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Abstract

Changes in the structure of biological macromolecules, such as RNA and protein, have an important impact on biological

functions, and are even important determinants of disease pathogenesis and treatment. Some genetic variations, including copy

number variation, single nucleotide variation, and so on, can lead to changes in biological function and increased susceptibility

to certain diseases by changing the structure of biological macromolecules. Here, we reviewed the progress of research about

the effects of genetic variation on the structure of macromolecules including RNAs and proteins, several typical methods

and common tools, and the effect on several diseases. An online resource (http://www.onethird-lab.com/gems/) to support

convenient retrieval of common tools is also built. Finally, the challenges and future development of effect prediction were

discussed.
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Abstract

Changes in the structure of biological macromolecules, such as RNA and protein, have an important impact
on biological functions, and are even important determinants of disease pathogenesis and treatment. Some
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genetic variations, including copy number variation, single nucleotide variation, and so on, can lead to
changes in biological function and increased susceptibility to certain diseases by changing the structure of
biological macromolecules. Here, we reviewed the progress of research about the effects of genetic variation on
the structure of macromolecules including RNAs and proteins, several typical methods and common tools,
and the effect on several diseases. An online resource (http://www.onethird-lab.com/gems/ ) to support
convenient retrieval of common tools is also built. Finally, the challenges and future development of effect
prediction were discussed.

Keywords: Genetic variation; single nucleotide variation; macromolecular structure; RNA; protein.

Introduction

There are many forms of genetic variation, large to structural fragment insertion/deletion, and copy number
variation (CNV), small to short insertion/deletion, and single nucleotide variation (SNV), the effects of which
are complex. Genetic variation and lead to changes in gene function or affect the expression quantitative
trait loci (eQTL) and cause abnormal gene expression. For biological macromolecules, genetic variation may
change the structural sequence directly, and cause abnormalities in the biological process. For example,
Ennis et al.[1] found that T/C (ss71651738) single nucleotide polymorphisms (SNPs) located at the origin of
replication may lead to changes in replication forks and repeated expansion. The resulting repetitive instabil-
ity is thought to be an important cause of Fragile X syndrome (FXS) [2], which is caused by FMR1 silencing
due to repeated expansion of base CGG [3].

RNA molecules fold into complex structures due to intramolecular interactions between nucleotides, a folding
process that involves not only simpler secondary structures but also forces in three dimensions. In this
process, genetic variation can directly affect the structure of coding RNA molecules [4,5], or non-coding
RNA (ncRNA) involved in biological processes [6], such as microRNA (miRNA) [7], mitochondrial tRNAs
(mt-tRNAs) [8,9], and long non-coding RNA (lncRNA) [10,11].

Protein is another common class of macromolecules, which play a crucial role in a series of biological processes
such as cell proliferation, signal transduction, host-pathogen interaction, and protein transport. Minor
changes in proteins can have dramatic effects on phenotypic results, such as the development of disease and
drug resistance. Although the structure of protein is much easier to predict than RNA [12], Protein formation
is more complex and diverse than RNA. Protein folding, stability, interaction, and activity may be affected
by single-point and multi-point mutations. Among them, analyzing and determining the influence of genetic
variation on amino acid sequence structure is a key step to explain the influence on protein structure.

Although little is known about how genetic variation ultimately leads to structural changes, the regulations
can be found and summarized based on known molecular structure data and sequence data. In this process,
the prediction of the macromolecular structure plays a significant role, and accurate prediction result can
become an evaluation index of the structural impact caused by variation. Here, we aimed to review the
influence of genetic variation on macromolecules, especially SNP and SNV on RNA and protein. some
commonly used prediction methods and tools were summarized, as well as the impact of genetic variants on
several clinical diseases.

Principle and process of RNA structure prediction

The function of RNA largely depends on its structure, which is affected by its sequence. However, the
formation of structure is not a simple process, and RNA needs to be folded many times. In general, RNA se-
quences initially fold into the most thermodynamically favorable secondary structural elements, then forms a
complementary paired double helix structure by self-folding [13]. Therefore, accurate prediction of secondary
structure is a key step to predicting tertiary structure and function [14]. Some factors should be considered
in predicting: First, there are about 40% non-canonical base pairs in nature which are base pairs other than
A-U, G-C, and G-U [15]. Then, base triples are the cluster of three base interactions, which widely exist

2
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in RNA structure [16] and can stabilize many RNA tertiary interactions [17]. Finally, pseudoknots will be
formed when bases in different loops pair with each other [18]. These factors contribute to the functional
diversity of RNA, but also increase the difficulty in predicting its structure.

Traditional RNA secondary structure prediction

In the era when direct measurement of RNA structure was not matured and RNA sequence data was scarce,
and computational prediction was the mainstream method to identify RNA secondary structure. Most of
these traditional methods were based on the minimum free energy (MFE) to simulate the RNA structure,
but their accuracy and calculation speed met a bottleneck [19,20]. The optimal traditional method reached
a performance ceiling of about 80% [21].

Traditional RNA secondary structure prediction methods can be divided into two categories: (i) Methods
based on MFE score. This is also the most-used method, which is usually combined with the dynamic pro-
gramming algorithm to find the MFE structure in the thermodynamic stable state. However, the calculating
speed and accuracy on long sequence RNA and the prediction effect in the presence of pseudoknots are
not ideal. (ii) A method based on comparative sequence analysis, which is more accurate than the former.
Based on the assumption that RNA secondary structure is more conservative than RNA sequence in evolu-
tion, a group of homologous sequences is generally more similar in structure to predict secondary structure.
Comparison sequence analysis can also predict structures with pseudoknots [22,23], but the accuracy is still
limited. In addition, comparative sequence analysis can be combined with score-based methods [24-27].
However, a great limitation of this method is that many homologous sequences are in need.

Traditional RNA secondary structure prediction flows as follows Figure 1: First, RNA sequence data and
its molecular thermodynamics and molecular dynamics parameters are used to obtain a series of possible
free energy structures through a dynamic programming algorithm [28]. Secondly, the partition function and
base pairing probabilities of RNA molecules are obtained according to the specific constraints of the actual
environment such as temperature. Then, use them to trace back a series of possible structures obtained in
the first step to get a new MFE structure. Finally, the optimal free energy structure is regarded as the result
of prediction, and a graphical output in the form of an energy point diagram is formed. (Figure 1)

Machine learning-based RNA secondary structure prediction

In 2010, Kertesz et al. [20] described parallel analysis of RNA structure (PARS), which combined high-
throughput technology with RNA structure-specific enzymes to provide secondary structure analysis of
thousands of RNAs at single nucleotide resolution. Many detection methods have been developed and
applied to RNA structure analysis, so the quality and quantity of RNA sequence data has been continuously
improved. With the development and improvement of machine learning (ML) technology, especially deep
learning, prediction methods based on ML have gradually developed and replaced traditional methods.

ML-based methods train their models in a supervised way [29]. These models learned to map features to
structures by adjusting model parameters according to known structures and corresponding sequences and
other feature information (Supplementary File S2.1). Many of them used free energy parameters, encoded
RNA sequences, sequence patterns, or evolutionary information as key features, and their outputs can be
classified as tags (such as paired or unpaired) or continuous values (such as free energy). When features of
the new structure are input into the training model, the model can classify the corresponding tag or predict
the corresponding parameter [29]. Its characteristic is that it contains all the information of the data, so
it does not rely on the assumptions in traditional methods and is easy to combine with known biological
rules [19]. While the accuracy of prediction is improved, the prediction model after training is faster than
traditional methods, so it has more advantages in processing long RNA sequences.
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The development history and representative methods of RNA prediction

Since the concept of RNA secondary structure was put forward in 1960 [30], the research on how RNA
secondary structure formed from sequence to function has never stopped. In 1971, Tinoco et al. [31]
proposed a simple method to estimate the secondary structure of RNA molecules for the first time, but
Delisi et al. [32] didn’t get the expected results when trying to predict the secondary structure of RNA
from the MFE. In 1981, Zuker et al. [33] used a dynamic programming algorithm to predict RNA secondary
structure based on the MFE model. In 1989, Zuker et al. developed a computer program, which calculates
the structure of optimal and suboptimal folds and becomes the basis of the mfold package [34]. In 1994,
Hofacker et al. [28] proposed the ViennaRNA package including the RNAfold method to calculate the MFE
structure of RNA molecules or partition function [12]. In 2004, Ding et al. proposed the MFE model
combined with statistical methods and developed the software package Sfold. In 2010, Halvorsen et al.
developed the SNPfold algorithm which compares the sequence information before and after mutation based
upon the calculation of the RNAfold partition function. [35]. In 2014, David H. Mathews provided four
programs in the RNAstructure based on comparative sequence analysis. [36]. With the development of RNA
structure detection technology, learning-based methods were increasingly used to predict RNA structure. In
2020, Chen et al. proposed an end-to-end deep learning model, called E2Efold, which significantly improved
the accuracy and speed of prediction [37]. In 2022, Laiyi Fu et al. developed the UFold method based
on deep learning, which further improved the accuracy of prediction [38]. The development history of the
common RNA structure prediction method is shown in Figure 2.

Here we list several representative methods for RNA prediction and more details of the RNA traditional
prediction software packages are shown in supplementary materials, including mfold package (Supplementary
File S1.1), ViennaRNA package (Supplementary File S1.2), and RNAstructure package (Supplementary File
S1.3).

Mfold was first proposed by Zuker et al. in the 1980s [34,39,40] , which introduced new improvements to
make the calculation of RNA structure prediction more accurate and efficient. The first is the combination of
the new energy rules, and the second is the ability to calculate optimal and suboptimal folding. Conditional
constraints can be imposed based on preassumptions, and sub-optimal structures may be more consistent
with experimental data than optimal ones. In terms of output, the best and suboptimal folding lists can be
sorted by energy. An energy point diagram can also be used to describe all suboptimal folds in one image
[41].

RNAfold was developed based on the ViennaRNA package, the computer program widely used to compute
and compare RNA secondary structures. Using the dynamic programming algorithm, the code predicted the
structure with MFE after calculating the equilibrium partition function and base pairing probabilities, which
may serve as constraints. Based on this, RNAfold developed an RNA secondary structure algorithm based
on tree editing and alignment, which can calculate the MFE, backtrack the optimal secondary structure
and efficiently solved the RNA inverse folding problem. It was worth noting that RNAfold can provide
constraints for the folding algorithm to force the pairing of a specific location [13,28].

SNPfold algorithm was designed based on RNA partition function calculation in RNAfold [26,42]. The
difference between them is that the SNPfold algorithm requires two different RNA strands with the same
length. One strand is a wild-type RNA sequence, and the other is an RNA sequence containing genetic
variation. SNPfold will calculate the Pearson correlation coefficient between two RNA base pairs and the
partition function of the possible RNA conformations set of the sequence to analyze the influence of SNPs
on RNA structure. Besides, it will help to identify the disease-related mutation in the regulatory RNA by
analyzing genome-wide association studies (GWAS) data and the whole mRNA structure [35].

UFold was a deep learning-based method recently developed to directly train labeled data and base pairing
rules. A novel RNA sequence image representation method was proposed by UFold, which can be effectively
processed by Fully Convolutional Networks (FCNs). It was found that it outperformed other methods in
the family dataset and its prediction speed was improved [38].
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Principle and process of protein structure prediction

Changes in protein structure are influenced by a variety of factors, including SNPs and mutations. Nucleotide
variations that cause an amino acid change are called nonsynonymous mutations, and nonsynonymous SNP
(nsSNPs) are an important part of this extensive research. These single-base changes, or multiple nucleotide
substitutions leading to alterations in the amino acid sequence of the encoded protein, are called single amino
acid variations (SAVs) or missense variations. Amino acid changes can affect protein stability, interactions,
and enzyme activity, and even cause disease. Therefore, it is crucial to accurate prediction of the effect of
genetic variation on protein structure for understanding the mechanism of genome variation associated with
certain diseases [43].

By reviewing the literature, we found that the prediction of the effect of genetic variants on protein structure
is always inseparable from machine learning methods. Prediction methods often combine protein character-
ization data, such as protein dynamics, contact potential scores, interatomic interactions, and other aspects
features, using machine learning algorithms including support vector machines, random forests, and deep
learning to train and implement the predictions. Therefore, several feature extraction methods and machine
learning methods are reviewed in this section.

Protein structure feature extraction method

Normal Mode Analysis (NMA) provides a valuable method for the study of system dynamics and acces-
sible conformations as an alternative to time-consuming and computationally expensive molecular dynamics
simulation. The kinetic properties extracted from the protein structure generated from the NMA module of
the Bio3d tool can be utilized [44].

Analysis of Mutation Effects. The change of folded Gibbs free energy may be caused by many related
factors. To combine these characteristics, Arpeggio [45] can be used to calculate the number of hydrophobic
contacts involving wild-type residues and the contact potential score in the AAINDEX database [46].

Graph-based structural signatures approach to represent molecular structures has proven to be success-
ful for a range of applications towards the study of protein structure and changes carried out by missense
mutations, including phenotypic changes. These signatures comprise physicochemical and geometrical prop-
erties from the wild-type environment that are based on distance patterns mined from the 3D structure by
representing atoms as nodes and their interactions as edges. Then the physicochemical properties and the
distance pattern between atoms are defined according to the properties of amino acids (i.e., pharmacophores)
and transformed into a cumulative distribution function [47-50].

ML

ML was successfully applied to proteins earlier than RNA (Supplementary File S2.2). As executors of
functions, proteins are robust and have a large number of features that can be used for ML. In the field of
bioinformatics, algorithms such as deep learning, random forest, support vector machine, etc. are widely used
in protein structure prediction [51], protein functional site prediction [52,53], subcellular location prediction,
etc [54,55]. There are many ML algorithms, none of which is the best algorithm for all tasks. Take the
method flow of the classic sequence-based tool DynaMut2 [56] as an example, as shown in the following
figure 3.

The development history and representative methods of protein prediction

Several methods have been developed to predict how missense mutations affect protein stability by using
sequence or structural information from which the information is often complementary. The development
history of relevant methods is shown in Figure 4. According to the characteristics of existing methods, we
divide them into five categories and introduce their respective characteristics and representative methods.

5
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The structure-based method only (red part in the figure)

mCSM was developed by Pires et al. in 2014, which was a method based on protein structure and relies on
the graph-based signature to study missense mutation [47]. It encodes the interatomic distance to represent
the protein residue environment and trains the prediction model. Subsequent studies have also proven that
the effect of mutation is related to the atomic distance around amino acid disability. The mCSM network
server has been established and provides many extended tools and methods.

SDM is an algorithmic program based on statistical potential energy function proposed by Topham et al.
in 1997 [57]. Worth et al. established the SDM network server in 2011 [58]. Based on the structure method,
SDM uses the amino acid substitution frequency of the homologous protein family in different environments
to calculate the stability score between wild-type and mutant proteins. The change in protein stability is
one of the important parts to estimate the effect of genetic variation on protein structure.

The sequence-based method only (green part in the figure)

MuStab was a network server that was developed by Teng et al. in 2010 [59], which is a machine-learning
method for detecting protein stability based on sequence characteristics. It uses experimental data on the
free energy variation of protein stability during mutation. After analyzing 20 sequence features, it is found
that the classifier combined with 6 sequence features is the most accurate including stability (S3) bulkiness
(Bu), the transmembrane tendency (Tt), beta-sheet (B), average area buried on transfer from standard state
to folded protein (Aa), and the mobility of an amino acid on chromatography paper (Mc) (Supplementary
File S2.2).

Methods based on structure and sequence (yellow part in the figure)

Imutant3. 0 was proposed by Capriotti et al. in 2008 [60], which can distinguish the experimental protein
stability free energy change value (ΔΔG) into stable mutation, unstable mutation, and neutral mutation by
using a support vector machine (SVM) based on sequence or structure. It also improves the prediction effect
of free energy change caused by single-point protein mutation.

Other methods (purple part in the figure)

The iStable is an integrated predictor, which can predict the change of protein stability by SVM when a
single amino acid residue is mutated. It uses sequence information and prediction results that adopted the
SVM as an integrator from different element predictors to construct grid computing architecture [61]. The
iStable2.0 systematically improves prediction performance based on iStable [62].

The new method (blue part in the figure)

Many new methods have emerged in recent years. Among them, AlphaFold2 [63] based on deep learning,
and RoseTTAFold [64] using a 3-track neural network are two representative methods, both of which have
achieved amazing accuracy in predicting protein structure.

The latest version of Alphafold is based on a new ML method, which integrates the physical and biological
knowledge of protein structure into the design of deep learning algorithm by using multi-sequence alignment
[63]. AlphaFold is a fully redesigned neural network-based model that has similar prediction accuracy to the
experimental structure and significantly outperforms other methods in most cases.

RoseTTAFold was developed by Minkyungbaek and others [64]. Combined with the network architecture
of relevant ideas, RoseTTAFold achieved the best performance by successively converting and integrating the
information of the one-dimensional sequence layer, two-dimensional distance layer, and three-dimensional
coordinate layer-3. The structure prediction accuracy of the track network is close to that of deepmind in
the 14th round of the Critical Assessment of Structure Prediction (CASP14).

6
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Common identification tools and software

Here, we list some tools that can predict the effect of mutation on the macromolecular structure (Supple-
mentary Table T1). These tools combine the information related to mutation and macromolecular structure
prediction methods. The tool usually takes the molecular sequence and variation information as input, the
predicted wild-type structure and the structure after variation, and the change of macromolecular thermo-
dynamic index as output. We have developed a website GEMS (http://www.onethird-lab.com/gems/ ) as a
brief introduction and index to these tools.

Tools to identify structural effects on RNA

RNAsnp (https://rth.dk/resources/rnasnp ) is a web server tool, which use a different mode to predict the
effect of SNPs on different length of RNA sequence. The global folding method RNAfold [28] calculate the
base pair probabilities of wild-type and mutant sequence, which is less 1000nt, and the local folding method
RNAplfold [65] are used for large RNA sequence. These two methods are part of the ViennaRNA package
[13], for more information see the annex. SNP effects are quantified from extensive pre-computed tables of
distributions of substitution effects as a function of gene length and GC content. The input data of RNAsnp
can be a single RNA sequence in FASTA format with one or more mutants whose structural effect needs
to be predicted. It not only provides the structural prediction results but also features a graphical output
representation [66,67] (Supplementary File S5.1).

MutaRNA(http://rna.informatik.uni-freiburg.de/MutaRNA) is a web server for studying SNV-induced
RNA structure changes, which is also the first tool that provides different dot plots for comparative analysis
of base pairing potentials. MutaRNA uses the local folding method RNAplfold [65] which is part of the
ViennaRNA package [13] to retrieve candidate RNAs. MutaRNA also integrates the empirical p-values from
RNAsnp [67] and the relative entropy comparing wild-type and mutant-form remuRNA [68] to quantify the
structure aberration caused by SNV. The input data of MutaRNA is an RNA sequence of the wildtype
sequence (WT) in FASTA format and the location of the mutation. It can provide a variety of visualization
results, including heat map matrices, circular plots, and arc plots that are convenient for users to use directly
in scientific reporting [69] (Supplementary File S5.2).

LncCASE (http://bio-bigdata.hrbmu.edu.cn/LncCASE ) is a network database, which is constructed based
on lncRNAs prediction in cancer. Multidimensional molecular analysis of tumor samples, biomolecular
interaction networks, and pathway data resources by integrating genomic and transcriptome data from
human cancer. LncCASE uses a computational method to identify the sub-pathways driven by lncRNAs
under the influence of CNV. The copy number level of lncRNA was re-annotated, and the lncRNA CNV
spectrum was constructed and visualized. The tool further analyzes the biological effects of lncRNA affected
by genetic variation in cancer, which facilitates the study of cancer biology [70].

PON-mt-tRNA(http://structure.bmc.lu.se/PON-mt-tRNA) is a prediction tool for pathogenic variants on
tRNAs. Since all pathogenic variants of tRNAs are located in mitochondria, investigators collected mt-tRNA
variants and developed a machine-learning random forest algorithm based multivariate probabilistic predic-
tion method. The method requires a reference position in the mtDNA, the reference (original) nucleotide,
and the nucleotide altered by each variation as inputs. In addition, users have the option to submit evidence
for isolation, biochemical, and histochemical characterization. The investigators classified all possible single
nucleotide substitutions in all human mt-tRNA using PON-mt-tRNA, which documents the prediction of all
possible nucleotide substitutions in mt-tRNA genes [71].

UFold (https://ufold.ics.uci.edu ) is developed as a web server running UFold to facilitate the use of the
UFold method. Users can enter or upload RNA sequences in FASTA format. The server predicts the
secondary structure of RNA using pre-trained UFold models (trained on all datasets) and stores the predicted
structure in a dot-bracket file or bpseq file for users to download. The user can also select in the options
panel either to predict non-canonical pairs or not directly. The server further provides interface connectivity
to the VARNA tool [72] to visualize the predicted structures. Most existing RNA prediction servers, such as
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RNAfold [13], MXfold2 [73], and SPOT-RNA [74], can only predict one RNA sequence at a time and limit
the length of the input sequence, but UFold does not have that limitation. Unfortunately, UFold is currently
unable to combine SNP data to predict the effect of structure breaking mutations. More tools for mutation
prediction of RNA structural disruption effects are shown in Supplementary File S3.

Tools of identifying structural effects on proteins

INPS (http://inps.biocomp.unibo.it ) is a new approach that departs from protein sequence information and
does not rely on structure to annotate the effect of non-synonymous mutations on protein stability. INPS
is based on support vector machine regression and is trained to predict the change in thermodynamic free
energy based on a single point change in a protein sequence. It has the advantage of being suitable for
calculating the effect of nonsynonymous polymorphisms on protein stability when the protein structure is
unavailable. INPS predictor consists of one support vector regression (SVR) trained on single point variations
in different proteins and can complement each other [75] with methods like structure-based mCSM [47].

DynaMut2 (http://biosig.unimelb.edu.au/dynamut2 ) is a tool that integrates information on protein dy-
namics and structural environment attributes of wild-type residues. As a graph-based signature method, it
is able to accurately predict the effect of mutations on the stability and dynamics of single and multiple point
mutations. DynaMut2 can predict the Gibbs free energy change of single point mutations or no more than
3 multiple point mutations based on Normal Mode Analysis (NMA) and protein kinetic analysis. Its input
may be a single mutation or a mutation list, and its performance is better than other methods in predicting
stability changes caused by single-point mutations [56].

mCSM-PPI2 (http://biosig.unimelb.edu.au/mcsm-ppi2/ ) is a new machine-learning computational tool
that can predict the effect of missense mutations on the binding affinity of protein interactions accurately. It
leverages graph-based structural signatures to model inter-residual interaction networks, evolutionary infor-
mation, complex network metrics, and the change effects of energy terms to generate optimized predictors.
The mCSM-PPI2 can be used to assess the impact of user input of a specified mutation or to predict the
impact of protein interface mutations in an automated manner [76].

PhyreRisk (http://phyrerisk.bc.ic.ac.uk ) is a web application tool for connecting genomic, proteomic, and
structural data to facilitate the mapping of human variants to protein structures. It provides information
on 20,214 human typical protein sequences and 22,271 alternative protein sequences (isoforms) and supports
new variant data in a genomic coordinate format (VCF, applying reference SNP IDs and HGVs release
symbols) and human gene builds GRCh37 and GRCh38 as inputs. In addition, it supports the use of amino
acid coordinates to map variations and search for genes or proteins of interest. PhyreRisk aims to enable
researchers to translate genetic data into protein structural information that provides a more comprehensive
assessment of the functional impact of variants [77].

AlphaFold (https://alphafold.ebi.ac.uk ) is an open-access and extensive database that provides highly ac-
curate protein structure prediction. AlphaFold V2.0 gives an unprecedented expansion of structural coverage
of known protein sequence space structures. The latest version of AlphaFold is based on a novel ML approach
that combines physical and biological knowledge about protein structure. Using multiple sequence align-
ments, this knowledge is incorporated into the design of deep learning algorithms. Not only that, AlphaFold2
also uses inductive biases in physics and geometry to build components that learn from PDB data. This
enables the network to learn more efficiently from limited data in the PDB and to deal with the complexity
and diversity of structural data. AlphaFold and its technology computational methods have been important
tools to solve biophysical problems in modern biology [63]. However, it is a pity that up to now, no tool has
been developed to predict the structural effects caused by mutation [78]. More protein structure disruption
effect mutation prediction tools are shown in Supplementary File S4.

Table 1. The information on the protein prediction tools.
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Tools Methods&Algorithms Input Output

Tools Methods&Algorithms Input Output

NAT22PRED SVM predictor SNP Genotypes and probability
INPS SVM regression nsSNPs Prediction from sequence or protein structure.
DynaMut2 Graph-based signatures Mutations Protein dynamics information
mCSM-PPI2 Graph-based signatures Single mutation Structure prediction
PhyreRisk Homology modeling Genomic or protein variants Structure prediction
AlphaFold2 Deep-learning Protein name, gene name, UniProtaccession, or organism name Structure prediction and information

Other identification tools

IntSplice(http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice) is the web server to identify SNVs af-
fecting intronic cis-elements. The precise spatiotemporal regulation of splicing is mediated by the splicing
cis-elements on pre-mRNA. IntSplice uses an online SVM model based on the analysis of the effect size of
each intron nucleotide on the annotated alternative splicing. It can predict the splicing consequences of
SNVs at intron positions -50 to -3 in the human genome. The IntSplice model was applied to distinguish
pathogenic SNVs from the Human Gene Mutation Database and normal SNVs from the dbSNP database
and achieved good results [79].

Natural Language Processing based non-synonymous Single Nucleotide Polymorphism Predictor (NLP-
SNPPred,http://www.nlp-snppred.cbrlab.org.) web server could distinguish pathogenic protein-coding
variations and neutral protein-coding variations based on the state-of-the-art Natural language Process-
ing (NLP) of Artificial Intelligence (AI). Through feature extraction, a multi-class classifier (CLF1) followed
by a binary-class classifier (CLF2) is created. NLP-SNPPred uses the NPL approach to read biological liter-
ature for the identification of pathogenic versus neutral variants and outperforms state-of-the-art functional
prediction methods and can be used to predict functional effects of protein-coding mutations. NLP will add
more features such as homology, epigenomics, and evolutionary information [80].

The impact of genetic variation on macromolecular structure in diseases

Although GWAS has identified some genetic variants, the mechanisms between genetic variation and disease
remain unclear. Genetic variations can alter the structure of RNA or proteins, leading to abnormalities in
biological function or even disease. Some studies found that the molecular mechanism of some typical diseases
was closely related to the structural effects of genetic variation, such as hypertension [81,82], Retinoblastoma
[83,84], β Thalassemia [85-90], and so on.

Hereditary hyperferritinemia-cataract syndrome

Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare disease characterized by high serum ferritin
levels and congenital bilateral cataracts. U22G and U22G - G14C are two SNPs in the 5’- UTR of ferritin light
(FTL) mRNA. FTL chain is an iron-responsive element (IRE) in 5’- UTR, which plays a major regulatory
role in mRNA translation. Some studies found that [91] these two SNPs can affect RNA structure and
subsequent gene function. SNP U22G can disrupt the structure of the IRE, leading to abnormal FTL gene
regulation. However, U22G - G14C can restore the mutated ire to wild type [92]. Rs886037623 (T22G)
changes the spatial structure of mRNA folding because the original U was replaced by G in mRNA [93].
Under normal circumstances, in a low iron environment, iron regulatory proteins (IRP) will combine with
IRE in correctly folded mRNA to form a repressor complex of protein synthesis, and the synthesis of ferritin
is inhibited. After mutation, the structurally altered mRNA can no longer bind to IRP, the transcriptional
regulation is lost, and a large amount of ferritin is secreted, resulting in the formation of hyperferritinemia.
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At the same time, too much ferritin precipitates in the lens, resulting in cataracts [94]. The effects of genetic
variation on HHCS are shown in Figure 5A.

Sicklemia

Sicklemia is the most serious of the abnormal hemoglobinopathy, whose clinical manifestations are chronic
hemolytic anemia, susceptibility to infection, and chronic ischemia leading to organ and tissue damage [95].
Its pathogenesis is complex and significantly related to genetic factors. There is evidence that the T is
replaced by A, in rs334 on the gene encoding hemoglobin, after the transcription and translation process,
glutamic acid is replaced by valine to form abnormal hemoglobin at the sixth position in the β-chain amino
acid sequence [96]. When the oxygen partial pressure decreases, hemoglobin molecules interact with each
other to form a spiral polymer, which distorts red blood cells into sickle cells, and finally leads to anemia
[97]. The effects of genetic variation on Sicklemia are shown in Figure 5B.

The effects of genetic variation on HHCS are shown in Figure 5A. Because of the mutation rs886037623, T
-> G, and the corresponding U in the transcribed mRNA is replaced by G, leading to its structural change,
IRP cannot bind to it, and finally resulting in the overexpression of ferritin. The effects of genetic variation
on Sicklemia are shown in Figure 5B. Because of the mutation rs334, T > A, and through the subsequent
transcription and translation process, Glu (E) at position 6 of the amino acid sequence of the protein becomes
Val (V). Change the structure of hemoglobin molecules, and finally lead to Sicklemia.

Tumor and cancer

In cancer research, the influence of genetic variation on the macromolecular structure cannot be ignored.
For example, Retinoblastoma (RB) is a malignant tumor caused by photoreceptor precursor cells, which
is common in children under 3 years old and has family genetic susceptibility [98]. It is proven that some
mutations are closely related to RB [84]. J K Cowell et al. [83] identified a novel mutation(G-C) within a
core motif of specificity protein 1 (SP1) transcription factor from a family with a mild RB and a band shift
of an unidentified protein was found in the mutant oligomer. This protein may affect the expression of the
RB1 gene and eventually lead to RB.

In addition, the influence of genetic variation on lncRNA has been extensively explored in some cancers.
LINC00673 is a potential tumor suppressor of pancreatic cancer. Rs11655237 is an SNP in the exon of
LINC00673, which causes LINC00673 to have a new binding target, thus weakening its role and increasing
the risk of pancreatic cancer [99]. A713G and T714C mutations in lncRNA GAS8-AS1 accelerate the growth
of cancer cells and increase the risk of thyroid cancer [100]. Abnormal copy number and expression of somatic
cells on focally amplified lncRNA on chromosome 1 (FAL1) can inhibit P21and lead to ovarian cancer [11].

COVID-19

Since 2019, COVID-19 has become/been a major threat to global health. Patients infected with SARS-CoV-
2 may have not only acute respiratory distress syndrome [101], but also acute heart injury, heart failure,
inflammation leading to sepsis, and multiple organ dysfunction [102]. As an RNA virus, its replication
process is prone to mutation. Although most structural proteins of SARS-CoV-2 are conserved in the corona
virus family, the sequence similarity can reach 90%. However, small sequence changes will have a huge
impact on the structure and pathogenesis of SARS-CoV-2. For example, the N501Y substitution of spike
protein increases the binding affinity between RBD and ACE2 receptor in the structural proteins that make
up SARS-CoV-2, thus improving the transmission rate [103,104]. The P71L mutation of envelope protein
was statistically associated with disease severity and mortality [105].

Other diseases

Parkinson’s disease (PD) is a common neurodegenerative disease in the elderly, which is caused by both
genetic and environmental factors. DJ-1 is a protein-coding gene whose loss of function can lead to neurode-
generation. Some studies have proven that DJ-1 mutation is associated with the susceptibility gene PARK7
in PD [106]. L166P is the most typical DJ-1 missense mutation, which affects the integrity of -helix G,
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resulting in poor protein folding in PD [107,108]. It has been suggested that genetic variation in the DJ-1
protein can affect the structure of the protein and therefore the occurrence and development of PD.

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is the progressive muscle
weakness and atrophy caused by the injury of upper motor neurons and lower motor neurons [109]. Some
studies have shown that the mutation of human superoxide dismutase (HSOD) is related to the familial
heritability of ALS [110]. The rs121912442 transforms Ala into Val in the fourth position of the amino acid
sequence, which leads to the side chain shift of the protein, destroys the stability of the dimer interface,
reduces the enzyme activity of the mutant protein compared with the wild type, and promotes the formation
of HSOD-containing aggregates that are toxic to motor neurons [111]. This suggested that the change of
macromolecular structure caused by mutation could change the enzyme activity and lead to the aggregation
of mutant proteins and even toxic proteins [110,112].

Congenital myasthenia syndrome (CMS) is a heterogeneous neuromuscular disease characterized by muscle
weakness. Its pathogenesis is complex and is caused by genetic factors and environmental factors [113]. It
is generally accepted that genetic factors, especially mutations in some important genes, play a key role in
CMS [114]. Akihide et al. found that the homozygous mutation (C.913-5T > A) in RAPSN could inhibit
the binding of U2AF65 and splicing cis-elements and disrupt the splicing process, leading to CMS [79]. Saito
et al. identified a missense mutation c.737C > T (p.A246V) in RAPSN as an important factor in CMS by
exome sequencing [113].

Charcot-Marie-Tooth (CMT) is one of the most common hereditary peripheral neuropathies (incidence rate is
about 1/2500), which is characterized by progressive muscle weakness and atrophy of the distal extremities
with sensory disorders [115]. Studies have found that the mutation rs137852646 caused the amino acid
variation G526R of human glycyl-tRNA synthetase (GlyRS), and the dimer formed by G526R protein is
tighter than that of the wild type, blocking the binding of GlyRS amp active site, resulting in the loss of
aminoacylation activity [106]. Therefore, the change of dimer interface caused by genetic variation may be
an important factor of CMT, which helps us understand the CMT mechanism [116].

Discussion

Genetic variation has a complex effect on the structure of macromolecules, and it is of great significance
to predict this effect. We know that structure determines the function of macromolecules in biological
processes, and effective and accurate predictions would greatly accelerate the research process of disease
mechanisms under the influence of genetic variation on macromolecules with abnormal structures. The
exploration of structures has gradually introduced dynamic programming algorithms, partition functions,
sequence alignment, and ML from the initial MFE model based only on thermodynamic laws, which has
continuously broadened the dimension of describing structural changes, and finally achieved the current more
accurate and efficient results. The tools combined with the corresponding methods and genetic variation
have been used to predict the structural effects due to mutations, and the results can explain some disease
mechanisms.

At present, many methods and tools are commonly used to predict the impact of SNP on macromolecules,
each with advantages and disadvantages. The traditional RNA prediction methods are relatively mature, but
the accuracy and speed of prediction are not as good as the new methods combined with ML. The influence
of genetic variation on macromolecular structure will be more explained under the new method. Stunning
progress has been made in protein structure prediction. AlphaFold2 developed by deepmind has achieved
high accuracy in predicting protein structure [63]. Minkyung Baek et al. obtained the best performance
by combining with the three-track network architecture, the accuracy of structure prediction was close to
that of deepmind in CASP14 [64]. However, the combination of genetic variation information and these
methods to predict the impact of genetic variation on protein structure is still in the initial stage [78]. As the
accuracy of calculations increases, the details of the prediction of biological macromolecules are becoming
clearer. People are trying to quantify the impact of genetic variation on macromolecular structure [112,117].
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At the same time, the prediction objects also range from RNA with shorter sequence structures to longer
and more complex chromosome structures [118].

The prediction of the influence of genetic variation on macromolecular structure will become increasingly
accurate as computational efficiencies increase and prediction methods diversify. It is hoped that the ap-
plication of the ML method to predict the structural effects caused by genetic variation will bring new
understanding to complex diseases and cancers. It is believed that with the increase of the accuracy and
breadth of structure prediction, people will be able to establish a set of personalized birth time sequence data
in the future, predict the disease risk caused by the changes of some macromolecular structures of individuals
according to the genetic variation, and give corresponding suggestions. In addition, differences in genetic
variation among populations have potential effects on macromolecular structures, such as the efficacy of
drugs on specific targets varies from person to person. Changes in the corresponding target can be predicted
by studying genetic variation in populations or even individual patients. It is even possible to formulate a
reasonable individualized medication plan by predicting the structural effect of the individual mutation, to
achieve the goal of precision medical treatment.
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Figure 1. RNA structure prediction method flow (based on dynamic programming algorithm).

Figure 2. The development history of RNA structure prediction method.
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Figure 3. Protein structure prediction method flow.

Figure 4. The development history of protein structure prediction method.
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Figure 5. The influence of genetic variation on macromolecular structure in diseases.
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