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Abstract

We developed a novel Pd-catalyzed [4 + 4] cycloaddition of benzofuran-derived azadienes with homo-TMM all-carbon 1,4-

dipoles in situ generated from α-allyl malonate derivatives, affording an array of benzofuro[3,2-b]azocines with good to excellent

yields (up to 96%) and exclusive regioselectivities. This methodology featured mild reaction conditions and good functional

group tolerance. The synthetic utility was demonstrated by a gram-scale reaction. Furthermore, the catalytic asymmetric [4 +

4] cycloaddition version has also been explored.
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Comprehensive Summary
We developed a novel Pd-catalyzed [4 + 4] cycloaddition of benzofuran-derived azadienes with homo-TMM all-carbon 1,4-dipoles in situ generated from α-allyl malonate derivatives, affording an array of benzofuro[3,2-b]azocines with good to excellent yields (up to 96%) and exclusive regioselectivities. This methodology featured mild reaction conditions and good functional group tolerance. The synthetic utility was demonstrated by a gram-scale reaction. Furthermore, the catalytic asymmetric [4 + 4] cycloaddition version has also been explored.

Background and Originality Content

The eight-membered azacycles are widely presented in various natural products and bioactive
pharmaceuticals.[1-6] Due to their significant importance, concise and efficient synthetic methods are in high
demand for the synthesis of eight-membered azacycles.[7] In recent years, the creation of eight-membered
ring systems has been facilitated easily by the implementation of transition-metal-catalyzed high-order
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cycloadditions,[8] which has attracted much attention.

Scheme 1 Palladium-catalyzed cycloadditions of TMM 1,n -dipole precursors.

Trimethylenemethane (TMM) is an effective dipole with a wide range of applications that allows for the
synthesis of highly functionalized cyclic compounds.[9] To date, an assortment of TMM dipole precur-
sors has been developed to enable the efficient construction of cyclic compounds (Scheme 1a), encom-
passing methylene cyclopropanes,[10] 2-substituted allyl carbonates (Trost-TMM),[9h,11,12]γ -methylidene-
δ -valerolactones,[8g,13]2-methylidenetrimethylene carbonates,[14]pyrrolidines,[15]2-methylene-1-indanols.[16]

Among various types of TMM dipole precursors, Trost-TMM is the most extensively investigated one, which
served as an efficient three-carbon unit in Pd-catalyzed [3+n] cycloadditions.[9h] In this field, our group
successfully realized several asymmetric [3 + 4] cycloadditions of Trost-TMM precursors with different 4-
atom synthons, furnishing a series of fused azepines or cycloheptanes with excellent regio-, diastereo- and
enantioselectivities in recent years (Scheme 1b).[17] Based on the well-developed conventional Trost-TMM,
in 2020, the Trost group developed a novel homo-TMM all-carbon 1,4-dipole precursor, which realized a Pd-
catalyzed [4 + 2] cycloaddition to afford chiral cyclohexanes or spiro heptanes (Scheme 1c).[18] However, the
transition-metal-catalyzed high-order cycloaddition of this novel homo-TMM all-carbon 1,4-dipole precursor
for the synthesis of medium-sized rings has yet to be investigated.

Scheme 2 Design of the Pd-catalyzed [4 + 4] cycloaddition of homo-TMM all-carbon 1,4-dipole precursors
with benzofuran-derived azadienes.

Inspired by Trost’s work in 2020 and in conjunction with our continuing efforts in the construction of
medium-sized rings, we envisaged that the homo-TMM all-carbon 1,4-dipole precursors may undergo a [4 +
4] cycloaddition with azadienes to form azocines (Scheme 2). However, the inhibition of the regioselectivity
induced by the potentially rival [4 + 2] cycloaddition of imines or alkenes in azadienes presents considerable
difficulty in this process. Herein, we present the Pd-catalyzed [4 + 4] cycloaddition of homo-TMM all-carbon
1,4-dipole precursors with benzofuran-derived azadienes, providing an efficient and convenient approach to
access benzofuro[3,2-b ]azocines with exclusive regioselectivitives.

Results and Discussion

Initially, the reaction of benzofuran-derived azadiene 1a , derived from benzofuran, with dimethyl malonate
derivative 2awas conducted to screen the reaction conditions. In the presence of 5 mol% Pd2(dba)3 as the
catalyst, 11 mol% diphosphine ligand L1 or L2 in DCM for 1 h, no desired target product 3a was detected
(Table 1, entries 1 and 2). Subsequently, the screening of preliminary monophosphine ligands showed that
ligand L3 turned out to be a suitable ligand, providing 3a in 91% yield with exclusive regioselectivity
(Table 1, entries 3-5). It is noteworthy that using Pd(PPh3)4 instead of the combination of Pd2(dba)3 with
ligand L3further enhanced the reaction efficiency, affording 3a in 95% yield (Table 1, entry 6). A series of
commercial solvents, including DCE, THF, and toluene, were used in the [4 + 4] cycloaddition reaction, but
none of them afforded better results than DCM (Table 1, entries 7-9). Lowering the catalyst loading from
10 mol% to 2.5 mol% did not affect the reaction efficiency, and achieved optimal reaction outcomes in terms
of yield (95% NMR yield and 95% isolated yield) (Table 1, entries 10-12).

Table 1 Optimization of reaction conditions of the reaction.a

entry catalyst ligand solvent yield (%)b

1 Pd2(dba)3 L1 DCM ND
2 Pd2(dba)3 L2 DCM ND
3 Pd2(dba)3 L3 DCM 91
4 Pd2(dba)3 L4 DCM 89
5 Pd2(dba)3 L5 DCM 87
6c Pd(PPh3)4 - DCM 95
7c Pd(PPh3)4 - DCE 93

2
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entry catalyst ligand solvent yield (%)b

8c Pd(PPh3)4 - THF 94
9c Pd(PPh3)4 - toluene 72
10d Pd(PPh3)4 - DCM 95
11e Pd(PPh3)4 - DCM 95 (95)g

12f Pd(PPh3)4 - DCM 88

a Reaction conditions: 1a (0.10 mmol),2a (0.15 mmol), Pd2(dba)3 (5 mol%) and ligand (11 mol%) in 1.0 mL
of solvent under an N2 atmosphere at 25 °C for 1 h.b Yield of 3a was determined by1H NMR spectroscopic
analysis of the crude product with 1,3,5-trimethoxybenzene as an internal standard.c Pd(PPh3)4 (10 mol%).d

Pd(PPh3)4 (5 mol%).e Pd(PPh3)4 (2.5 mol%).f Pd(PPh3)4 (2.0 mol%). g Isolated yield of 3a on a 0.2 mmol-
scale reaction.

Under the optimal reaction conditions in hand, the substrate scope of benzofuran-derived azadienes 1 was
investigated and the results were summarized in Scheme 3. Benzofuran-derived azadienes 1bearing different
N -protecting groups participated in the reaction smoothly, leading to the corresponding products 3b(77%
yield) and 3c (90% yield), respectively. In addition, azadienes 1 bearing various electron-withdrawing groups
(fluoro, chloro, bromo, and cyano) or electron-donating (methyl and methoxy) at the para , meta or ortho
position of the aryl ring were well accommodated. The target products3d -3n were delivered in 79-96% yields.
It was noteworthy that 2-Cl and 2-Me-substituted substrates 1l and1m underwent the reaction smoothly,
affording the target products 3l (80% yield) and 3m (79% yield), respectively, which is presumably attributed
to the steric effect. Naphthyl and furanyl moieties also facilitated the formation of3o (92% yield) and 3p
(90% yield), respectively. In a similar fashion, the reactions of benzofuran-derived azadienes1 bearing various
substituents (bromo, methoxy, and chloro) at the C4-C7 positions of the benzofuran ring also efficiently
proceeded to afford the target products 3q -3u in 83-92% yields.

Scheme 3 Substrate scope for Pd-catalyzed [4 + 4] cycloaddition of benzofuran-derived azadienes 1 and
dimethyl malonate derivative 2a .

Then, the protocol generality was explored by extending the substrate scope of homo-TMM donors 2 (Sche-
me 4). The analog of2a , that is, substituted malononitrile 2b , exhibited a good reactivity to form the
target products 3v (91% yield) and3w (75% yield), respectively. Compared to the symmetrical malonate-
type substrates, the cyano-substituted ester enolate2c obviously deteriorated the reaction efficiency, leading
to3x in a moderate yield (41% yield). Unfortunately, the more sterically hindered t -butyl ester coun-
terpart 2d was used, and only a trace amount of the desired 8-membered product3y was detected. The
bis(phenylsulfonyl)methane derivative2e also proved to be unreactive in the [4 + 4] cycloaddition reaction.
The molecular structure of compound 3awas further confirmed by the X -ray single crystal crystallographic
determination (CCDC 2235088, see the SI for details).

Scheme 4 Substrate scope for Pd-catalyzed [4 + 4] cycloaddition of benzofuran-derived azadienes 1 and
dimethyl malonates derivatives 2 .

To further demonstrate the versatility and effectiveness of this catalytic system, a gram-scale reaction of
compound 3a with a 2.5 mol% catalyst loading was performed, providing an acceptable yield (91% yield)
(Scheme 5a). Subsequently, the 4-toluenesulfonyl (Ts) group of 3a could be removed in the presence of Mg
in MeOH, yielding the corresponding benzofuro[3,2-b ]azocine 4 in 86% yield.[19]

Scheme 5 Demonstration of the synthetic utility.

Furthermore, the catalytic asymmetric [4 + 4] cycloaddition version has also been explored, and several
chiral ligands were screened (see Table S1 for the details). The reaction provided moderate enantioselectivity
(61% ee) with Pd2(dba)3 as the catalyst in the presence of chiral ligand L* (Scheme 6).

Scheme 6 The asymmetric [4 + 4] cycloaddition.

3
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A mechanism was proposed to illustrate the Pd-catalyzed [4 + 4] cycloaddition (Scheme 7). First, the initial
oxidative addition of a catalytically active Pd(0) species with substrate 2a and the deproton process by the
tert -butoxy anion forms the key PdII-π-allyl complex intermediate A . Then, the attack by the carboanion
of intermediate A to azadiene1a provides aromatization intermediate B . Subsequently, the addition of a
nitrogen anion to π-allyl-palladium in aromatization intermediate B affords the eight-membered ring3 by
intramolecular cyclization and regenerates the active palladium catalyst for the next catalytic cycle.

Scheme 7 Proposed mechanism.

Conclusions

In summary, we have developed an efficient Pd-catalyzed [4 + 4] cycloaddition of homo-TMM all-carbon 1,4-
dipoles with benzofuran-derived azadienes, affording various benzofuro[3,2-b ]azocines in good to excellent
yields (up to 96% yield) with exclusive regioselectivities. The reaction proceeded with broad substrate scope
and excellent functional group tolerance. The high-order cycloaddition of homo-TMM all-carbon 1,4-dipoles
provided a convenient and mild route to the synthesis of 8-membered rings. Further investigations on the
asymmetric [4 + 4] cycloaddition are currently underway in our laboratory.

Experimental

Under a nitrogen atmosphere, benzofuran-derived azadienes 1 (0.2 mmol) and Pd(PPh3)4 (15.4 mg, 0.005
mmol) were added sequentially into a flame-dried Schlenk tube equipped with a magnetic stir bar. The tube
was evacuated and back-filled with nitrogen for three times. Then the anhydrous DCM (2.0 mL) was added
viasyringe sequentially and the resulting mixture stirred at 25 . Then, TMM precursors 2 (0.3 mmol) was
added. After completion, the mixture was concentrated and purified by column chromatography (petroleum
ether/ dichloromethane = 4:1) to give the corresponding cycloadducts 3 .

Supporting Information

The supporting information for this article is available on the WWW under
https://doi.org/10.1002/cjoc.2023xxxxx.
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We developed a novel Pd-catalyzed [4 + 4] cycloaddition of benzofuran-derived azadienes with homo-TMM all-carbon 1,4-dipoles in situ generated from α-allyl malonate derivatives, affording an array of benzofuro[3,2-b]azocines with good to excellent yields (up to 96%) and exclusive regioselectivities. This methodology featured mild reaction conditions and good functional group tolerance. The synthetic utility was demonstrated by a gram-scale reaction. Furthermore, the catalytic asymmetric [4 + 4] cycloaddition version has also been explored.
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