacity

Subscripts

b basic state

c critical value

Superscripts

′ perturbed quantities

∗ non-dimensional quantities

1. Introduction

The study of double-diffusive convection in saturated porous media in different settings has received
significant coverage recently due to its vast range of engineering applications. These applications
range from heating and cooling processes, grain storage, fibrous insulation, geothermal systems,
petroleum reservoirs recovery, among others. In general, double diffusive convection is a type of
fluid flow that occurs when two components with different diffusivities are subject to a vertical
temperature gradient. This phenomenon is also known as thermohaline convection or salt-finger
convection, depending on the nature of the two components involved. Double diffusive convection
can also occur in porous media, such as in geological formations or in industrial processes where
porous media are used for heat and mass transfer. In porous media, fluid flow is affected by
the pore structure, which can create additional transport mechanisms, such as advection and
dispersion, that interact with thermal and diffusive buoyancy. In the case of double diffusive
convection in porous media, two components with different diffusivities, such as temperature and
salt concentration, can interact to create convective flow patterns. These patterns can result
in the formation of salt fingers or convective rolls, depending on the properties of the system.
Double diffusive convection in porous media has important implications for various fields, including
geology, hydrology, and engineering. For example, it can affect the transport of heat and mass
in underground aquifers, and can play a role in the formation of mineral deposits. In industrial
applications, double diffusive convection in porous media can be used to optimize heat and mass
transfer in various processes, such as in fuel cells and heat exchangers. The onset of convection
in a horizontal porous layer with heat supplied from below studied by [1, 2] where they employed
linear stability theory approach. A comprehensive review of double-diffusive convection in porous
media is given in [3–6].
The rotation effect on double-diffusive convection in a sparsely filled porous layer was investigated
by Rudraiah et al. [7]. They found that rotation prolongs the convection onset. The nonlinear
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double-diffusive convection in a rotating porous medium was studied by Lombardo and Mulone [8]
with the aid of the Lyapunov direct method. Malashetty et al. [9] studied the problem in a rotating
horizontal saturated porous layer with fluid and solid phases that were not in local thermodynamic
equilibrium. They found among other results that rotation is to improves the stability of the fluid
system. Wang and Tan [10] studied the onset of Darcy–Brinkman thermosolutal convection using
the linear stability approach. They showed that the Darcy number destabilizes the fluid system
while increasing the normalized porosity has the opposite effect.
Griffiths, and Murray and Chen [11, 12] studied double-diffusive convection in s porous medium
experimentally. It has been shown that when heat and mass movement occur concurrently in a fluid
flow, the fluxes and generating potentials relationship gets complex. These studies proved that
energy flow may be caused by gradients in composition as well as temperature. The flux of energy
due to the compositional gradient is referred to as the diffusion-thermo or Dufour effect where as
the flux of mass due to the thermal gradients is known as the thermal-diffusion or Soret effect.
Cross-diffusion in porous media which is saturated is complicated by the coupling of the fluid with
the porous composite, and accurate estimates of cross-diffusion parameters are difficult to obtain.
Hence it is difficult to perform an experimental study on the influence of cross-diffusion. Studies
on cross diffusion effects on the diffusive convection in a porous medium are found in [4, 13–16].
Bouachir et al. [17] investigated the Soret and Dufour effects on convection in a vertically oriented
porous enclosure. They found, among other results, that the Soret number has both stabilizing
and destabilizing effects depending on the numerical value, but the Dufour number always has a
destabilizing influence on the fluid system.
In some situations, such as geothermal flows, the influence of lateral boundaries on the convective
process must be considered. Bau and Torrance [18] reported a practical and an analytical analysis
of low Rayleigh number case for convection in a vertically oriented circular cylinder filled with
saturated porous materials. Other notable analytical predictions of the critical Rayleigh number
for a porous layer enclosed within a vertical concentric cylinder are found in [18–25]. These studies
confirmed the stabilizing and convective shape controlling effects of the lateral walls. Wooding
[19] studied asymmetric saline convection flows in an endless vertical tube. Zebib [20] observed
that asymmetric flows are frequently preferable in a cylinder with impermeable upper and lower
boundaries. Further, Haugen and Tyvand [21] noted that, for conducting cylindrical calls, the
axisymmetric mode is favourable for all aspects ratios.
The heterogeneity permeability and thermal conductivity effects on marginal stability of porous
media fluid was first considered by [4, 26]. Further, other characteristics of conductivity hetero-
geneity in general have been investigated by Braester and Vadasz [27]. Nield [28] investigated
heterogeneity influence on the onset of convection in a porous media. Futhere, the effects of strong
heterogeneity has been investigated by Nield and Simmons [29], Nield et al. [30]. They found
that when the attributes fluctuate in a nonlinear or linear way, the influence of substantial het-
erogeneity on the critical Rayleigh number is of second order. Nield and Kuznetsov [31] studied
vertical throughflow effects in a heterogeneous vertically oriented cylinder. They concluded that,
under the weak throughflow and weak heterogeneity assumptions, throughflow has a stabilizing
impact regardless of its direction. However, with regard to the orientation of quadratic variation,
the influence of heterogeneity can either stabilize or destabilize the fluid system. There are nu-
merous studies on the vertical throughflow effects on diffusive convection onset in a soaked porous
medium including [4, 32–35]. Shivakumara et al. [36] investigated the throughflow effects on
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double-diffusive convection in a porous layer. They concluded that, when the lower and upper
boundaries are of similar, the effect of throughflow is to destabilize the fluid system, and may
either stabilize or destabilize when the boundaries are unique. To the best of our knowledge,
heterogeneity and throughflow interaction in a rotating vertical cylinder with cross-diffusion effect
has not been studied. Therefore, in this study, among others, we investigate vertical throughflow,
Soret, Dufour and heterogeneity effects. We assume vertical heterogeneity with second-order as
discussed by Nield and Kuznetsov [31].

2. Mathematical formulation

A single-phase flow in a vertically oriented cylinder of radius r0 and height h filled with a saturated
porous medium and constantly rotating with angular velocity Ω about the vertical axis is consid-
ered. The aspect ratio r0/h is represented by R. We assume a vertical permeability K(z∗) within
the cylinder. We assume that the basic flow is uniform and has velocity V0 in the z-direction, see,
Figure 1.

Figure 1: Geometry of the problem.

We consider constant temperatures T0, T1 and uniform concentrations C0, C1 at the top and
lower boundaries (T0 < T1 and C0 < C1), respectively. The temperature, solute concentration
and velocity are represented by T ∗, C∗, V ∗ respectively. We assumes Boussinesq approximation,
the walls of the cylinder are impermeable, isothermal and isosolutal, and the extended Brinkman
Darcy model [4, 10]. Introducing the Soret and Dufour effects terms, the governing equations are
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given as

∇∗ · V ∗ = 0, (1)

µ∇∗2V ∗ − µ

K(z∗)
V ∗ + 2Ωz × V ∗ = ∇∗P ∗ − ρgez, (2)

σ
∂T ∗

∂t∗
+ V ∗ · ∇∗T ∗ = kT∇∗2T ∗ +DTS∇∗2C∗, (3)

φ∗
∂C∗

∂t∗
+ V ∗ · ∇∗C∗ = kS∇∗2C∗ +DST∇∗2T ∗, (4)

ρ = ρ0[1− βT (T ∗ − T0)− βS(C∗ − C0)]. (5)

Where P ∗ denotes excess pressure considered to be above the hydrostatic reference value, ρ0 is the
reference density of the fluid at reference temperature T0, σ is the saturated porous medium to
fluid heat capacity ratio (σ = (ρc)m/(ρc)f ), kT is the thermal diffusivity (kT = km/(ρc)f ) where
km is the porous medium effective thermal conductivity, kS is the solutal diffusivity, and φ∗ is the
porous medium porosity.
Introducing the following non-dimensional quantities

x =
x∗

h
, V =

h

kT
V ∗, t =

kT
σh2

t∗, T =
T ∗ − T0

∆T
, C =

1

Le

C∗ − C0

∆C
, P =

KH

ρ0Prk2T
[P ∗ − ρ0gz∗], (6)

where Le =
kT
kS

is the Lewis number, ν =
µ

ρ0
denotes kinematic viscosity, Pr =

ν

kT
is the Prandtl

number, and KH is the K(z∗) mean harmonic value. Using the nondimensional quantities Eq. (6)
in equations (1)–(5) yields

∇ · V = 0, (7)

∇P = Λ∇2V − 1

K(z)
V +
√
Taez × V + [RaTT +RaSC]ez, (8)

∂T

∂t
+ V · ∇T = ∇2T +Du∇2C, (9)

φ
∂C

∂t
+ V · ∇C = Le−1[∇2C + Sr∇2T ], (10)

whereDa =
KH

h2
is the Darcy number, Λ =

µDa

µ
is the effective Darcy number, Ta =

4Ω2K4
H

µ2
is the

Taylor number, RaT =
βTghKH∆T

νkT
is the thermal Rayleigh number, RaS =

βSghKH∆C

νkS
is the

solutal Rayleigh number, Du =
DTS∆C

kT∆T
is the Dufour number, Sr =

DST∆T

kS∆C
is the Soret number,

φ =
φ∗

σ
is the normalized porosity. Following [31] we express the permeability as K(z) =

K(z∗)

KH

.

Equations (7)–(10) have basic state solution of the form

Vb = (0, 0, Q), Tb(z), Cb(z), pb(z),
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with Q =
V0H

kt
being the throughflow depend on Péclet number, where

Vb = Qez, (11)

dp

dz
=
−1

K(z)
Q+RaTTb +RaSCb, (12)

Q
dTb
dz

=
d2Tb
dz2

+Du
d2Cb
dz2

, (13)

LeQ
dCb
dz

=
d2Cb
dz2

+ Sr
d2Tb
dz2

. (14)

Equations (13)–(14) are solved subject to boundary conditions to give

Tb = 1, Cb =
1

Le
, at z = 0, Tb = 0, Cb = 0, at z = 1.

The gives the basic temperature solution

Tb = b1 + b2e
λ2z + b3e

λ4z, (15)

and the basic solute solution

Cb =
1

Le
(b4 + b5e

λ2z + b6e
λ4z), (16)

where

λ1 =
Q(1 + Le+

√
(Le− 1)2 + 4DuSrLe)

2(DuSr − 1)
,

λ2 =
Q(−1− Le+

√
(Le− 1)2 + 4DuSrLe)

2(DuSr − 1)
,

λ3 =
Q
√

(Le− 1)2 + 4DuSrLe

DuSr − 1
,

λ4 = −λ1 =
Q(1 + Le+

√
(Le− 1)2 + 4DuSrLe)

2(1−DuSr)
,

b1 =
(1− 2eλ2 + eλ3)

√
(Le− 1)2 + 4DuSrLe+ (2Du + Le− 1)(eλ3 − 1)

2(eλ1 − 1)(eλ2 − 1)
√

(le− 1)2 + 4DuSrle
,
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b2 =
(2Du + Le− 1) +

√
(Le− 1)2 + 4DuSrLe

2(1− eλ2)
√

(Le− 1)2 + 4DuSrLe
,

b3 =
(eλ1 − eλ3)(2Du + Le− 1−

√
(Le− 1)2 + 4DuSrLe)

2(eλ1 − 1)(eλ2 − 1)
√

(Le− 1)2 + 4DuSrLe
,

b4 =

√
(Le− 1)2 + 4DuSrLe(1 + eλ3 − 2eλ2) + (2SrLe− Le+ 1)(eλ3 − 1)

2(eλ1 − 1)(eλ2 − 1)
√

(Le− 1)2 + 4DuSrLe
,

b5 =

√
(Le− 1)2 + 4DuSrLe+ (2SrLe− Le+ 1)

2(1− eλ2)
√

(Le− 1)2 + 4DuSrLe
,

b6 =
(eλ1 − eλ3)(2SrLe− Le+ 1−

√
(Le− 1)2 + 4DuSrLe)

2(eλ1 − 1)(eλ2 − 1)
√

(Le− 1)2 + 4DuSrLe
,

are nonzero constants. To avoid singular solutions, we assume that DuSr 6= 1.

3. Linear stability analysis

To investigate the linear stability, we impose perturbations on the basic state solution, the fluid
quantities are then written as

V = Vb + V ′, P = Pb + P ′, T = Tb + T ′, C = Cb + C ′. (17)

Using equation (17) into equations (7)–(10) and linearizing we have

∇ · V ′ = 0, (18)

∇P ′ = Λ∇2V ′ − 1

K(z)
V ′ +

√
Taez × V ′ + [RaTT

′ +RaSC
′]ez, (19)

∂T ′

∂t
+ w′

dTb
dz

+Q
∂T ′

∂z
= ∇2T ′ +Du∇2C ′, (20)

Leφ
∂C ′

∂t
+ Lew′

dCb
dz

+ LeQ
∂C ′

∂z
= ∇2C ′ + Sr∇2T ′. (21)

Taking the curl of equation (19) twice in ez direction, and following Nield and Kuznetsov [31]
assuming weak heterogeneity, we obtain

Λ∇2ξ =
1

K(z)
ξ +
√
Ta

∂w

∂z
, (22)

Λ∇4w′ − 1

K(z)
∇2w′ = −

√
Ta

∂ξ

∂z
−RaT∇2

HT
′ −RaS∇2

HC
′, (23)

where ∇2
H is the horizontal laplacian operator and ξ denotes the vorticity vector. Substituting

Eqs. (15) and (16) into Eqs. (20) and (21) we obtain

∂T ′

∂t
+Mw′ +Q

∂T ′

∂z
= ∇2T ′ +Du∇2C ′, (24)

Leφ
∂C ′

∂t
+Nw′ + LeQ

∂C ′

∂z
= ∇2C ′ + Sr∇2T ′, (25)
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where

M =
dTb
dz

= b2λ2e
λ2z + b3λ4e

λ4z,

and

N = Le
dCb
dz

= b5λ2e
λ2z + b6λ4e

λ4z.

Assuming that the impermeable upper, lower and lateral boundaries to be isothermal and isoso-
lutal, the boundary conditions are then given as

w′ =
∂ξ

∂z
= T ′ = C ′ = 0 at z = 0 and z = 1, (26)

u′ = ξ = T ′ = C ′ = 0 at r = R. (27)

The normal mode technique is employed to solve equations (22)–(25) subject to homogeneous
boundary conditions (26) and (27), to obtain

[w′, T ′, C ′] = [W,Θ,Γ]Jn(ar) sin(mπz) cos(nφ) exp (st), (28)

ξ = ZJn(ar) cos(mπz) cos(nφ) exp (st), (29)

where W,Θ,Γ, Z are constants, s is the growth rate, m and n are integers, we consider only the
minimum mode in the vertical direction m = 1, which reflects the highest unstable mode, Jn is a
first kind Bessel function of order n, a = jn/R, and jn is the smallest zero of Jn(ar). Substituting
equations (28) and (29) into equations (22)–(25), we get{(

Λα2 +
1

K(z)

)
Z + π

√
TaW

}
cos(πz) = 0, (30){(

Λα4 +
1

K(z)
α2

)
W − a2(RaTΘ +RasΓ)− π

√
TaZ

}
sin(πz) = 0, (31){(

α2 + s
)

Θ +Duα
2Γ +MW

}
sin(πz) +mπQΘ cos(πz) = 0, (32){(

α2 + Leφs
)

Γ + Srα
2Θ +NW

}
sin(mπz) + πLeQΓ cos(πz) = 0, (33)

where α2 = π2 + a2. Equations (30)–(33) with respect to the boundary conditions (27) denotes
an eigenvalue problem with RaT considered as the eigenvalue. The single-term Galerkin technique
is used to solve the closed form eigenvalue problem. After applying the orthogonality of trial
functions we obtain (

Λα2 + L1

)
Z + π

√
TaW = 0, (34)(

Λα4 + α2L2

)
W − a2RaTΘ− a2RasΓ− π

√
TaZ = 0, (35)(

α2 + s
)

Θ + α2DuΓ + U1W = 0, (36)(
α2 + Leφs

)
Γ + Srα

2Θ + U2W = 0, (37)
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where

L1 = 2

∫ 1

0

1

K(z)
cos2 πz dz, (38)

L2 = 2

∫ 1

0

1

K(z)
sin2 πz dz, (39)

U1 = 2

∫ 1

0

M sin2 πz dz = 4π2

[
b2

eλ2 − 1

4π2 + λ2
2 + b3

eλ4 − 1

4π2 + λ24

]
, (40)

U2 = 2

∫ 1

0

N sin2 πz dz = 4m2π2

[
b5

eλ2 − 1

4m2π2 + λ22
+ b6

eλ4 − 1

4π2 + λ24

]
. (41)

The system of equations (34)–(37) only admits a non-trivial solution if the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

π
√
Ta Λα2 + L1 0 0

α2(Λα2 + L2) −π
√
Ta −a2RaT −a2Ras

U1 0 (α2 + s) Duα
2

U2 0 Srα
2 (α2 + Leφs)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Expanding the determinant and solving for RaT , we obtain

RaT =

{
α2(Λα2 + L1)(Λα2 + L2) + π2Ta

}{
DuSrα

4 − (α2 + Leφs)(α2 + s)

}
a2

{
Λα2 + L1

}{
(U1 −DuU2)α2 + LesφU1

}
−Ras

{
(U2 − SrU1)α2 + sU2

(U1 −DuU2)α2 + LesφU1

}
, (42)

where s is a complex quantity. For marginal curves to exist, the real part of s should be equal to
zero, thus, s = iω, where ω represents frequency in real dimensions, then equation (42) gives

RaT = ∆1 + iω∆2, (43)

where:

∆1 =

α2

{
(Λα2 + L1)(Λα2 + L2)α2 + π2Ta

}{
(U1 −DuU2)(DuSr − 1)α4 − ω2Leφ(LeφU1 +DuU2)

}
a2(Λα2 + L1)

{
(U1 −DuU2)2α4 + (ωLeφU1)2

}
−Ras

{
(U1 −DuU2)(U2 − SrU1)α4 + LeφU1U2ω

2

(U1 −DuU2)2α4 + (ωLeφU1)2

}
, (44)
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∆2 =

{
π2Ta+ (Λα2 + L1)(Λα2 + L2)α2

}{
LeφU1(α4(1−DuSr)− ω2Leφ)− α4(U1 −DuU2)(1 + Leφ)

}
a2(Λα2 + L1)

{
(U1 −DuU2)2α4 + (ωLeφU1)2

}
+ α2Ras

{
LeφU1(U2 − SrU1)− U2(U1 −DuU2)

(U1 −DuU2)2α4 + (ωLeφU1)2

}
. (45)

Here RaT must be a real physical quantity, therefore, from Eq. (43), it follows that either ω = 0
or ∆2 = 0.

3.1. Stationary convection

For the stationary Rayleigh number, we substitute ω = 0 into equation (43), and note that direct
bifurcation occurs when RaT = RastT . Then, the stationary Rayleigh number RastT is given as

RastT =

α2

{
π2Ta+ α2(Λα2 + L1)(Λα

2 + L2)

}{
DuSr − 1

}
a2(Λα2 + L1)(U1 −DuU2)

−Ras

{
U2 − SrU1

U1 −DuU2

}
. (46)

It is noticeable that the expression of the stationary Rayleigh number that in Eq. (46) is inde-
pendent of the normalized porosity. Thus the normalized porosity does not have an effect on the
stationary convection.
The critical stationary Rayleigh number given by

(47)RastT c =

α2
c

{
π2Ta+ α2

c(Λα
2
c + L1)(Λα

2
c + L2)

}{
DuSr − 1

}
a2c(Λα

2
c + L1)(U1 −DuU2)

−Ras

{
U2 − SrU1

U1 −DuU2

}
,

where ac is the minimal a in the set jn/R. In Table 1 we find the values of a for the three minimum
modes in the azimuthal direction φ. The axisymmetry mode n = 0 is always prefect [21]. The

critical wave number is ac =
2.405

R
. We define the stream function ψ(r, z) as

∂Ψ

∂r
= rw,

and by integration we get

ψ =
r

ac
J1(acr) sinπz. (48)

The axisymmetry mode radial velocity is given by:

u = −1

r

∂Ψ

∂z
=
−πr
ac

J1(acr) cosπz. (49)

We note from Eq. (46) in the case of the homogeneous case (L1 = L2 = 1) without throughflow
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Table 1: The wave number a at the double-diffusive convection onset in a rotating heterogeneous porous cylinder
for the azimuthal modes n = 0 (axisymmetry), n = 1 and n = 2, for different aspect ratio R.

a = jn/R
R n = 0 n = 1 n = 2

0.01 240.48 552.01 865.37
0.02 120.24 276.01 432.69
0.05 48.10 110.40 173.07
0.1 24.05 55.20 86.54
0.2 12.02 27.60 43.27
0.5 4.81 11.04 17.31
1 2.40 5.52 8.65
2 1.20 2.76 4.33
5 0.48 1.1 1.73
10 0.24 0.55 0.87
20 0.12 0.28 0.43

(Q→ 0), without the Brinkman term and Taylor number, and Du = Sr = 0, then U1 = U2 = −1,
and the stationary Rayleigh number gives to

RaT
st +Ras =

(a2 + π2)2

a2
,

with critical value RaT
st
c = 4π2, for ac = π. This is in agreement with the known result of Niled

and Kuznetsov [31].
Now for the homogeneous case with throughflow without the Brinkman term and rotation effects,
Eq. (47) reduces to

(U1 −DuU2)

DuSr − 1
RaT +

(U2 − SrU1)

DuSr − 1
Ras =

(π2 + a2c)
2

a2c
.

When Du = Sr = 0, with weak throughflow these results reduce to those of Nield and Kuznetsov
[31]. Following [31], we allow for the variation of the vertical permeability K(z) in the form:

1

K(z)
=

1 + γz +
β

2
z2

1 +
γ

2
+
β

6

, (50)

where γ, and β are variables denoting the degree of heterogeneity, and have magnitudes less than
unity. Substituting equation (50) in equations (38)–(39) we obtain

L1 = 1 +
3β

2π2(6 + 3γ + β)
≈ 1 +

β

4π2
, (51)

L2 = 1− 3β

2π2(6 + 3γ + β)
≈ 1− β

4π2
. (52)
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For the non-homogeneous case, substituting equations (51) and (52) in equation (47), we obtain

RastT c =

α2
c

{
π2Ta+ α2

c(Λα
2
c + 1 +

β

4π2
)(Λα2

c + 1− β

4π2
)

}{
DuSr − 1

}
a2c(Λα

2
c + 1− β

4π2
)(U1 −DuU2)

−Ras

{
U2 − SrU1

U1 −DuU2

}
.

(53)

When Soret and Dufour effects are non-existent, Eq. (53) reduce to

(54)
4π2a2c

α2
c(4π

2 +Q2)
RastT c +

4π2a2c
α2
c(4π

2 + Le2Q2)
Ras = α2

c

(
Λα2

c + 1− β

4π2

)
+

π2Ta(
Λα2

c + 1 +
β

4π2

) .
Thus, if β is positive there is a reduction in the critical Rayleigh number and in this case the
heterogeneity has a destabilizing effect at the second-order Taylor expansion for small value of β.
For Ta = Λ = 0 and weak throughflow, equation (54) becomes(

1− Q2

4π2

)
Rac

st +

(
1− Le2Q2

4π2

)
Ras =

(π2 + a2c)
2

a2c

(
1− β

4π2

)
,

which agrees with the result of Nield and Kuznetsov [31].

3.2. Oscillatory convection
With rotation, solutal gradient and temperature gradient present, oscillatory motions are possible
(ω 6= 0). In this case ∆2 = 0, so the equation (45) becomes

(55)

ω2 =

{
Λα2 + L1

}{
LeφU1(U2 − SrU1)− (U1 −DuU2)U2

}
a2α2Ras

Le2φ2U1

{
α2(Λα2 + L1)(Λα2 + L2) + π2Ta

}

+

α4

{
LeφU1(1−DuSr) + (1 + Leφ)(DuU2 − U1)

}
Le2φ2U1

.

Eq. (55) gives the oscillatory mode frequency. If positive ω2 does not exist, then an oscillatory
instability cannot be observed. If positive values of ω2 exist, then the oscillatory Rayleigh number
is found by inputting the positive values of ω2 in Eq. (43). Now the thermal oscillatory Rayleigh
number RaoscT is given by

RaoscT
=

α2

{
(Λα2 + L1)(Λα

2 + L2)α
2 + π2Ta

}{
(U1 −DuU2)(DuSr − 1)α4 − ω2Leφ(LeφU1 +DuU2)

}
a2(Λα2 + L1)

{
(U1 −DuU2)2α4 + (ωLeφU1)2

}
−Ras

{
(U1 −DuU2)(U2 − SrU1)α

4 + LeφU1U2ω
2

(U1 −DuU2)2α4 + (ωLeφU1)2

}
,

(56)
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It is evident that the oscillatory convection is depend on the parameters Sr, Du, Le, Ta,RaS, Le, φ
and Λ. The oscillatory critical Rayleigh number RaoscT c is calculated from Eq. (56) for different
parameter values.

4. Results and discussion

The linear stability of double-diffusive convection in a rotating vertical cylinder packed with a
heterogeneous porous media was studied. This investigation aimed to investigate the influence of
the heterogeneity, rotation, throughflow, Soret, and Dufour numbers on the onset of instability in a
fluid layer. The Galerkin approximation method was used to solve the resulting eigenvalue problem.
The stationary Rayleigh number is given by Eq. (46), and the oscillatory thermal Rayleigh number
is given by Eq. (56). The parameter values are taken from the literature [4, 17, 37]. The influence
of the parameters on the onset of convection is presented in Figures 2–6. Figure 2 shows the effect
of various degrees of heterogeneity on the stationary Rayleigh number in Eq. (54) with changes in
Péclet and Taylor numbers.
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Figure 2: Changes in critical thermal Rayleigh number Rac
St with (a) Péclet–Darcy number Q, (b) Taylor number

Ta. For various degrees of heterogeneity parameter β. When Sr = 0, Du = 0, Ta = 100, Λ = 0.1, Q = 0.5, Ras =
20, Le = 20, R = 0.4.

The effect of heterogeneity is moderately destabilizing when β is positive and slightly stabilizing
for negative β. Therefore, the effect of heterogeneity is to stabilize or destabilize the fluid system,
depending on the direction of the quadratic variation. Figure 2(a) depicts that the Péclet number
has a stabilization effect, as the critical stationary Rayleigh number increases with Péclet–Darcy
number for both the upward and downward throughflow. Figure 2(b) shows that Rac

St increases
as Ta increases, indicating that rotation has a stabilizing effect on the system.
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Figure 3: Neutral stability curves with aspect ratio R for various values of (a) Soret number Sr, (b)effective Darcy
number Λ, (c) Taylor number Ta, (d) Dufour number Du, (e) Péclet number Q, and (f) Lewis number Le. When
β = 0.25, Du = 0.1, Sr = 0.2, Ta = 10, Le = 2, Q = 1,Λ = 0.1, Ras = 10, φ = 0.1.

Figure 3 depicts stability neutral curves for critical stationary and oscillatory Rayleigh numbers
against the aspect ratio R of the vertical slender cylinder for various parameter values with other
fixed parameters values as β = 0.25, Du = 0.1, Sr = 0.2, Ta = 10, Le = 5, Q = 0.5,Λ = 0.1, Ras =
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100, φ = 0.1.
Figure 3(a) depicts the effect of the Soret number. It shows that the minimum stationary Rayleigh
number increases by increasing the positive Soret number and decreases by increasing the negative
magnitude of the Soret number, showing that a positive Soret number stabilizes the stationary
convection and a negative Soret number destabilizes it. The critical oscillatory Rayleigh number
decreases by increasing the positive value of Sr, and increases by increasing negative values of Sr,
showing that the positive Soret number destabilizes the oscillatory convection and negative Soret
number stabilizes the oscillatory convection. Figures 3(b–f) depict the effect of Darcy, Taylor,
Dufour, Péclet, and Lewis numbers respectively. As the values of these variables are increased, the
critical stationary and oscillatory Rayleigh number increases, showing that the factors postpone
the double-diffusive convection onset in the fluid system.
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Figure 4: Normalized porosity φ effect on the oscillatory critical Rayleigh number RaT c
osc when β = 0.25, Ta =

10, Du = 0.1, Sr = 0.2, Q = 0.5,Λ = 0.1, Le = 5, Ras = 10.

Figure 4 displays the effect of normalized porosity on the oscillatory neutral curves. We find that
when normalized porosity increases, the minimal critical oscillatory Rayleigh number decreases,
showing that normalized porosity accelerates the oscillatory convection onset.
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Figure 5: Solute Rayleigh number effect on stationary critical Rayleigh number RaT c
st with Péclet–Darcy number

Q. When β = 0.25, Ta = 10, Du = 0.1, Sr = 0.2,Λ = 0.1, Le = 5.

Figure 5 illustrates the critical Rayleigh number against Péclet number for various values of Ras.
The figure shows that, for Ras = 0 with increasing Q, the critical Rayleigh number decreases
initially and then increases. Thus, the throughflow first destabilizes the system and then stabilizes
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it. For Ras > 0, the throughflow effect always stabilizes the system. These findings are in
agreement with those of Shivakumara [36]. Also, Figure 5 shows that Ras has a destabilizing
effect.
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Figure 6: Critical Rayleigh number RaT c variation with with Péclet–Darcy number Q, for diffrent values of Taylor
number Ta, when β = 0.25, Du = 0.1, Sr = 0.2Λ = 0.1, Le = 5, φ = 0.1.

Figure 6 shows the variation of critical Rayleigh number against the Péclet number for differ-
ent values of Taylor number. The figure shows that increasing the rotation delays the onset of
stationary and oscillatory instabilities.

5. Conclusion

A linear stability analysis is carried out to investigate double-diffusive convection in a rotating
vertical cylinder filled with heterogeneous porous media and vertical throughflow in the presence
of Soret and Dufour influences. The Brinkman model was employed in the system of governing
equations. The effect of the normalized porosity of the porous medium, heterogeneity, Dufour,
Soret, Lewis, Darcy, Taylor, Péclet, and solute Rayleigh numbers on the stationary and oscillatory
convection have been presented. In summary, we observe the following

• As heterogeneity is increased, both destabilizing and stabilizing effects are experienced.

• In the absence of the diffusing component, throughflow destabilizes the system before stabi-
lizing it. When Ras is greater than zero, the throughflow always stabilizes the system.

• The stationary and oscillatory convection onsets are delayed by increasing the Dufour, Taylor,
Lewis, and Darcy numbers.

• The Soret parameter stabilizes the fluid system in the stationary mode and destabilizes it in
the oscillatory mode.

• Through delaying the start of convection instabilities, the effective Darcy number has a
stabilizing impact on stationary and oscillatory convection.

• Increasing the normalized porosity reduces the critical oscillatory Rayleigh number, hence it
has a destabilization effect.

The authors are grateful to the University of KwaZulu-Natal for its support.
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