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Abstract

During the cyclic operation process of hydraulic excavators, based on manual experience, issues such as low work efficiency

and high energy consumption can cause significantly high wearing of the joints of the excavator; this markedly affects the

service life of the excavator. To solve such issues, we propose a secondary trajectory optimization method based on time–

energy consumption that enables the excavator to conduct smooth, efficient, and low-energy-consumption work. Considering

different weight coefficient values and obtaining the optimal time–energy trajectory, we compare the above-mentioned results

with those obtained through skilled manual operation of hydraulic excavators. The experimental results demonstrate that

through reasonable and effective planning of each joint movement, the large jerk that occurs during joint movement processes

may be effectively avoided, the working efficiency of the excavator is improved, unnecessary energy consumption is reduced,

and the excavator can operate autonomously under stable conditions. These results verify the effectiveness and feasibility of

the proposed method.
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Abstract 

During the cyclic operation process of hydraulic excavators, based on manual experience, issues such 

as low work efficiency and high energy consumption can cause significantly high wearing of the joints 

of the excavator; this markedly affects the service life of the excavator. To solve such issues, we 

propose a secondary trajectory optimization method based on time–energy consumption that enables 

the excavator to conduct smooth, efficient, and low-energy-consumption work. Considering different 

weight coefficient values and obtaining the optimal time–energy trajectory, we compare the above-

mentioned results with those obtained through skilled manual operation of hydraulic excavators. The 

experimental results demonstrate that through reasonable and effective planning of each joint 

movement, the large jerk that occurs during joint movement processes may be effectively avoided, 

the working efficiency of the excavator is improved, unnecessary energy consumption is reduced, and 

the excavator can operate autonomously under stable conditions. These results verify the 

effectiveness and feasibility of the proposed method. 
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1. INTRODUCTION 

Hydraulic excavators are indispensable mechanical equipment for numerous engineering applications. They 

are extensively used for complex excavation and under harsh working conditions, such as during earthquake 

relief, in space, and for underwater operations [1-3]. Owing to the complexity of these working environments, 

the safety of staff members can be threatened and improper operation may lead to problems such as high 

energy consumption and mechanical wear, resulting in equipment damage and a reduction in the service life 

of the excavator [4-6]. Consequently, with the development of science technology, and artificial intelligence, 

intelligent and automated excavators are gradually emerging. 

Autonomous excavators can not only avoid humans from entering the dangerous working environment, 

but also provide guarantees for the realization of difficult tasks, and give full play to the value of excavators 

in engineering applications [7,8]. Therefore, scholars have carried out in-depth research on intelligent 

excavators in recent years. Among them, in the many intelligent technologies of excavators, the operation 

trajectory, as the premise and foundation of the excavator's autonomous working, directly affects the work 

efficiency and energy consumption of the excavator. Therefore, it is of great significance to carry out 

 
1Corresponding author:  

Zhiyi Sun, School of Electronic and Information Engineering, Taiyuan University of Science and Technology, 

Taiyuan 030024, China. 

E-mail: 1020596674@qq.com.  



effective and reasonable planning of the trajectory [9,10]. 

Currently, with the continuous expansion of the scope of application of intelligent optimization 

algorithms, Huang et al.11 used the non-dominated sorting genetic algorithm (NSGA-II) to optimize and 

solve the multi-objective time-jerk optimal trajectory. Kucuk [12,13] optimized and solved the smooth 

seventh-order polynomial optimal time trajectory using the particle swarm optimization algorithm (PSO). 

Furthermore, to achieve smoothness, high efficiency, and low energy consumption operations of large-scale 

equipment, [14,16] simultaneously considered time and energy problems and obtained an optimal trajectory 

that satisfies multiple goals. However, due to common problems, such as slow convergence speeds and poor 

local exploration abilities in intelligent algorithms, the optimal solution obtained may the local optimal 

solution. 

And [17,18] used dynamic programming to obtain time-optimal trajectories under multiple constraints. 

They achieved high-efficiency working trajectory planning relative to other methods, but obtaining the 

optimal solution requires long computation times. 

In optimal trajectory planning research work using numerical analysis, the phase plane [19,23] which 

is a maximum pseudo-velocity curve is derived according to the torque constraint conditions to obtain the 

time-optimal trajectory. Liu et al. [24] transformed the optimal energy consumption problem into the ternary 

functional extreme value problem, solving the Euler equation using a combination of the fourth-order 

Runge-Kutta method and the multiple shooting method. But the above approaches are suitable only for 

solving single-objective optimal trajectory planning problems and cannot solve optimal trajectory planning 

for multiple objectives.   

For the problems existing in the above research, as an efficient iterative algorithm for solving nonlinear 

convex optimization problems, the interior-point method not only has a wide range of applications but also 

has high computational efficiency. It searches for the optimal solution by traversing the internal feasible 

region. Therefore, the present study uses the PC1012 hydraulic excavator robot as its research object, 

proposing secondary trajectory optimization with time-energy consumption as the optimization objective 

under the constraints of velocity, acceleration, and jerk. By introducing a pseudo-path parameter s , the 

optimization objective function and constraints may be transformed into a convex optimization model. 

According to the secondary planning of the hydraulic excavator along the given lifting path, the convex 

optimization method, i.e., the interior-point method, is then used to optimize the time-energy trajectory. The 

results show that the secondary optimized trajectories improve the motion efficiency of each joint, reduce 

energy loss, and achieve the smooth movement of the excavator. 

The main contributions of this paper are summarized as follows: 

1) To improve the efficiency of the secondary working path of the excavator and reduce its energy 

consumption, the trajectory planning with time-energy consumption as the optimization objective is 

proposed. 

2) To achieve a smooth planned trajectory, an equivalent convex jerk constraint is established 

considering the conditions of the pseudo-path velocity and acceleration constraints. 

3) The interior-point method is used to optimize the time-energy consumption optimal trajectory 

under the constraints of joint velocity, acceleration, and jerk. 

4) The PC1012 hydraulic excavator is used for experiments to verify the effectiveness and feasibility 

of the proposed planning method. 

This paper is structured as follows. Section 2 introduces the expression of the nonlinear coupled 

dynamics model of the pseudo-path parameter s . Section 3 presents the formulation of the time–energy 



optimal trajectory planning problem and its kinematics and dynamics constraints. Section 4 describes the 

specific solution process of the optimization problem. Section 5 discusses experimental simulation results 

using the PC1012 hydraulic excavator robotics. Section 6 presents the conclusions. 

2. DYNAMICS ANALYSIS 

The dynamic model expression of the hydraulic excavator robotic working device is shown in equation (1). 

The functional relational expression of the torque concerns each joint angle, velocity, and acceleration.  

                         ( ) ( , ) ( )= + + M q q C q q q g q                       (1) 

where , ,  3 3 3
q R q R q R represent the joint angle, velocity, and acceleration vector, respectively, in 

which q  and q  are the first and second derivatives of the joint displacement q  with respect to time t . 

( ) 3*3
M q R  is the inertia matrix, ( , ) 3*3

C q q R  is the Coriolis force and the centrifugal force matrix, 

( )  3 1
g q R  is the torque vector caused by gravity, and  3 1

τ R  represents the driving torque of each 

joint. 

To solve equation (1), by applying the kinematics inverse solution to the discrete points of the target 

trajectory in the workspace, the angle value sequence of the boom, arm, and bucket joint can be obtained. 

However, the velocity and acceleration along the given path, as well as the time for completing the task, are 

unknown. And the derivatives of q  concerning time cannot be calculated. 

Therefore, a normalized and monotonically increasing pseudo-path parameter s  is introduced to 

obtain the velocity and acceleration of each joint with path parameter s ,  where the path in the joint space 

is represented by ( )q s . The time parameterization of the target path is expressed as ( )s t , [0, ]t T , where 

T  is the total movement time required to complete the target trajectory, which satisfies 

(0) 0 ( ) 1 ( )s s t s T=   = , ( ) 0s t  . ( (0)) (0)q s q=  is the joint position of the initial point of the target 

path, and ( ( )) (1)q s T q=  is the joint position corresponding to the endpoint of the path. As mentioned 

before, the joint velocity, acceleration, and jerk are defined by pseudo-path parameters s  as follows: 

                s s sq( ) = q'( )                             (2) 
2s s s s sq( ) = q'( ) + q''( )                        (3) 

                   2s s s s s s sq( ) = 3q''( ) + q'( ) + q'''( )                     (4) 

where s = ds dt  , s   represents the velocity of the pseudo-path; 2 2s = d s dt  , s   is the 

acceleration of the pseudo-path; 3 3s = d s dt , s  is the jerk of the pseudo-path. 

2 2, ,s s s s s s=   =  q'( ) q( ) q''( ) q( )
3 3s s s=  q'''( ) q( ) respectively represents the 

derivative of ( )sq  with respect to the variable s . Substituting equations (2-3) into equation 

(1), the dynamical model with pseudo-path parameter s , as well as their variables derivatives 

,s s can be obtained, as shown in equation (5). 

                  s s s s s2
τ( ) = m( ) + c(s) + g( )                       (5) 

where s s s s s s s s s s sm( ) = M(q( ))q'( ),  c( ) = M(q( ))q''( )+ C(q( ),q'( ))q'( ),  g( ) = G(q( )).  

Among them, by discretizing the given target trajectory, the discrete angle sequence values 

of each joint are fitted by cubic spline, and the value of s s sm( ),c( ), g( )  can be calculated 

using the cubic spline fitting curve ( )sq . 

3. CONVEX PROBLEM MODEL 

3.1 The time–energy optimal problem 



To realize the efficient and low-energy operation of the excavator, an objective function is established with 

time and energy consumption as the optimization object, as shown in equations (6-7). 

                      
( ) 1

0 (0) 0

1
min 1

T s T

s

dt
T dt ds ds

ds s
= =  =                    (6) 

 
2

1
2

0 0

( )
min ( )

T
i

i

s
s dt ds

s


 =                        (7) 

Combining equation (5), the objective function is to optimize the problem of solving pseudo-velocity 

squared 2s and pseudo-acceleration s . Defining the optimization variable as 2( ) , ( )l s s u s s= = , the 

constraint condition is obtained as follows. 

                    
2

'( ) 2 2 '( ) 2 ( )
ds ds dt

u s s s u s l s
ds dt ds

= = =  =                 (8) 

Considering the safety performance of the excavator, the velocity and acceleration of each joint at the 

start and endpoints are zero, that is 2

0(0) 0u s= = , 2(1) 0Tu s= = , 0(0) 0l s= = , and (1) 0Tl s= = . 

According to the above derivation, the objective functions of equations (6-7) are transformed into the 

following form 

                    
2

1 1

1 1
0 0( ), ( ), ( )

( )1
min (1 ) ,

( ) ( )

i

l u

s
ds ds

u s u s


 

• • •
+ − τ

                 (9) 

subject to  

                          ( ) ( ) ( ) ( ) ( ) ( ),i i i is s l s s u s s= + +τ m c g                (10) 

                                (0) 0,   (1) 0,u u= =                           (11) 

                                (0) 0,   (1) 0,l l= =                           (12) 

                               '( ) 2 ( ),  ( ) 0,u s l s u s=                         (13) 

                               min max( ) ( ) ( )i is s s , τ τ τ                       (14) 

where 1,2,3i = correspond to boom, arm, and bucket joints respectively, and 1  is the weight coefficient,

10 1  . 

3.2 Inequality constraints condition 

In addition to considering the torque constraints, considering the path constraints of velocity, acceleration 

and jerk are also necessary. For i th−  joint, the process of converting joint velocity constraint into path 

velocity constraint is shown in equation (15).  

                        

max max

max max

2 2 2

max

2 2

max

( ) ( ) ( )

( ) ' ( ) ( )

( ' ( ) ) ( ' ( )) ( ) ( ( ))

( ) ( ( )) ( ' ( ))

i i i

i i i

i i i

i i

q s q s q s

q s q s s q s

q s s q s u s q s

u s q s q s

−  

 −  

 = 

 

              (15) 

The established path acceleration constraint condition is shown in equation (16). 

          

' '' 2

max max max max

' ''

max max

'' ''

max max

' '

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

i i i i i i i

i i i i

i i i i

i i

q s q s q s q s q s s q s s q s

q s q s l s q s u s q s

q s q s u s q s q s u s
l s

q s q s

−    −  + 

 −  + 

− − −
  

          (16) 

Similarly, the constraint expression of the path jerk is shown in equation (17). 



                  2

max max( ) 3 ''( ) '( ) '''( ) ( )i iq s q s s q s s q s s q s−  + +                (17) 

Based on equation (17), the dimensionality of the variable remains unchanged when increasing the path 

jerk constraint variable s , and the convexity of the optimization problem remains unchanged to convert 

the path jerk constraints condition into the linear path acceleration constraints. The joint jerk constraint is 

established indirectly. Based on equation (8), the velocity relationship between two adjacent points is 

determined as follows by assuming that the motion between two adjacent discrete path points is uniformly 

accelerated or decelerated: 

                          1 2              1, 2,... 1n n n nu u s l n N+ = +  = −              (18) 

where 1n n ns s s+ = − , and n  is the number of discrete path points. 

According to equation (18), the velocity value can be calculated if the corresponding acceleration of 

each path point is known. The change in acceleration between two adjacent points is obtained as shown in 

equation (19). 

                       
( )

( )

ds ds dt s l s

ds dt ds s u s
= = =                          (19) 

where l s= . 

Based on equation (19), the change of acceleration between two discrete points is presented as follows. 

                     
1

1

2 1 2

2( )

( ) 2( ) ( )

n n n
n n

n n n n n

s s s
s s

s s s s s

+
+

+

−
− =

+ − +
                (20) 

According to equation (20), the linear acceleration constraint expression with the path jerk extreme 

value can be obtained as 

   1 maxmin

1 2 2 1 2 2 1 2 2 1 2 2

22

( ) 2 ( ) ( ) 2 ( )

nn

n n n

n n n n n n n n

s ss s
s s s

s s s s s s s s

+

+ + + +


+   +

+  + +  +
     (21) 

4. OPTIMAL TRAJECTORY PLANNING 

This study uses the interior-point method to solve the convex optimization model of time–energy optimal 

trajectory planning. The optimization problem becomes the large-scale sparse problem by introducing the 

pseudo-path parameter s , pseudo-velocity square 2s , and pseudo-acceleration s . The specific process is 

as follows. First, the given path is transformed into a parameter expression using the pseudo-path parameter

s  as a variable and [0,1]s . At a certain interval, s  is discretized to generate discrete 1N +  points and 

satisfy 00 1 , 0,1,...,n Ns s s n N=   = = . Further, the corresponding discrete points 

0 0 1( ), ( ),..., ( )N Nl l s l s l l s= = , 0 0 1( ), ( ),..., ( )N Nu u s u s u u s= =  and 0 1 2( ), ( ),..., ( )N Ns s s    = =   

can be obtained. Finally, ( )u s , ( )l s  and ( )i s are modeled to determine the optimal values of nu ,   

and n

i   that satisfy the objective function and constraints. 

Assuming that the optimization variable ( )u s
 

is a piecewise linear function, ( )l s  is a piecewise 

linear constant and ( )i s
 

is piecewise nonlinear, that is, for 1[ , ]n ns s s + , the expression of ( )u s  is 

                    
1

1
( ) ( )( )

n n
n n

n n

u u
u s u s s

s s

+

+

−
= + −

−
                     (22) 

To estimate nl  and n , we adopt the median value of the adjacent discrete points, that is, the value of 

1 2( )n nl l s +=  and 1 2( )n ns  +=  at 1 2 1( ) / 2n n ns s s+ += + , such that the optimized objective function may 



be approximately expressed as 
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= =

−

= =
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−
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

 

  

                   (23) 

where i  is the maximum torque of each joint, the value of which is introduced to make the objective 

function dimensionless. 

Considering the singularity of the integral of ( ) 0u s =   it is necessary to consider 1 ( )u s  . 

According to the linear expression of ( )u s , substituting equation (22) into equation (23), the objective 

function is expressed as follows 

               

2 11 3

1 1 2 1
0 1

( ) 2( )
min [ (1 )( )]

n nN
i

n n
n i i

s s s

u u


 



+−

+
= =

−
+ −

+
                   (24) 

In summary, let 1n n ns s s+ = − , obtain the objective function and constraint conditions in the discrete 

form  

             

3
2 2

1 11
1

1( ), ( ), ( )
0
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n
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f u
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subject to 
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            (26) 

where 
0 1 1, ,..., : n

Nf f f R R− →  is the convex function, that is, any local optimal solution is also globally 

optimal. The interior-point method is used herein to find the optimization variables ( 0.1,..., 1)nu n N= −  

that meet the optimization goals and constraints. 

The inequality constraints in equation (26) are processed by using the obstacle method to construct the 

interior-point penalty function, and the problem is transformed into the convex optimization problem with 

only equality constraints. The optimization goal is transformed into the following: 
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                 (28) 

where 
1 2 7( ) [ ( ), ( ),...., ( )]n n n n T

h u z u z u z u=z . ( )n

nf u  and ( )n

h uz  remain as defined in equations (25-

26). For convenience, define 
1

0

( ) (1 ) log( ( ))
N

n n

h

n

u u 
−

=

= − − z  as a logarithmic barrier function with the 

following gradient and Hessian matrix: 

                        
1

1

1
( ) ( ),

( )

N
n n

in
n i

u z u
z u


−

=

 = −                        (29) 

               
1 1

2 2

2
1 1

1 1
( ) ( ) ( ) ( ) .

( ) ( )

N N
n n n n T

i i in n
n ni i

u z u z u z u
z u z u


− −

= =

 =  +  
−

            (30) 

The objective function of equation (27) is multiplied  . The optimization goal is then obtained as 

follows  

               
( ), ( ), ( ) ( ), ( ), ( )

min  ( ) min  ( ) ( )n n n

n
u l u l

F u f u u 
• • • • • •

 +
τ τ

              (31) 

For any 0  , the above optimization problem has a unique optimal solution *( )u  , and the set 

 *( )u   composed of optimal solutions is called the central path. The specific steps and flowchart of the 

interior-point method to solve the time–energy optimal problem are presented in the following. 

1.Calculate the initial value 
0 2 2( ) [ ]

n
n

n

s
s

w


= 


u , where 1n n ns s s+ = −  , 

1

maxmax ( )n n n

iw P P q+ = − , and make 0( ) 0iz u  , 1,2,....,8i = . Set 0  ， 0  , and 0k = . 

2.Calculate kd . 2 1[ ( )] ( )
k k

k k k

t td F u F u−= −   . If 0kd  , continue to Step 3; if 2 ( )k

nf u   , 

select stop; otherwise, 10*k k = , and repeat Step 2. 

3.Let 1k = . If k ku d+  is an interior point, continue to Step 4. Find 1 0k  , such that k ku d+  

lies at the boundary of the feasible region, and return to Step 1. 

4.Order 0.9k k =  and 1k k k

ku u d+ = + . If 
8

1

1

( )k

k i

i

z u −

=

 , stop the calculation; otherwise, if 

10k k =  and 1k k= + , return to Step 2. 



 

Figure 1. Time-energy optimal trajectory planning flow chart  

Once the values of variable nu   are solved, the relational expression ( )s t   representing the path 

coordinate axis and time can be obtained by solving ( )t s . Then, the optimal motion curve of each joint that 

meets the performance indicators and constraints can be obtained. 

5. EXPERIMENTS AND RESULT ANALYSES 

To verify the effectiveness of the convex optimization model and the optimization algorithm, both are 

applied to the lifting material operation path of the PC1012 hydraulic excavator as shown in Figure 2. Table 

1 presents the main working parameters of the excavator. Table 2 shows the relevant parameters of the 

excavator's dynamic model. Table 3 presents the velocity, acceleration, jerk, and torque constraints of each 

joint. 

 

Figure 2. Secondary planning operation path of the PC1012 excavator. 



Table 1 Main working parameters of PC1012 excavator 

Parameters 
Parameter 

value 
Parameters 

Parameter 

value 

Bucket capacity ( 3\m ) 0.049 Maximum digging depth ( \m ) 1.6 

Loaded material weight ( \kg ) 88.2 Maximum digging height ( \m ) 2.5 

Maximum digging radius ( \m ) 2.55 Maximum unloading height ( \m ) 1.75 

Table 2 Inertial parameters of the PC1012 excavator 

Joint Quality \kg  
Moment of inertia 

2/ .izzI kg m   
Centroid vector  

/r mm  

Centroid angle 

/ 。 

Boom 42 23.2956123962 713.3807774 19.42 

Arm 22 10.4469904262 310.0088159 6.02 

Bucket 15 4.9048047417 211.7531224 38.38 

Table 3 Physical constraints of the PC1012 excavator 

Constraints Boom joint Arm joint Bucket joint 

Velocity ( / )rad s   0.488 0.611 0.523 

Acceleration 2( / )rad s  0.174 0.262 0.207 

Jerk 3( / )rad s   0.174 0.174 0.174 

Torque ( . )N m  105 95 78 

 

5.1 Time-energy optimal trajectory with different weight coefficients 

To optimize the time-energy solution of the given hoisting path in Figure 2, first, take the total number of 

grid points of the discrete parameter s  as 1000N = ; second, use the inverse kinematics solution to 

convert the path points into a sequence of angle values of the boom, arm, and bucket joints; third, obtain the 

value of ( ), '( ), ''( )n n n

i i iq s q s q s  using cubic spline to fit the discrete angle value of each joint ( 1,2,3i = , 

1,2,....1000n = ); fourth, obtain the dynamic model of each joint using equation (5) (i.e., 

( ), ( ), ( )n n n

i i im s c s g s ; and fifth, obtain the different weight coefficients time-energy trajectory by using the 

interior-point method for solving equations (25-26). Table 4 means the time and energy consumption of the 

excavator to lift the weight of 53, 70, and 79kg materials along the given path. Figure 3 depicts a comparison 

chart of the optimized values of time and energy consumption. 

Table 4 presents the time–energy consumption optimal trajectory that satisfies the constraint conditions 

is obtained to lift the 53,70,79kg of the materials. And Figure 3 shows that (1) for the same quality of material, 

with an increase in the weight coefficient, the optimal energy consumption increases but the optimal time to 

complete the task decreases, i.e., when the focus is on low energy consumption, the efficiency of completing 

the task is reduced. Conversely, high-efficiency work requires high energy consumption. Therefore, in real-

world engineering applications, appropriate weight coefficients should be selected according to the 

requirements of a task. In addition, for the same weight coefficient, as the material becomes heavier, the 

optimal time obtained via optimization is longer, and the energy consumption is higher. (2) Compared with 

the time and energy consumption value of skilled manual operation when completing the same target task, 

the secondary optimized trajectory showed higher efficiency and a lower energy loss, verifying the 

effectiveness of the planning method. 

 



Table 4 Optimal time and energy consumption values 

Weight coefficient 

Material quality 

Optimal time /s  

 

Optimal energy consumption

/kg m  

53kg
 

Time-optimal trajectory 

1 1 =  
12.532 95.637 

Time–energy optimal 

trajectory 1 0.5 =  
20.725 78.847 

Energy optimal trajectory 

1 0 =  
28.247 65.625 

Before optimization 18.281 89.494 

70 kg
 

Time-optimal trajectory 

1 1 =  
15.673 102.735 

Time–energy optimal 

trajectory 1 0.5 =  
25.482 85.237 

Energy optimal trajectory 

1 0 =  
32.763 72.253 

Before optimization 24.428 97.463 

79 kg
 

Time-optimal trajectory 

1 1 =  
18.531 112.634 

Time–energy optimal 

trajectory 1 0.5 =

1 0.5 =
 

29.623 97.536 

Energy optimal trajectory 

1 0 =  
37.372 81.534 

Before optimization 32.648 105.639 

 

  
Figure. 3 Optimal time and energy consumption values with different weight coefficients 

In addition, considering the effect of jerk on trajectory tracking accuracy and motion performance, the 

simulation results of lifting 70 kg materials at 1 0.5 =  were compared with those of the second-order cone 

programming method proposed in [23] (where the jerk constraint limits were not considered) to verify the 

influence of the jerk constraint conditions on the joint velocity, acceleration, and torque performance. The 

results are shown in Figures 4-5. Table 5 presents the main comparison results of the joint jerk curves. 

Figures 4-5 show that the movement time of the time–energy consumption optimal trajectory using the 



second-order cone programming was 23.167s and that using our approach was 25.482s. Although the 

movement time was relatively long for our method, our planning method obtained smoother joint velocity, 

acceleration, and jerk curves, and the peak jerk, acceleration, and velocity reduced by 40.67%, 25.03%, and 

12,54%, respectively, on average. This effectively suppressed the sudden change of acceleration, 

contributing to the smooth movement of the excavator and improving trajectory tracking accuracy. 

Therefore, from the perspective of actual working conditions, we consider the influence of jerk constraints 

in the operation process so that the excavator can show the best performance to complete the given task. The 

torque curves shown in Figure 6 indicate that the method proposed in this study can make the hydraulic 

driving device work in a stable manner, reduce the friction loss of each joint after increasing the jerk 

constraint conditions, protect the working device, and prolong the excavator’s service life. 

   

Figure. 4 Second-order cone programming algorithm: The joint velocity, acceleration, and jerk curves of 

the path points 

   

   

Figure. 5 Our planning algorithm: The joint velocity, acceleration, and jerk curves of the path points 

Table 5 Comparison between the maximum value of the joint jerk curves. 

 Boom joint Arm joint Bucket joint 

Second-order cone programming 

algorithm 3( / )rad s  0.174 0.171 0.174 

Interior-point method 3( / )rad s  0.113 0.098 0.097 

Degree of decline (%)  35.06 42.69 44.25 

Table 6 Comparison between the maximum value of the joint acceleration curves. 

 Boom joint Arm joint Bucket joint 

Second-order cone programming 

algorithm  
2( / )rad s  

0.163 0.262 0.207 

Interior-point method  
2( / )rad s  0.142 0.156 0.162 

Degree of decline (%)  12.88 40.46 21.74 

 

 



Table 7 Comparison between the maximum value of the joint velocity curves. 
 

 Boom joint Arm joint Bucket joint 

Second-order cone programming 

algorithm  ( / )rad s  
0.488 0.603 0.523 

Interior-point method  ( / )rad s  0.403 0.503 0.504 

Degree of decline (%)  17.42 16.58 3.63 

 

 

Torque curves of the second-order cone 

programming algorithm 

 

Torque curves of our planning method. 

Figure. 6 Comparison chart of torque curves 

5.2 Computational efficiencies with different algorithms  

In practical applications, the time taken to determine the optimal performance index of the target path 

trajectory using the trajectory optimization algorithm is an important aspect of the calculation of the 

trajectory planning algorithm’s efficiency. Therefore, the comparison and analysis of the interior-point 

method, genetic algorithm, and second-order cone planning algorithm were performed for the time–energy 

consumption optimal trajectory to determine the performance of the trajectory planning algorithm; the 

optimization efficiency results are presented in Table 8.  

Table 8 shows that the interior-point method has certain advantages in determining the calculation 

efficiency compared with the second-order cone programming algorithm and the genetic algorithm. 

Moreover, the size of the optimization target weight coefficient affected the calculation efficiency of the 

trajectory planning algorithm. When time and energy consumption are considered at the same time, the time 

required for planning optimal trajectory increases. 

Table 8 Comparison of the calculation efficiency of the optimized algorithms 

          Algorithm 

 

Weight coefficient  

Our approach Genetic algorithm 
Second-order cone 

programming  

Time-optimal trajectory

1 1 =   1.489s 8.691s 2.418s 

Time–energy optimal 

trajectory 1 0.5 =   
2.136s 10.705s 3.105s 

Energy optimal trajectory

1 0 =   1.871s 10.14s 2.946s 

6. CONCLUSIONS 



This study selected the lifting path of an excavator as the optimization goal, established a time–energy 

consumption convex optimization model, and used the interior-point method to optimize the motion curves 

of the boom, arm, and bucket under the constraints of kinematics and dynamics models. First, considering 

the bucket when lifting materials of different qualities, the optimal trajectory of each joint with different 

weight coefficients was obtained and compared with the efficiency and energy consumption occurring 

during manual operation. These experimental results demonstrated that the trajectory obtained post-

secondary optimization exhibited higher efficiency and reduced energy loss than that before optimization. 

Furthermore, the movement of each joint was more stable, avoiding sudden changes in the working process, 

protecting the hydraulic driving device, and achieving the high efficiency of the excavator, thereby verifying 

the effectiveness and feasibility of this method. Second, considering the optimization efficiency, our 

planning method, genetic algorithm, and second-order cone programming algorithm were used to obtain the 

time–energy optimal trajectory under different weight coefficients. The results demonstrated that our 

planning algorithm has high computational efficiency and reduced computing cost and optimization time. 

As the future research, we will conduct an experimental verification of the optimization results to 

achieve high efficiency, low energy consumption, and stable operation of the excavator in actual engineering 

applications. 
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