
P
os
te
d
on

24
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
49
42
24
.4
52
68
92
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A class forecasting method for time series
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A class forecasting method for time series 

 

Abstract 

 

A time series is a record of the numerical values of a random variable in chronological order. This 

information organized in time periods is often used to forecast the value of the random variable in a future 

period or in a series of future periods. Time series forecasting is used across multiple disciplines from 

Economics to Public Health mainly seeking forecasting accuracy, sometimes at the cost of the 

transparency of the method used. This work proposes using contiguous, mutually exclusive classes 

spanning the range of possible values that the random variable can take at each time period. This 

framework allows computing the historical transition frequency from one class to another even in cases 

where the time periods are not adjacent to each other. Subsequently, these frequencies are used to build 

an index to identify the most likely class (or classes) for the forecasted period. The resulting method is 

transparent, and it outperforms the moving average and the simple exponential smoothing methods in a 

comparative study of 21 time series.  Applications to other time series involving COVID19 and author 

citations are presented for illustration purposes. 

Keywords: Class forecasting, Frequentist approach,  Nonparametric method  

 

Introduction 

Understanding historical data based on numerical patterns to predict future behavior has been of interest 
for decades and is the heart of the discipline of forecasting. The large body of literature in this discipline 
shows how advanced as well as how elusive its main goal remains. Excellent forecasting reviews are easy 
to find, for example [1], however, looking at the diversity of tools available it is interesting to note that 
methods that are simple, transparent and effective are well sought after [2)][ 3]. This is true even when 
machine learning and artificial intelligence methods have gained a lot of ground as forecasting tools [4] 
[5]. 

The idea of using methods that have an intuitive understanding for decision-makers has been the subject 
of intense discussion [3] where the Occam’s razor principle is often invoked [6]. Using a well-established 
mathematical pattern, such as a fractal, seems to be another direction that can enhance understanding 
in forecasting, as described in [7], as is the notion of using intervals as opposed to point forecasts [8)].  
 
This work generates time series forecasts based on two key elements: (1) organizing the time-stamped 
records into continuous and contiguous classes, and (2) computing the relative frequency between classes 
using different time lags. The aim is a method that can be intuitively understood as “our forecast follows 
from what has most frequently happened in the past”, without requiring the selection of a models or the 
computation of any parameters.  In addition, the use of a binary tree fractal is proposed to create the 
classes, as explained in a later section of the manuscript.  
 
 

 



 

 

Method 

Consider a time series with 𝑀 identically sized periods (𝑚 = 1,2,3, … , 𝑀). On each time period, the value 

of a random variable is recorded, 𝑦𝑚. The sample space in which 𝑦𝑚 occurs is divided up in 𝐾 

contiguous and mutually exclusive classes (𝑘 = 1,2,3, … , 𝐾). Each 𝑦𝑚 is then associated to one of the 𝐾 

classes to be expressed as 𝑦̆𝑚 ∈ {1,2,3, … , 𝐾}. A number 𝐿 of previous time periods or lags (𝑙 =

1,2,3, … , 𝐿) is chosen by the user to compute the forecast for a particular time period 𝑡. To this end, the 

training matrix 𝑇 with 𝑀 − 𝐿 rows and 𝐿 + 1 columns is built as follows:  

 

𝑦̆1 ⋯ 𝑦̆𝐿−1 𝑦̆𝐿  𝑦̆𝐿+1 

𝑦̆2 ⋯ 𝑦̆𝐿  𝑦̆𝐿+1 𝑦̆𝐿+2 

⋮  ⋮ ⋮ ⋮ 

𝑦̆𝐿  ⋯ 𝑦̆2𝐿−2 𝑦̆2𝐿−1 𝑦̆2𝐿 

⋮  ⋮ ⋮ ⋮ 

𝑦̆𝑀−𝐿 ⋯ 𝑦̆𝑀−2 𝑦̆𝑀−1 𝑦̆𝑀 

(M1) 

Using training matrix 𝑇 as a reference, build 𝐿 matrices each dimensioned 𝐾 × 𝐾. The 𝑙 − 𝑡ℎ   square 

matrix tallies the class transitions from the 𝐾 classes in the 𝑙 − 𝑡ℎ column to the 𝐾 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 in the  (𝐿 +

1) − 𝑡ℎ column, that is, it computes the class transition frequencies. For the 𝑙 − 𝑡ℎ square matrix, the 

quantity 𝑓𝑖𝑗
𝑙  denotes the transition frequency from the class in the 𝑖 − 𝑡ℎ row to the class of the 𝑗 − 𝑡ℎ 

column. The 𝑙 − 𝑡ℎ   square matrix is, as follows: 

 

 

 

 

 

 

(M2) 

Next, each of the 𝐿 square matrices are modified to compute the class transition relative frequency 

defined as: 

𝑝𝑖𝑗
𝑙 =

𝑓𝑖𝑗
𝑙

∑ 𝑓𝑖𝑗
𝑙

∀𝑗

 

  (E1) 

  Classes in column 𝐿 + 1 

  1 2 3 … 𝐾 

C
la

ss
es

 in
 

C
o

lu
m

n
 𝑙

 

1 𝑓11
𝑙  𝑓12

𝑙   𝑓13
𝑙  … 𝑓1𝐾

𝑙  

2 𝑓21
𝑙  𝑓22

𝑙  𝑓23
𝑙  … 𝑓2𝐾

𝑙  

3 𝑓31
𝑙  𝑓32

𝑙  𝑓33
𝑙  … 𝑓3𝐾

𝑙  

⋮ ⋮ ⋮ ⋮  ⋮ 

𝐾 𝑓𝐾1
𝑙  𝑓𝐾2

𝑙  𝑓𝐾3
𝑙  … 𝑓𝐾𝐾

𝑙  



Such that the 𝑙 − 𝑡ℎ   square matrix becomes: 

 

 

 

 

 

 

(M3) 

To produce a forecast for a particular time period 𝑡 using the classes in last 𝐿 previous periods 

(𝑦̆𝑡−1, 𝑦̆𝑡−2, . . . , 𝑦̆𝑡−𝐿), the analyst first presents the following indices for each class 𝑘 , 𝐷𝑡
𝑘: 

𝐷𝑡
𝑘 = ∑ 𝑝𝑦̆𝑡−(𝐿+1−𝑙)2

𝑙

∀𝑙
 

(E2) 

Finally, the forecasted class is the one with the largest index value, or the classes tied for the largest index 

value: 

𝑦̆𝑡 = {𝑘0|𝑚𝑎𝑥∀𝑘{𝐷𝑡
𝑘}} 

(E3) 

Comparative Performance Results 

Two baseline methods were chosen to compare the performance of the proposed method: moving 

average and simple exponential smoothing. For time series forecasting, an analyst has generally no control 

over the number of time periods available, 𝑀, and must decide upon how many previous periods, 𝐿, are 

relevant to generate a forecast. For this comparison, 𝑀 was kept to 20 time periods and 𝐿 to three lags.  

For the proposed method, the number of classes, 𝐾, was set to five. All of the time series in the 

comparison were linearly transformed to fall in the range between 0 and 100, so the size of each class is  

20 units. Furthermore, in order to describe the complexity of each series, a second-order polynomial is fit 

and the coefficient of correlation, 𝑅2 is reported. The rationale for this characterization is that time series 

with complex behavior will correspond to lower values of 𝑅2. Table 1 shows the comparative results using 

the number of correct forecasts based on the 𝑀 − 𝐿 = 20 − 3 = 17 time periods in the training matrix. 

The baseline methods were used (as their original design intended) to generate single-valued forecasts 

that were further translated into classes. This procedure allowed comparing them using the 𝐾 = 5 classes 

scheme. Figure 1 shows a sample of three time series (Series 1, 15 and 21 in Table 1) scaled to fall between 

0 and 100, and their corresponding classes. These three series also show the complexity of the series is 

here measure through the R2, as described previously.   
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𝑙  𝑝𝐾2

𝑙  𝑝𝐾3
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𝑙  



The results for the simple exponential smoothing method were obtained using Minitab®  19.2020.1 (64-

bit), with automatic optimal smoothing weight selection. The results for both the proposed class 

forecasting method and the moving average were obtained using MS Excel.  

 

Figure 1. Time series 1, 15 and 21 scaled to fall between 0 and 100 and their respective classification 

schemes with 5 classes. Increasing behavior complexity is shown with decreasing R2 value. 

 

Table 1. Comparative results of the proposed Class Forecasting Method with Exponential Smoothing and 

Moving Average. The values with a gray shade indicate the best performance between the three methods. 

The 21 series are sorted in increasing order of complexity (second column). Descriptive statistics are 

presented at the bottom of the table.  

According to the results in Table 1,  the class forecasting method outperformed both the simple 
exponential smoothing and the moving average: it had the largest count of correctly forecasted classes in 
20 out of 21 series. Only in series 3, the exponential smoothing obtained a better result, and only in series 



1 this method tied the performance of the class forecasting method. These two cases happened when the 
series´ behavior followed a second order polynomial with R2 values above 98%.  The moving average 
showed the poorest results in every case. In series with high R2 values, the performance of the baseline 
methods declined sharply, while that of the proposed method remained competitive. The descriptive 
statistics at the bottom of the table show the lesser dispersion of the results in the class forecasting 
method and summarize the better location of its performance when described by the five-point summary 
(minimum, first quartile, median, third quartile, and maximum).  

The next step included the use of inferential statistics to assess the potential generalization of these 
results. An ANOVA using the three methods as the fixed levels of a controllable factor and the set of  R2 

values as a covariate was carried out on the number of correct class forecasts as a response.  Using a Box-

Cox transformation (=1.35) and a significance of 5%, the residuals passed the Anderson-Darling test for 
normality (p-value = 6.8%) and a multiple comparisons test for equal variances (p-value = 9.8%). The 
ANOVA showed that both the controllable factor and the covariate were significant at the stated level (p-
values < 0.1%). Subsequently, a Tukey pairwise comparison procedure at 95% confidence was used to 
determine the ranking of the methods based on their forecasting performance. The results  placed the 
proposed class forecasting method first (95%CI difference of means vs simple exponential smoothing (-
4.77,-1.70) and vs moving average (-6.77, -3.70)), followed by the simple exponential smoothing method 
in second place (95%CI difference of means vs moving average (-3.53, -0.46)) , and the moving average in 
third place.  

The previous ANOVA procedure estimated a standard deviation of 2.07 units in the residuals. A power 
curve for one-way ANOVA was used to determine that the sample size of 21 series, using said standard 
deviation value, a difference to be estimated of the size of at least such standard deviation, and a 
significance of 5%, would provide a power of 81.47%. This was deemed an acceptable probability of 
correctly rejecting the null hypothesis in the ANOVA-based comparative analysis presented previously.  

Application 

The proposed classification forecasting method has the potential for application across multiple 

disciplines. Basing a forecast on historical transition frequencies between classes provides repeatability 

and transparency. It has been also shown that its forecasting performance is robust and competitive. In 

this section, the method is applied to analyze a time series related to Covid19 cases in Puerto Rico to 

further demonstrate its capabilities.  

The number of positive Covid19 Cases in Puerto Rico were collected from March 2020 to August 2022 

from the Department of Health website [9]. This resulted in 𝑀 = 30 time periods (months).  A 

classification scheme with 𝐾 = 8 classes was adopted while the number of lags was kept to  𝐿 = 3.  The 

training matrix, 𝑇, contained 𝑀 − 𝐿 = 30 − 3 = 27 vectors. A second order polynomial fit gave out a 

value of R2=24.65%. For comparison purposes, the same baseline methods were used as in the 

comparative results section. Figure 2 shows the original series (top) and the classification results for the 

three methods using the 27 vectors in the training matrix (bottom). Following the comparison results, the 

proposed class forecasting method showed a better classification performance (19/27 correct forecasts 

or ~70%) than the baseline methods (exponential smoothing: 10/27 or ~37% and moving average: 5/27 

or ~19%). Contrasting the original series and the comparison results, it is clear that none of the methods 

could forecast the spike in Covid19 cases observed on months 22 and 23. After these, however, the 

proposed class forecasting method performed better than the baseline methods, correctly forecasting 6 



out of the following 7 periods (versus 2 and 1 correct forecasts out of 7 for the simple exponential 

smoothing and the moving average methods respectively).  

 

Figure 2. Original time series of Covid19 Cases in Puerto Rico (top). Its  R2 value is 24.65% when fitting a 

second order polynomial. A comparison of the three methods is presented (bottom): Class Forecasting as 

proposed, Simple Exponential Smoothing and Moving Average. On each of the the bottom graphs, an 

empty symbol is a missed forecast. All methods used 𝑀 = 30 𝑚𝑜𝑛𝑡ℎ𝑠, 𝐿 = 3 𝑙𝑎𝑔𝑠, 𝑎𝑛𝑑 𝐾 = 8 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 

Class Forecasting had 19 correct forecasts out of 27, Exponential Smoothing had 10 out of 27, and Moving 

Average had 5 out of 27.  

A fractal scheme for defining the number of classes, 𝑲 

The proposed Class Forecasting method leaves it to the user to define the number of classes, 𝐾.  Some 

users might have a number of classes already defined for their particular application, however, others 

might not. In the latter case, a possible way involves defining the number of classes by consecutively 

partitioning the range of the random variable in the time series of interest by half on each step. A fractal 

tree with 𝐾 = 2𝐻 categories results from this operation (Figure 3). Each partition ℎ = 1,2,3. . . 𝐻, can be 

associated to a binary variable, 𝐵ℎ, to indicate if the value of the random variable is in the upper half of 

the ℎ −th partition (𝐵ℎ = 1) or not (𝐵ℎ = 0).  This naturally leads to the notation 𝐵1𝐵2𝐵3. . . 𝐵𝐻, which 

conveniently locates the category to which a particular observation belongs. For example, a class 101 

would locate a class in the upper half, lower quarter, and upper eight of the range of the random variable 

in the time series of interest. This scheme provides a meaningful characterization, although it is clear that 

the number of classes will grow exponentially. The final number of partitions, 𝐻, is decided by the user 

looking for the minimum value that provides class sizes with a desired level of precision. A lower bound 

for a particular class, 𝑘, is accessible through the following expression: 

𝑦̆𝑙𝑜𝑤
𝑘 = 𝑦𝑚𝑖𝑛 + (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∑ (

𝐵ℎ

𝐵ℎ) 𝐻
ℎ=1        (E4) 



 

Figure 3. A fractal tree used to determine classes. From left to right, each partition consecutively divides 

the previous one by half.  

 

Conclusions 

Forecasting methods that are transparent in their logic with competitive results that can be explained to 

people with different backgrounds are in demand. This is especially true after a period like the Covid19 

pandemic, when model complexity was not necessarily helpful. In this work, a method to forecast a 

particular class based on transition frequency is proposed for time series. The method has an intuitive 

rationale and its competitive performance when compared to moving average and simple exponential 

smoothing is evidenced in this manuscript. A scheme based on a fractal binary tree is also introduced to 

help users define a sensible number of classes. Future work in this research line will include coding of the 

method and widening its evaluation to include different number of lags.  
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