
P
os
te
d
on

24
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
49
19
05
.5
50
50
92
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Prediction of stock prices with automated reinforced learning

algorithms

Said Yasin1, Adrian Paschke1, and Jamal Al Qundus1

1Freie Universitat Berlin Institut fur Informatik

April 05, 2024

1



Graphical Abstract

Prediction of stock prices with automated reinforced learning al-
gorithms

Said Yasin, Adrian Paschke, Jamal Al Qundus

Based on the 

environment, a DQN 

model is trained, 

which in turn performs 

the stock price 

prediction

The next 𝒏 stock data 

will be considered 

Based on the current 

𝒏 stock data, an 

environment is 

developed 

En
viro

m
e
n
t

or



Highlights

Prediction of stock prices with automated reinforced learning al-
gorithms

Said Yasin, Adrian Paschke, Jamal Al Qundus

• Compared to ordinary supervised learning algorithms, the prediction
accuracy could be increased by 10 %

• Unnecessary updates can have a negative impact on performance

• The Dueling DQN performed on average better than the Double DQN
and the DQN



Prediction of stock prices with automated reinforced

learning algorithms

Said Yasinb, Adrian Paschkea,b, Jamal Al Qundusa,b,c

aData Analytics Center, Fraunhofer FOKUS, Berlin, 10589, Germany
bInstitute of Computer Science, Freie Universitaet Berlin, Berlin, 14195, Germany

cBusiness Intelligence and Data Analytics, German Jordanian
University, Amman, 11180, Jordan

Abstract

The prediction of stock price developments represents one of the greatest
challenges in the analysis of time series data and has been investigated for
decades using a wide variety of methods. Until now, only a few approaches
have been able to establish themselves. The reasons for this vary. One of the
challenges in stock price forecasting is that the desired model changes over
time due to market dynamics. The objective of this paper is to predict stock
prices using automated reinforcement learning algorithms. The models are
automated by repeatedly retraining them using data from the recent past.
Our approach is designed to capture the market dynamics. DQN models and
their modified variants are used as the reinforcing learning algorithms. They
have shown remarkable results in recent studies in stock price forecasting. In
this paper we were able to show that for different DAX stocks, measured in
daily intervals, the test accuracy can improve from 50.00 % to about 60 %.
It was shown that for certain step sizes n and window sizes an improvement
of the results can be achieved by a dynamic implementation. However, this
only holds for stock price data that is measured at daily and weekly intervals.

Keywords: stock price prediction, reinforcement learning, automation,
deep Q-learning

Email addresses: said_yasin1234@hotmail.com (Said Yasin),
adrian.paschke@fokus.fraunhofer.de (Adrian Paschke),
jamal.alqundus@gju.edu.jo (Jamal Al Qundus)

Preprint submitted to Expert Systems April 5, 2024



1. Introduction

The stock market is a market segment that has continuously increased in
value over the past decades. The value of the world’s stock portfolio grew
from 2.9 trillion to 105.9 trillion in the period from 1980 to 2020 (Bundeszen-
trale für politische Bildung, 2021). In the course of this, investors interest
in trading on the stock market and consequently how to predict the future
stock price increased. After all, successfully predicting stock prices can lead
to attractive profits if the right decisions are made (Gandhmal and Kumar,
2019). Thus, predicting stock price trends emerged as one of the major chal-
lenges in analyzing time series data (Gu et al., 2020). According to Gu et al.
(2020) and Jiang (2021), a number of approaches, such as the use of machine
learning techniques, have been investigated in recent decades to overcome
this challenge. Despite all this research only a few models could successfully
establish themselves in automatic stock trading (Gu et al., 2020).

In this context, predicting stock prices proved to be extremely difficult
due to the non-stationary and chaotic nature of stock data (Gandhmal and
Kumar, 2019). For example, the non-stationarity of the data means that
the desired model for predicting stock prices changes over time due to the
non-uniform distribution of the data (Chollet, 2018; Raza et al., 2015). Re-
searchers such as Guo et al. (2018) were able to prove this empirically when
they observed that their selected stocks had different distributions at different
times. This phenomenon can be illustrated graphically in figure 1.

Figure 1: Covariate shift Source: Du et al. (2021)

2



This problem, according to Krawczyk et al. (2020) and Souza et al. (2020),
raises the issue that historical data may not be relevant or even detrimen-
tal to the modeling of the forecast model. Despite this described problem,
according to Du et al. (2021) there has been little research modeling time
series from a distributional perspective. To address this problem of distribu-
tion of data changes over time, researchers such as the developer of the deep
learning library Keras Chollet (2018) recommend that the required model
be continually re-trained using data from the recent past. This is because
static models trained using non-stationary data become unusable over time
(Ditzler et al., 2015). In this respect, the existing market dynamics suggest
that static models are not the appropriate models to capture changes in the
market in the long run.

Against this background, this paper will deal with automated ML-models
to address this problem of dynamic data changes over time. In our solution
Deep Q-Networks (DQNs) developed by Mnih et al. (2013) are used because
the adaptability and enormous performance demonstrated in works such as
Thakkar and Chaudhari (2021), Bajpai (2021) or Zhang and Lei (2022) of the
deep reinforcement models in combination with a dynamic implementation,
could lead to remarkable results. In the study by Thakkar and Chaudhari
(2021), the DQN was able to achieve an accuracy of almost 100%, while many
other models, including LSTMs, RNNs and CNNs, had an approximate ac-
curacy of 50%. These results are also confirmed by reviews such as that of
Singh et al. (2022), which conclude that deep reinforcement approaches per-
form better than classical ML approaches, e.g. due to their high-level feature
extraction property. Researchers such as Li et al. (2020) also confirmed that
the theory of deep reinforcement learning is now widely accepted on the fi-
nancial markets, but they pointed out that there are still some challenges to
overcome, such as the exploration and exploitation of balance problem, slow
convergence rate, space catastrophe and so on.

Thus, automated reinforcement learning has the potential to better adapt
to market fluctuations and learn to make optimal decisions in uncertain en-
vironments. So far, supervised learning algorithms have been preferred for
stock price forecasts (Shi et al., 2021). As a consequence, reinforcement
learning algorithms have received less attention and, in particular, not in
combination with an automated implementation.

3



No other study could be found in which DQN models are automated to
adapt to the changing characteristics of non-stationary price data. This il-
lustrates the uniqueness of the present work. The practical importance of
this study is thus to show the first experimental results of how automated
DQN models behave. The theoretical significance is to describe the advan-
tages of reinforcement learning algorithms and dynamic implementation in
one context.

The paper aims to present the first insight into how automated deep
reinforcement learning algorithms can be used to develop models that can
better adapt to market fluctuations and learn to make optimal decisions in
uncertain environments. The following research question is subject of the
paper:

To which extend can automated DQN models improve forecast
accuracy?

The remainder of the paper is organized as follows: In Section 2, we de-
scribe related work where ML models have also been used to automate and
improve prediction accuracy, as well as other works on static models. In
Section 3, the theoretical background of the DQN models is described. In
Section 4, we describe the research methodology, which includes an expla-
nation of the used data, the updating process, etc. In Section 5, we present
our results, which are then discussed in detail in Section 6. The final sec-
tions 7 and 8 describe future work directions and the conclusions from our
investigation.

2. Related Work

Since according to Jiang (2021), the prediction of stock price develop-
ments has been a research topic for a long time, there are some compre-
hensive literature studies, such as those of Kurani et al. (2021), Thakkar and
Chaudhari (2021), Jiang (2021), Gandhmal and Kumar (2019) or Sezer et al.
(2020), which tabulate the researches and developments already made. Lit-
erature studies, such as those by Kurani et al. (2021), for example, document
investigations dating back to 1970. Based on the literature studies, it can be
seen that a wide variety of models, such as Multilayer Perceptron Networks
(MLPs), Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNNs), Long Short-Term Memory Networks (LSTMs), Generative

4



Adversarial Networks (GANs), Support Vector Machines (SVMs), ARIMA
models, Prophet models, or a wide variety of hybrid models combined from
the models just named, have been used. According to the literature reviews
by Jiang (2021) or Sezer et al. (2020), the most common models used were
recurrent models.

In addition, based on the above-mentioned literature studies, it was found
that depending on which stocks, indices and time periods were studied, re-
searchers were able to achieve accuracies of up to 99.9 % on test data. The
accuracy of 99.9 % was achieved by Selvamuthu et al. (2019) using feed-
forward neural networks for Reliance Private Limited stock tick data mea-
sured from 30.11.2017 to 11.01.2018.

There are also literature reviews, such as by Singh et al. (2022), which
document the developments of deep learning, reinforcement and deep rein-
forcement learning methods according to their various application areas in
the financial industry (e.g. financial forecasts, financial text mining, portfolio
management or credit risk) and compares traditional statistical methods with
these algorithms. Both value-based methods such as Q-learning and DQN as
well as policy-based algorithms such as Deterministic Policy Gradient (DPG)
and Deep DPG were considered for the reinforcement learning algorithms.
They concluded that reinforcement and deep reinforcement learning methods
can effectively predict and recognize difficult market trends compared to tra-
ditional ML algorithms, with the significant advantage of high-level feature
extraction properties and proficiency of the problem solver methods. They
also mention the advantage that reinforcement learning allows us to create a
more efficient framework that takes into account key market constraints by
integrating the prediction problem with the portfolio structure task. Other
researchers, such as Li et al. (2020), have also generally demonstrated the
feasibility of deep reinforcement learning in financial markets, as well as the
credibility and utility of strategic decision making, through experiments with
U.S. stocks.

According to Gu et al. (2020), despite the versatility of the models and
results obtained, only a few models were nevertheless able to prevail in auto-
mated stock trading. Review work, such as by Kurani et al. (2021) describe
that studies,in recent decades made the mistake of not including external fac-
tors, such as current investor sentiment. The same report Jin et al. (2019).

5



Other reviews, such as that by Jiang (2021), describe that some studies
have made the mistake of evaluating the profit and risk of the trading strat-
egy only on the basis of the prediction result and not acting in favor of the
portfolio (e.g. not taking transaction costs into account). Futhermore, there
is the problem, according to Du et al. (2021), it is unexplored how to model
time series from the perspective of distribution, although it is known that ac-
cording to Gandhmal and Kumar (2019) stock price data are non-stationary
and researchers such as Guo et al. (2018) have shown in tests that stock price
data can have different data distributions at different times.

Related work that tries to improve the prediction accuracy of stock prices
through a dynamic implementation is by Nguyen et al. (2019). They com-
pare the prediction accuracies of dynamic and static LSTMs using four stocks
listed in the NASDAQ stock market, which prices have been measured in
daily intervals. In dynamic LSTM, in contrast to static LSTM, the model
was updated after each prediction using an expanded training set. The train-
ing set was expanded by adding the current prediction of the LSTM to the
training set. After approximately seven days of computation, the authors de-
termined that automating the LSTMs had significantly improved the predic-
tion accuracy. For the stock period from 2014 to 2019, the dynamic LSTMs
were able to reduce the mean square error by 45.9 %. They also compared
the performance capabilities of the static and dynamic LSTM models with
respect to different window sizes. The authors concluded that the dynamic
LSTMs tended to be less dependent on window size compared to the static
LSTMs.

Guo et al. (2018) used five random stocks from the Shanghai Stock Ex-
change to explore whether automating the Support Vector Machine Regres-
sion (SVR) learning algorithm can improve prediction accuracy. The stock
price data were measured in 2015, 2016 and 2017 and different stock price
intervals were considered. They automated the SVR learning algorithm by
using Particle Swarm Optimization (PSO). The idea behind PSO is to find
the optimal solution through cooperation and information sharing among
individuals. To counteract computation time, the parameters of the SVR
learning algorithms were updated only when the model error exceeded a
threshold θ. They compared their adaptive SVR learning algorithm with
ordinary SVR learning algorithms and backpropagation neural networks and
concluded that the adaptive SVR learning algorithm had better adaptability

6



and prediction accuracy. Thus, the adaptive SVR learning algorithm could
reduce the prediction error for the different stocks by 8 to 41 %. Further-
more, they found in their study that the predictive accuracy of the static
models became worse and worse as time progressed.

Other related works, such as that of de Lima e Silva et al. (2020), apply
non-stationary fuzzy time series (NSFTS) which can be used to dynamically
adjust fuzzy sets to take into account the changes in the stochastic process.
Similarly, there is work such as that of Du et al. (2021), which tries to charac-
terize the different data distributions in a time series and then use RNNs to
reduce the distribution divergences and improve the predictions. However,
as described in section 1, no other study could be found in which DQNs
are automatically adjusted to the changing characteristics of non-stationary
stock price data.

Nevertheless, there are numerous papers, such as those by Shi et al.
(2021), Zhang and Lei (2022), Dang (2019) or Bajpai (2021) that use static
DQNs to predict stock prices with good performances compared to conven-
tional methods. For example, Shi et al. (2021) showed how the double DQN
outperformed LSTMs and SVMs in terms of various factors using various
American and Chinese stock indices. Bajpai (2021) was also able to see the
performance of the DQN using Indian stocks in her study. She makes the as-
sumption, that due to the fact that stock markets are particularly stochastic
and can change rapidly, DQN models perform better than conventional meth-
ods as a result of their rapid adaptability. Zhang and Lei (2022) considered
all possible U.S. stocks in their study, and concluded that DQN models can
perform better in turbulent market periods compared to traditional methods
due to their adaptability.

Finally, it is important to point out the weaknesses of our literature re-
view. Since the approach of this paper is highly exemplary, there are no
papers that show how well or poorly this approach worked for them. Either
papers were cited that show how well automated ML algorithms work, or
static DQNs, but not autoamtized DQNs. Another important weakness of
the above-mentioned work on automated ML models is that the very good
results were achieved with a small sample, such as that of Guo et al. (2018)
with five stocks or Nguyen et al. (2019) with four stocks, which is not neces-
sarily representative of all stocks.

7



3. Background

3.1. Reinforcement Learning

Reinforcement learning algorithms are able to perceive an environment
based on feature vectors si and accordingly execute actions ai according to
the perceived state (Burkov, 2019). Different actions can result in different
rewards Ri (Alpaydin, 2022). This process is illustrated in figure 2. The goal
of reinforcement learning is to identify the actions that maximize expected
rewards over time (Géron, 2019). A strategy is sought, similar to a supervised
learning algorithm, in the form of a function π(s) that outputs an optimal
action given a preserving feature vector capturing the state (Burkov, 2019).

Figure 2: Agent and environment Source: Amiri et al. (2018)

3.2. Markov decision process

The reinforcement learning algorithms are based on the formalism of
Markov decision processes, which in turn are based on ordinary Markov
processes (Lapan, 2020). A Markov process is a stochastic process, that
is, a family of random variables {X(t), t ∈ T} whose probability distribu-
tion functions have the Markov property. Accordingly, Markov processes
can be defined as continuous-time or discrete-time Markov processes. For-
mally, a discrete-time Markov process {Xn, n = 0, 1, 2, ...} is a stochastic
process that satisfies the following Markov property for a finite set of states
{xn, n = 0, 1, 2, ...}:

P (Xn+1 = xn+1 | Xn = xn , Xn−1 = xn−1 , ..., X0 = x0)

= P (Xn+1 = xn+1 | Xn = xn)
(1)

Simply put, the Markov property means that the transition probabilities
depend solely on the presence (Stewart, 2009).

8



Markov decision processes form the theoretical basis for reinforcement
learning algorithms and were defined by Richard Bellman in the 1950s and
differ from Markov processes by the following three additional characteristics
(Géron, 2019):

1. At each step, there is the possibility of selecting multiple actions.

2. Transition probabilities depend on the action selected.

3. State transitions can return a positive or negative reward.

3.3. Q-learning

For problems where the transition probabilities and the reward function
of the underlying Markov decision process are unknown, Watkins (1989)
introduced the Q-learning algorithm, whose convergence theorem is presented
and proves in detail in Watkins and Dayan (1992). Q-learning works by an
agent trying out an action in a certain state and recognizing the consequences
in the form of the immediate reward or punishment. By repeatedly trying all
actions in all states, the agent learns which actions are best overall, measured
in terms of the long-term discounted reward. The Q-learning algorithm is
defined as follows:

Q(s, a) = (1− α)Q(s, a) + α[r + γmaxQ(s′, a′)] (2)

Where s is the current state, a is the chosen action, s
′
is the subsequent state,

r is the received reward, α is the learning rate, γ is the discount factor and
maxQ(s′, a′) is the best the agent thinks it can do from state s

′
. In other

words, the Q-value is the expected discounted reward for taking action a in
state s and following policy π thereafter.

3.4. DQN

The described Q-learning algorithm is not scalable for Markov decision
processes with many states and actions (Karunakaran et al., 2020). To this
extent, for action and state spaces that are too large, it is no longer possible to
estimate the Q-value of each state-action pair (s, a). To solve this problem,
DeepMind published a paper in 2013 in which they proposed to learn a
function Qθ(s, a) that approximates the Q-value for each state-action pair
(s, a) using feedforward neural networks (Mnih et al., 2013). This model
idea was named Deep Q-Network (DQN) in the paper. The target values
of the neural network, with which the network error is measured, are to be
determined by the Q-learning rule (see formula 2).

9



3.5. Double DQN

In 2015, DeepMind updated its DQN algorithm, which it called Double
DQN (van Hasselt et al., 2015). DeepMind researchers found that their 2013
version overestimated Q-values, which negatively impacted training perfor-
mance. The reason for this, according to DeepMind, is supposed to be the
max operation (see formula 2), because the approximated Q-values are of-
ten noisy and the use of the max-operation leads to an overestimation of
the Q-values. To solve this problem, the DeepMind researchers proposed to
split the max operation into action selection and action evaluation. They
implemented this as follows:

y = r + γQθ′(s
′,max

α′
Qθ(s

′, a′)) (3)

A first neural network Qθ, called the online network, evaluates the greedy
strategy, i.e. the action with the highest Q value is selected, and a second
neural network Qθ′ , called the target network, calculates the Q value based
on the action selected by the online network. The target network is a periodic
copy of the online network.

3.6. Dueling DQN

The Dueling DQN algorithm is also an updated version of the DQN algo-
rithm also presented by DeepMind in 2015 (Wang et al., 2015). They describe
that their update provides the main advantage to generalize learning across
actions without the need to change the underlying reinforcement learning
algorithm. The dueling DQN algorithm is based on the fact that the Q-value
of a state-action pair (s, a) can be expressed, as it were, as follows:

Q(s, a) = V (s) + A(s, a) (4)

V (s) is a measure of how good it is to stay in a certain state s and A(s, a)
is a relative measure of the importance of the individual actions. For the
Q-value of the best action Q(s, a∗) it applies that A(s, a) = 0. The dueling
DQN calculates the state-action value Q(s, a) by combining the value V (s)
and the advantage function A(s, a) with a single deep model.

10



3.7. DRQN

The Deep Recurrent Q-Network (DRQN) is a DQN that uses a recurrent
neural network to approximate the function Qθ(s, a), and was also first in-
troduced in 2015 by Hausknecht and Stone (2017). The authors described
that in real environments it is rather rare that the complete state of the
system can be provided to the agent or even determined, so that in real en-
vironments the Markov property (see formula 1) rather rarely holds. They
describe that a Partially Observable Markov Decision Process (POMDP) bet-
ter reflects the dynamics of many real environments. Therefore, Hausknecht
and Stone (2017) defined DRQNs and hypothesized that they can better
handle POMDPs by leveraging advances in recurrent neural networks.

3.8. Covariate shift

The so-called covariate shift describes the phenomenon that the data
distribution changes over time (Raza et al., 2015). In mathematical terms, a
covariate shift occurs when the distribution P (X) of the input changes, but
the conditional distribution P (Y |X) of the output remains the same (Huyen,
2022).

3.9. Mean Directional Accuracy

MDA =
1

N

N∑
i=1

1[sgn(yi−yi−1)=sgn(ŷi−yi−1)] (5)

The Mean Directional Accuracy (MDA) (see formula 5) is a measure of
the probability of how accurately a model can predict the actual direction
(upward or downward) of a time series (Dauphin et al., 2022).

3.10. Root Mean Square Error

RMSE =

√√√√(
1

N
)

n∑
i=1

(yi − ŷi)2 (6)

The Root Mean Square Error (RMSE) (see formula 6) is a widely used
metric for evaluating models and is optimal for gaussian errors (Hodson,
2022).

11



4. Research Methodology

The study is composed of two preliminary and one main investigations.
The first preliminary investigation examines which network architectures are
powerful for the different DQN and their variants, because there are four
different variants of DQNs and a wide range for the definition of their net-
work architectures. Tensorforce1 was chosen to access the DQN variants
because it is very user-friendly. In the second preliminary investigation, the
best models from the first preliminary investigation are trained using an ex-
tended training data set. This ensures that the lack of representativeness
of the training data is not the reason for the poor results obtained later.
After that, the main investigation begins, where the best models from the
first preliminary investigation are automated. Five different strategies are
tried for the automation process, which are explained in more detail in the
Section 4.6. The study is then extended by examining how different stock
price intervals and window sizes (time steps) affect automation results. Fi-
nally, supervised learning algorithms are also trained with the same data to
provide further benchmarks, and a statistical test is performed to verify the
improvements of the automated models. Figure 3 shows this worklow again.

Figure 3: Research workflow

1https://tensorforce.readthedocs.io/en/latest/

12

https://tensorforce.readthedocs.io/en/latest/


Before we start this research process in section 5, we first explain the
conditions on which our study is based, such as our data structure, the agent
environment, network architectures, hyperparameters, DQN algorithm and
update strategies.

4.1. Data

As use case, the DAX stocks Adidas, BASF and Allianz are examined.
Opening prices, highs, lows and closes, trading volume, DAX closing prices
and Google Trends data via the search queries ”crash” and the stock name
(adidas, basf or allianz) are taken into account. The DAX closing prices are
included in the study to have a rough overview of the other DAX participants
and the Google Trends data is used to have an sentiment indicator included
in the prediction. The stock data is downloaded using the Python library
yfinance2 and the Google Trends data is downloaded using the Python li-
brary pytrends3. The training data is formed for the individual stocks using
the data measured in the period from 01.01.2017 to 31.12.2019.

For daily measured data, this corresponds to 738 data records (3 years
× 52 weeks × 7 days) without the stock-free days. For the validation data,
the period from 01.01.2020 to 31.12.2020 is considered, and for the test data,
the period from 01.01.2021 to 31.12.2021 is considered. This corresponds to
248 data records (1 year × 52 weeks × 7 days) without the stock-free days.
Together with the 7 selected characteristics (5 historical stock data charac-
teristics and 2 Google Trends data), this results in three data sets with the
dimensions 738 × 7 and two times 248 × 7. The data set size would be
reduced by a factor of around 5 for weekly stock data and increased by a
factor of around 11-12 for hourly stock data.

In order to get an idea about the distribution of how the price direction
changes for the next day, the following figures show histograms of the differ-
ences between the closing prices of adjacent days tn and tn+1 for each stock
over the period from 01.01.2017 to 31.12.2021. Since, according to Li (2023),
it is widespread that stock returns follow a normal distribution, a probability
density function of a normal distribution N(µ, σ2) with the estimated sample
mean x and variance s2 as parameters is also plotted for each histogram.

2https://pypi.org/project/yfinance/
3https://pypi.org/project/pytrends/

13

https://pypi.org/project/yfinance/
https://pypi.org/project/pytrends/


Figure 4: Histogram of weekly closing price differences for Adidas with N(0.417, 112.246)

Figure 5: Histogram of daily closing price differences for Adidas with N(0.084, 19.786)

14



Figure 6: Histogram of hourly closing price differences for Adidas with N(0.008, 1.756)

Figure 7: Histogram of weekly closing price differences for Allianz with N(0.179, 43.205)

15



Figure 8: Histogram of daily closing price differences for Allianz with N(0.039, 7.7)

Figure 9: Histogram of hourly closing price differences for Allianz with N(0.004, 1.061)

16



Figure 10: Histogram of weekly closing price differences for BASF with N(−0.099, 5.881)

Figure 11: Histogram of daily closing price differences for BASF with N(−0.021, 1.051)

17



Figure 12: Histogram of hourly closing price differences for BASF with N(−0.002, 0.145)

From a mathematical point of view, it is intuitive to assume that stock
returns follow a normal distribution since they fulfil the conditions of the
central limit theorem (the sample size is large enough and is influenced by
various factors), but the actual distribution of stock returns often has charac-
teristics such as high peaks and fat tails that make them appear non-normally
distributed (Li, 2023).

We can also observe this in our histograms. The samples appear to be
normally distributed as most of them are approximately symmetrical around
the mean, which is close to 0 for all histograms (see e.g figure 9 or 12), but
they also all have a high peak at this point. For this reason, researchers
also suggest using distributions for stock returns that are similar to a normal
distribution but also have additional characteristics such as high peak and
thick tail, such as the exponential power distribution (Li, 2023).

We hypothesize that if enough parameters and normally similar distribu-
tions are tested, a matching distribution to our samples can be found. How-
ever, the more important and difficult task is how to recognize and model
changing distributions over time.

18



To get an idea of how difficult this task is, the sample means and variances
for each month of the daily closing price differences of adjacent days tn and
tn+1 are plotted in figure 13 and 14.

Figure 13: Monthly mean values of daily closing price differences

Figure 14: Monthly variances of daily closing price differences

19



It can be seen how the monthly means fluctuates between the values -2
and 2 and that the stocks Adidas and Allianz have greater volatility than
BASF (see figure 13). It can also be seen that the mean values over the
entire five years (see figure 5, 8 and 11) are close to 0, but can vary greatly
from month to month. Similar to the mean values, the variances show that
the fluctuations were much greater for the stocks Adidas and Allianz than
for BASF (see figure 14). We can also clearly see that the stocks Adidas and
Allianz both suddenly had a very high variance and negative mean value in
March 2020, probably due to the announcement by World Health Organiza-
tion (2020) on 11 March 2020, that the coronavirus has been declared to a
global pandemic. This graph shows why it is important to always update the
predictive model, as a static model trained before March 2020, for example,
would not take this drastic change in distribution into account.

From the histograms it can also be seen that the sample variance decreases
with finer price intervals (compare figure 4, 7 and 10 with figure 6 , 9 and 12).
This means that the probability of a higher gain or loss increases with the
time that a stock is in the portfolio. Due to the symmetry of the mean value
of the normal distribution-like samples (see e.g figure 6 or 8), it can also be
concluded that the probability of a positive direction of the price change is
approximately the same as that of a negative direction. To confirm this, one
can look at the proportion of positive and negative price direction changes
from the entire data set.

Stock Interval Positive directions Negative directions Positive ratio

Adidas Weekly 122 138 46,9 %

Allianz Weekly 129 131 49,6 %

BASF Weekly 125 135 48,0 %

Adidas Daily 588 646 47,6 %

Allianz Daily 605 629 49,0 %

BASF Daily 599 635 48,5 %

Adidas Hourly 6551 6392 50,6 %

Allianz Hourly 6600 6324 51,0 %

BASF Hourly 6603 6527 50,2 %

Table 1: Correlation between Google Trends data and stock closing prices

It can be seen that the positive proportion of directional changes is close
to 50 % for almost all stocks and price intervals.

20



However, there are also cases, such as the Adidas stock in the weekly in-
terval, where the positive share deviates by around 3 %. We suspect that this
is due to the amount of data and that the positive proportion of directional
changes can fluctuate depending on which smaller slice of a data series is
selected. The next step is to investigate how much and if at all our selected
Google Trends data can add value to our stock prediction. The following
table 2 shows the Pearson correlation coefficients and their p-values between
our Google Trends data and the closing prices for all price intervals.

Stock Interval Keyword Correlation P-value

Adidas Weekly ”Adidas” 0.128 0.03846

Allianz Weekly ”Allianz” -0.068 0.26930

BASF Weekly ”BASF” 0.175 0.00442

Adidas Weekly ”Crash” -0.177 0.00395

Allianz Weekly ”Crash” -0.211 0.00059

BASF Weekly ”Crash” 0.162 0.00869

Adidas Daily ”Adidas” 0.113 6.005e-05

Allianz Daily ”Allianz” -0.108 1.351-04

BASF Daily ”BASF” 0.114 5.220e-05

Adidas Daily ”Crash” -0.173 8.733e-10

Allianz Daily ”Crash” -0.190 1.416e-11

BASF Daily ”Crash” 0.152 7.834e-08

Adidas Hourly ”Adidas” 0.101 3.148e-32

Allianz Hourly ”Allianz” -0.069 6.765e-16

BASF Hourly ”BASF” -0.120 2.871e-44

Adidas Hourly ”Crash” 0.144 1.032e-63

Allianz Hourly ”Crash” -0.018 0.0304

BASF Hourly ”Crash” -0.219 2.880e-146

Table 2: Correlation between Google Trends data and stock closing prices

It can be seen that for the daily price data, all Pearson correlation coeffi-
cients are significant with a value greater than 0. However, with a significance
level α of 0.01 for the weekly and hourly price data, there are Google Trends
data that does not correlate significantly with our closing price. The highest
correlation can be seen for all price intervals with the keyword ”crash”. It is
interesting to see that the price interval of the stock can also influence the
direction of the relationship (e.g. for hourly and daily BASF stock data with
the keyword ”crash”).

21



The lowest p-values are seen in the hourly data. This is probably due
to the fact that the volume of data is highest in this period. Overall, these
statistics suggest that the Google Trends data, particularly for the keyword
”crash”, will probably help us to increase the explainable variance.

4.2. Agent environment

One challenge of reinforcement learning is to provide an environment
(see figure 2) for an agent to develop a strategy for the underlying Markov
decision process (Géron, 2019). This challenge was addressed in this paper
using the OpenAI Gym API4 by defining a custom agent environment, which
is illustrated in the following figure:

Figure 15: Example for self-defined environment with window size = 3

In the initial state s0, the agent has information about the opening, high,
low, closing prices, trading volume, DAX closing prices and Google Trends
data of a particular stock from time t0 to t2 (see figure 15). Based on this
perceived state, the agent must choose an action a0 to determine whether the
closing price will rise or fall in the next time unit t3. If the price direction was
predicted correctly, the agent receives a reward r0 of 1, otherwise a reward
r0 of -1. Then the agent enters state s1 and perceives the stock’s data from
time t1 to t3, and this process repeats until the agent is in the final state sn
and must choose the last action an in order to predict the price direction for
the last time tn.

4https://www.gymlibrary.dev/content/environment_creation/

22

https://www.gymlibrary.dev/content/environment_creation/


4.3. Neural Network architectures

For the first preliminary investigation, the following neural network ar-
chitectures are compared for the different DQN models:

Name of
Model

First 1D convolutional layer Second 1D convolutional layer

Filters Kernel size
Activation
function

Filters Kernel size
Activation
function

Model 1 64 3 ReLU 64 3 ReLU

Model 2 32 7 ReLU 64 7 ReLU

Model 3 32 7 ReLU 64 7 ReLU

Model 4 32 7 ReLU 64 7 ReLU

Model 5 64 3 ReLU 64 3 ReLU

Table 3: Overview of the Convolutional Neural Networks (CNNs) of the models

Name of
Model

Hidden layers LSTM layer Dropout layers
No. of
layers

No. of
neurons

Activation
function

No. of
layers

Units
Activation
function

No. of
layers

Rate

Model 1 1 64 ReLU - - - - -

Model 2 5 64 ReLU - - - 5 0.3

Model 3 5 64 ELU - - - 5 0.3

Model 4 8 64 SELU - - - 8 0.3

Model 5 3 64 ReLU 1 64 Tanh 3 0.3

Table 4: Overview of the Neural networks of the models after the CNNs

Model 1 is the default network architecture of Tensorforce and model 5
represents the DRQN. In addition, after the convolution layer, all models
have a poling layer with filter size = 2 followed by a flattening layer that
transforms the result of the pooling layer into a 1D array. The convolutions
and pooling operations are performed with stride = 1 and padding = ’same’
(input size = output size). Furthermore, the model 2 also has 5 batch nor-
malization layer.

As you can see, we have used larger network architectures with multiple
layers (see model 4) and smaller ones with fewer layers (see model 1). We
have varied this so that we do not suffer from underfitting due to too few
parameters and overfitting due to too many parameters.

23



The number of dropout layers (which randomly deactivate a certain num-
ber of neurons) in our case was dependent on the number of hidden layers,
as we added one of these layers after each hidden layer (see table 4). In this
way, we wanted to make it as difficult as possible for irrelevant patterns to
be memorized by individual layers. We determined the dropout rate of 0.3
experimentally.

At the same time, taking into account the dropout rates, we have set
the number of hidden neurons in each layer slightly higher to 64, so that we
do not have too few neurons after the temporary dropout of neurons and
consequently suffer from underfitting. We also do not set the number of
hidden neurons to 128, as we have observed that with this setting the vali-
dation accuracy decreased while the training accuracy increased (overfitting).

We only used one LSTM layer for the DRQN (see model 5) because we
realized that the computing time for additional LSTM layers would increase
drastically and we could no longer make good use of this network architec-
ture due to the computing time required for automation, etc.

We used the ReLU function for the CNNs and for some hidden layers as
activation function because it has a low computation time due to its defini-
tion f(x) = max(0, x), is the most commonly used function and has a fast
convergence speed (Lin and Shen, 2018). We have also used other activa-
tion functions for the hidden layers (see model 3 and 4), as there have been
publications in recent years describing that they have found better activa-
tion functions, such as that of Clevert et al. (2015) via the ELU function,
which allows now to consider negative inputs with an exponential function,
or their extension of Klambauer et al. (2017) by the SELU function, which
additionally standardizes their outputs.

We set the number of filters in models 2, 3, and 4 in ascending order (see
table 3), which is also recommended in litteratures such as Géron (2019), so
that the CNN gradually learns to recognize increasingly complex patterns,
and we selected their kernel sizes experimentally. For the DRQN (see model
5), we have defined the number of filters and the kernel sizes on the basis of
the default network architecture of Tensorforce (see model 1).

24



We have visualized the default network architecture of Tensorforce (see
model 1) in figure 16. The task of the CNN at the beginning is to recognize
individual sequential patterns depending on the kernel size during training.
Then the forward network prepares after the flatten layer the output of the
CNN with one hidden layer with 64 neurons and outputs the Q-value esti-
mations Q(s, a) for the prediction of the stock price direction (upwards or
downwards).

Figure 16: Model 1 with window size = 10

4.4. Hyperparameters

The following hyperparameters are used for the models:

Hyperparameter Value

Window size 10

Batch size 50

Episodes 1000

Discount factor 0.99

Memory size 624

Learning algorithm Adam

Table 5: Hyperparameters of the models

We have chosen the parameters by testing different constellations and
using the ones that produced the best results, while also taking into account
what other researchers such as Bajpai (2021) have selected in the literature.

25



The unusual batch size of 50 (see table 5) also comes from various exper-
iments and was also used by other researchers such as Shah et al. (2018) in
their stock price predictions. However, parameters such as a discount factor
of 0.99 are also common practice in reinforcement learning (Franceschetti
et al., 2022).

We chose the Adam algorithm introduced by Kingma and Ba (2015) as
the learning algorithm because it is described as suitable for non-stationary
targets and, according to researchers such as Camacho et al. (2019), is even
the best choice for solving problems with non-stationary targets and very
noisy gradients. Furthermore, researchers such as Zhang et al. (2022) describe
the Adam algorithm as a theoretically justified algorithm that practitioners
can use confidently.

4.5. DQN algorithm

For a better understanding of how the DQN of Mnih et al. (2013) works,
its general algorithm is described:

1. Initialize the weights of the neural network Qθ(s, a) randomly and the
maximum capacity N of the empty replay buffer D

2. Execute each step t = 0, ..., T for M episodes as follows:
1. Select an action at using the epsilon-greedy method. Consequently,

choose the action at with a probability of ϵ at random or with a
probability of 1− ϵ according to arg maxa Qθ(s, a).

2. Perform the selected action at, change to the next state s′ and
receive the reward r.

3. Save the transition information (s, a, r, s′) in the replay buffer D.
4. Extract a random mini-batch with K transition information from

the replay buffer.
5. Calculate the target values yi = ri + γ · maxα′ Qθ(s

′
i, α

′). When
the final state aT is reached, the target values yi = ri.

6. Calculate the network error L(θ) = 1
K

K∑
i=1

(yi −Qθ(si, ai))
2.

7. Update the network parameters θ of the function Qθ(si, ai) using
a gradient descent method.

4.6. Update Strategies

The best performing models from the first preliminary investigation are
updated at n fixed time intervals ti = t0 + i ∗ n.

26



Before the model is updated, at time ti−1 the stock price directions for
the next n data points are predicted. The update is done by re-training the
model with an updated training data set. The updated training data set
takes into account the stock price data that was not known at the time of
prediction. In addition to the described scheme, five following strategies are
tried with respect to the agent state and the training dataset:

Strategy Description
1 After each update, the agent is reset to the initial state. For each

update, only the data of the last n data points are considered.
2 The agent’s parameters are continuously adjusted in the dynamic pro-

cess. For each update, only the data of the last n data points are
considered.

3 After each update, the agent is reset to the initial state. For each
update, all data known up to the time of the update is used.

4 The agent’s parameters are continuously adjusted in the dynamic pro-
cess. For each update, all data known up to the time of the update is
used.

5 The agent is updated only if a covariate shift is suspected. For each
update, only the data of the last n data points are considered.

Table 6: Update strategies

The idea behind resetting the agent after each update in strategies 1 and
3 (see table 6) is to check whether the pre-trained goodness is useful. The
purpose of distinguishing how much historical stock price data should be con-
sidered for the update is to investigate whether the most recent n information
(instead of all known) are sufficient for the prediction. In this way, computa-
tion time can be saved and unnecessary price data can be omitted. The idea
behind strategy 5 is to make only the necessary updates. The assumption
of whether a covariate shift has occurred is checked using the open source
framework Arangopipe from ArangoDB5, as it can be used to determine a
data shift value. The data shift value in this API is determined by devel-
oping a classifier that specifies the accuracy of how much it can distinguish
between two datasets.

5https://www.arangodb.com/2020/11/arangoml-part-4-detecting-covariate-s

hift-in-datasets/

27

https://www.arangodb.com/2020/11/arangoml-part-4-detecting-covariate-shift-in-datasets/
https://www.arangodb.com/2020/11/arangoml-part-4-detecting-covariate-shift-in-datasets/


5. Results

5.1. First preliminary investigation

For all possible combinations of network architectures (see table 3 and 4)
and DQN variants, the following models achieved the best results:

Stock
Best combination MDA RMSE
Variant Model Training Validation Test Training Validation Test

Adidas Dueling DQN 4 86,34 % 61,24 % 51,14 % 0.37 0.62 0.70
Allianz Dueling DQN 4 91,12 % 59,68 % 48,59 % 0.30 0.63 0.72
BASF DQN 3 88,94 % 60,07 % 48,99 % 0.33 0.63 0.71

Table 7: The best models of the performance comparison

The performances of all other model combinations can be found in table A.12 in
the Appendix A. This appendix also contains illustrations showing the training
process of the DRQN (see figure A.26 and A.27).

5.2. Second preliminary investigation

For training data, instead of the period from 01.01.2017 to 31.12.2019, the period
from 01.01.2010 to 31.12.2019 (1778 more data records) is now considered. The
best models from the first preliminary study were able to achieve the following
accuracies using the extended training data set:

Stock
MDA RMSE

Training Validation Test Training Validation Test

Adidas 50,37 % 56,29 % 53,68 % 0.70 0.66 0.68

Allianz 50,49 % 55,90 % 48,62 % 0.70 0.66 0.72

BASF 56,36 % 57,48 % 46,27 % 0.66 0.65 0.73

Table 8: Performance based on the extended training data set

The training process from this preliminary investigation can be seen in Appendix
B (see figure B.28 and B.29).

5.3. Main investigation

In the main study, agents are first automated using daily stock price data and
different strategies. Figures 17, 18 and 19 thus show the accuracies of the auto-
mated agents per strategy and stock at different step sizes n (time interval per
update). The automated agents are evaluated based on the test data used in the
preliminary experiments.

28



This allows a comparison of whether the test accuracy, which ranged from 48.59
to 51.41 % for the best agents (see table 7), has improved with the automated
implementation. Afterwards, the investigation is extended by examining window
sizes from 1 to 35 (see figure 20, 21 and 22). Daily and weekly measured price
data are now also examined. Then, based on the three best window sizes for each
stock and price interval, the agents are automated again by strategy 1 (see figure
23, 24, and 25). On the following pages you can see these nine figures, for which
a total of several weeks of computing time was required:

Figure 17: MDAs regarding the stock Adidas and different update strategies

29



Figure 18: MDAs regarding the stock Allianz and different update strategies

Figure 19: MDAs regarding the stock BASF and different update strategies

30



Stock Strategy n Test MDA Test RMSE

Adidas 3 7 59,32 % 0.64

Allianz 5 4 60,31 % 0.63

BASF 1 20 58.41 % 0.64

Table 9: Best strategys and time intervals for figures 17,18 and 19

Figure 20: MDAs regarding different window sizes and daily measured stock data

31



Figure 21: MDAs regarding different window sizes and weekly measured stock data

Figure 22: MDAs regarding different window sizes and hourly measured stock data

32



Figure 23: MDAs of automated agents regarding daily measured stock data and different
window sizes

Figure 24: MDAs of automated agents regarding weekly measured stock data and different
window sizes

33



Figure 25: MDAs of automated agents regarding hourly measured stock data and different
window sizes

5.4. Comparison with supervised learning algorithms

To compare how much better the automatic agents are compared to conventional
methods, we also train and test three LSTMs, SVMs and logit models based on
the same data split (see section 4.1) and hyperparameters (see table 5). The
LSTM models are initialized with ten LSTM layers with 64 LSTM units, each of
which has a dropout layer with a dropout rate of 0.4. The supervised learning
algorithms were able to achieve the following results:

Stock
Test MDA Test RMSE

LSTM Logistic regression SVM LSTM Logistic regression SVM

Adidas 50,22 % 50,39 % 50,02 % 0,71 0,70 0,71

Allianz 50,17 % 51,18 % 50,01 % 0,71 0,70 0,71

BASF 49,92 % 48,81 % 48,81 % 0,71 0,72 0,72

Table 10: Performance of the supervised learning algorithms

34



5.5. Statistical analysis of the improvement

In order to verify the improved accuracy provided by the automation, the non-
parametric test from Pesaran and Timmermann (1992) is applied. This test was
chosen because its aim of examining the prediction’s ability to forecast the direc-
tion of change fits perfectly with our target criterion of maximizing the MDA of
our agent environment (see section 4.2). We also do not need a distribution as-
sumption. Our null hypothesis H0 here is that our model does not have the ability
to predict directions of change, whereby the Pesaran-Timmermann test statistic S
follows a standard normal distribution. As the test is a right-handed hypothesis
test, the null hypothesis is rejected with a significance level α of 0.01 for S-values
> 2.3263. Table 11 shows the S-values and P-values for the best static (see table
7) and automated DQN models (see table 9).

Stock
Static model Automated model

MDA S-value P-value MDA S-value P-value

Adidas 51,14 % 0.376 0.353 59,32 % 3.146 0.0008

Allianz 48,59 % -0.413 0.660 60,31 % 3.261 0.0006

BASF 48,99 % -0.317 0.625 58,41 % 2.595 0.0047

Table 11: Static verification of the improved accuracy

The P-values clearly show that at a significance level α of 0.01, H0 can be rejected
for the automated models and H0 can be assumed for the static models. This
shows that our methodology improved the results.

35



6. Discussion

Both the best static DQN models, whether or not 7 more years of training data
were available, and the supervised learning algorithms failed to achieve test
accuracies significantly greater than 50 % (see table 7, 8 and 10). The reason for
this may be the non-stationarity of the stock price data. Because, as researchers
such as Krawczyk et al. (2020) or Souza et al. (2020) describe, historical price
data, due to the changing data distribution, can be irrelevant or even harmful
for the modeling of the forecast model. This is most evident from the fact that 7
more years of training data actually worsened the results (compare table 7 with
table 8), although the inclusion of more training data is very helpful in most
machine learning tasks.

The only thing that could significantly improve the results was the automation of
the agents. We assume that the improvements compared to the static methods
are due to the fact that we updated the parameters of the models at some points
in time when the data distribution actually changed for a while compared to the
data distribution assumed by the static models. For the Adidas stock, the MDA
could be improved from 51.14 to 59.32 % using strategy 3 (see figure 17) and n
= 7 (parameter adjustment every 7 days). The second best MDA of 59.27 % was
achieved for the Adidas stock using strategy 5 and n = 11. Thus, it was almost
as good as strategy 3 (despite a much shorter computing time). For the Allianz
stock, strategy 5 using n = 4 was able to improve the MDA from 48.59 to 60.31
% (see figure 18). For the BASF stock, strategy 1 with n = 20 improved the
MDA from 48.99 to 58.41 % (see figure 19). It can be seen that for each stock
the optimal time interval n at which the agents were updated is different (see
table 9). This implies that for each stock the covariate shifts occurred at different
times and therefore no optimal time interval n could be specified for all stocks.
This may be due to the fact that stock prices can also be affected by individual
factors, as has been shown in some studies such as those by Velankar et al. (2017)
or Imansyah and Mustafa (2021).

However, at the same time it is important to point out that for certain step sizes
n the test accuracies have worsened (see figure 17, 18 and 19). This means that
if an agent is trained with stock price data from the recent past every n days, for
example, it may also become irritated. This is probably because the agents have
also been updated unnecessarily, i.e. the parameters have been adjusted, although
the data distribution has not changed. These considerations imply that answering
the question at which intervals DQNs should be updated is related to the question
of when covariate shifts occur in time series data.

36



This implies that research is needed to address the question of when the data
distribution changes in time series data. Raza et al. (2013, 2015) have already
carried out some investigations concerning this problem and have developed
noteworthy methods. They could already show with their first version of the
method Raza et al. (2013), which is based on an EWMA chart (Exponentially
Weighted Moving Average Chart), for a time series with 1000 observations that
for certain smoothing constants λ all time points in which the data distribution
changes can be determined.

However, their first version of the method had simultaneously resolved a number
of false alarms, i.e., it had also named time points at which the data distribution
remained the same. Accordingly, they extended their method Raza et al. (2015)
by additionally validating the time points at which the covariate shifts were
suspected using the Kolmogorov-Smirnov test for univariate time series or
Hotelling’s T-squared test for multivariate time series. In this context, they were
able to show that this change reduced the number of false alarms.

Looking at the research of Raza et al. (2013, 2015) it becomes clear why strategy
5 (see table 6) did not prove to be the best strategy for all stocks. This is
because the methodology of the open source framework Arangopipe is quite
simple compared to the methodology of Raza et al. (2015), which itself even raises
false alarms. One issue with the methodology from Arangopipe is that it does not
check whether the guesses of the covariate shifts are statistically significant.

In terms of the update strategies (see table 6), it can also be said that strategies
2 and 4 were the worst on average. Thus, it can be concluded that resetting
unnecessary updates is better for the dynamic process. This illustrates the
importance of adjusting the parameters of the models only when the data
distribution has actually changed. Because future updates could be negatively
affected by useless adjustments in the past.

For the question, how many data points should be considered for the adjustment
of the parameters, the results could not give a clear picture. It is suspected
that considering all previous data points is not efficient because the computation
time increases enormously over time and probably not all data are relevant due
to covariate shifts. It is possible that this question builds on answering the
question of at what time points the covariate shifts occur. If it is known at what
point in time the characteristics of the data distribution changes, it is possi-
ble to determine specific data points that are representative for the market change.

37



Regarding the influence of the window size on the MDA, similar results could be
observed as for the results about the variation of the step size n. Some settings
for window size proved to be better for some stocks than others (see figure 20, 21
and 22). Based on the results, it can further be concluded that higher window
sizes need not lead to better results due to the consideration of more data. This
is probably due to the fact that, again, some data are no longer relevant because
of market dynamics and thus have an irritating effect on the agent. In conclusion,
it is recommended to test several window sizes.

It can also be observed that for certain step sizes n and window sizes, the auto-
mated agents were able to improve test accuracy only for stock data measured
in weekly and daily intervals (compare figure 23 and 24 with figure 20 and 21).
For stock price data measured in hours (compare figure 25 with figure 22), the
agent automation could not improve the results. Since it was generally observed
that the results for both the automatic and static DQNs worsened as the price
intervals became smaller (see figure 20, 21 and 22), it is assumed that the
reason for this is fluctuations in investor sentiment play a greater role in smaller
price intervals, as this increases the unexplained variance. This assumption is
simultaneously consistent with Shah et al. (2020) claim that the stock market is
more predictable and has less noise in the long run. To empirically verify this
conjecture, a follow-up study could examine whether the distribution of stock
price data changes more frequently over time for smaller price intervals than for
larger price intervals.

It can also be seen that the test accuracies in our studies decrease for almost
all window sizes compared to the validation accuracies (see figure 20, 21 and
22). This is due to the fact that the parameters of the model were adjusted on
the basis of the validation data and the test data may have an even less similar
distribution to the training data than the validation data due to the existing
market dynamics. Guo et al. (2018) was also able to observe this when he realized
that the accuracy of his static models had decreased over time.

Compared to other works that automated ML models, we achieved smaller
improvements. Guo et al. (2018) was able to reduce the RMSE by 8 to 41 % with
their adaptive SVR learning algorithm and Nguyen et al. (2019) the MSE by 45.9
% with their dynamic LSTM. We were able to reduce the RMSE for our stocks by
about 8 to 12.5 % (compare table 7 with table 9). This is less than the other two
researchers, but it must also be mentioned that our results are not comparable
as we all selected different stocks and time periods to analyze. In order to inves-
tigate which approach is the best, we would all have to analyze the same database.

38



Our results can also be compared with other studies that use completely different
approaches, i.e. without continuous parameter adjustment. For example, Thakkar
and Chaudhari (2020) combined information from daily open price data from
two exchanges (NSE and BSE) for three stocks, to combine LSTM models that
achieve a maximum directional accuracy of 54.14 %. They used a time period
from 2009 to 2019 with a data split of 80 % training data and 20 % test data.
Their results are consistent with ours in that the directional accuracy is relatively
low despite the longer time period used and the application of complex static
models.

Zhong and Enke (2017) tried to predict the daily direction the SPDR S&P
500 ETF using 60 financial and economic factors as input by combining three
dimensionality reduction techniques, which are principal component analysis
(PCA), fuzzy robust principal component analysis (FRPCA) and kernel-based
principal component analysis (KPCA) with artificial neural networks (ANN) and
varying number of principal components. The period used was from 01.06.2003 to
31.05.2013 (2518 data records) with a data split of 70 % training data (1762 data
records) and 15 % each of test and validation data (378 data records respectively).
The ANN with PCA and 60 principal components achieved an accuracy of 58.1
%, the KPCA with 31 principal components an accuracy of 59.2 % and the
KPCA with 60 principal components a accuracy of 58.4 %. This study shows
that they were able to achieve a directional accuracy of more than 58 %, similar
to ours. The main advantage of their study probably lies in the fact that they
used many more input variables than we did (60 input variables versus 7 input
variables). Presumably, our approach with more input variables could increase
the explainable variance of our automated models.

However, there are also studies in the literature that show that they have achieved
an MDA of over 70 % even with a low number of inputs. Using ANNs and SVMs
and an intensive grid search of 900 and 700 parameter combinations, Kara et al.
(2011) was able to achieve an average directional accuracy of 71.52 % for the SVM
and 75.74 % for the ANN with 10 technical indicators as input in predicting the
direction of movement of the daily Istanbul Stock Exchange National 100 Index.
The period used for the performance comparison was from 02.01.1997 to 31.12.2007
(2733 data records) with a split of 50 % training data and 50 % test data. The
study shows that, despite the assumption of stationarity, very good results can
also be achieved with ordinary supervised models. However, as mentioned in the
comparison with automated models, the selected database used to develop the
models must be the same so that the aforementioned works are more comparable.

39



Nevertheless, it must also be mentioned that our method also has a significant
disadvantage. Our method has a much higher computation time than conventional
methods where you train the model only once based on training data. In our
method, the parameters of the model are adjusted n times, which increases the
effort. And this higher effort does not always lead to better results, as we can also
make unnecessary updates due to poor methods for determining covariate shifts
or biased data.

Furthermore, a serious limitation of our study is the lack of previous research
studies on our exemplary defined method and selected data. This makes our
work less comparable. Further research is therefore needed in this area. Another
limitation is that not many more stocks could be analyzed, which might have
made the results more accurate and representative. The problem with many more
stocks would have been that the calculation times for our intensive investigations
would then no longer have been acceptable, as the calculation times for our few
stocks already amounted to several weeks despite the use of the chargeable TPU
from Google Colab Pro+6. However, future studies would not need to take so
long, as their studies can build on ours, as they do not need to perform all of our
preliminary research and test variants in terms of update strategies, window sizes
or stock data intervals. For example, they would not have to update the model
every n days and try different strategies, but only when covariate shifts occur.

During the course of the study, some notable additional insights were also gained,
such as that Dueling DQNs can lead to good results when combined with a
self-normalizing network architecture, or that the benefits of DRQNs do not
necessarily outperform those of DQNs. During training, the DRQNs actually
exhibited negative reward sums (see figure A.26), unlike the DQNs.

It is possible that the ability of the LSTM model to remember information over
time could cause the DRQN models to remember irritating information due to
covariate shifts and noise. Approaches to the correctness of the assumption can
be given by studies such as that of Elliot and Hsu (2017). They showed that the
martingale model, whose prediction of the next value is based solely on the current
value, outperforms the LSTM models in predicting the S&P 500 index.

6https://colab.research.google.com/signup

40

https://colab.research.google.com/signup


7. Future work

In general, our approach should be further investigated, for example by using
other stocks and features, so that automated deep reinforcement models are
better researched, this field of research continues to grow and more results are
available to give a better picture of their potential.

As mentioned in the discussion, our methodology can be extended by using more
efficient methods to determine the covariate shift. This could significantly improve
the results, as unnecessary updates could be avoided even more and the necessary
updates in the case of covariate shifts could be increased. In our opinion, this is
the most important point to improve this method.

We also do not want to rule out that there are better ways to automate the models,
although updating the parameters when a significant covariate shift occurs seems
most plausible. Therefore, we would like to encourage other researchers to try out
other methods if ideas are available.

It is also recommended for future work to include additional characteristics in
order to reduce the high unexplained variance. It is recommended to consider
behavioral datasets, as according to many researchers such as Jin et al. (2019),
Breaban and Noussair (2018) or Duxbury et al. (2020), investor sentiment is
enormously important for stock price prediction. We assume that the detection
of covariate shifts can become more accurate with more behavioral datasets.

After developing an efficient dynamic model, we recommend not to make the mis-
take of evaluating the profit and risk of the trading strategy based only on the
prediction results, as other studies have done according to Jiang (2021). Rather,
the advantage of reinforcement learning described by Singh et al. (2022) of inte-
grating the prediction problem with the portfolio structure task should be used.
This allows us to take factors such as transaction costs into account, which, in
combination with a good adaptive model, leads to successful automated trading.

41



8. Conclusion

The automation of ML models seems to be a promising way for stock price
forecasting, since this study, as well as related works, such as that by Du et al.
(2021), de Lima e Silva et al. (2020) or Guo et al. (2018), indicate, that the desired
model for stock price forecasting changes over time due to market dynamics.
Therefore, it is very important to clarify at which times the model needs to be
updated.

After an extensive analysis and discussion of our results, we found that updating
at regular intervals is not necessarily the most effective way to capture market
dynamics. This is because data distributions can change at unpredictable times
and the unnecessary adjustments of parameters can irritate the agents, resulting
in worse results. Accordingly, we recommend the time interval n to be adaptive.
Adjusting parameters when significant covariate shifts are detected is therefore
key to achieving greater accuracy in predicting stock price movements.

Accordingly, there is a need to combine rapidly adaptable models, such as DQNs,
to capture changing market dynamics and methods to determine when covariate
shifts occur. Methods such as those of Raza et al. (2015) can be used, in which
statistical procedures are additionally used to test whether the assumption of
a shift in the data distribution is significant. If it can be determined exactly
when the market changes, a timely decision can be made whether to initiate an
adjustment.

42



Appendix A. First preliminary investigation

M
o
d
el

A
d
id
as

A
ll
ia
n
z

B
A
S
F

D
Q
N

D
ou

b
le

D
Q
N

D
u
el
in
g

D
Q
N

D
Q
N

D
ou

b
le

D
Q
N

D
u
el
in
g

D
Q
N

D
Q
N

D
o
u
b
le

D
Q
N

D
u
el
in
g

D
Q
N

M
o
d
el

1
55

,8
1
%

5
3
,1
0
%

53
,8
7
%

54
,6
5
%

56
,5
8
%

56
,9
1
%

54
,2
6
%

56
,2
0
%

5
5,
0
3
%

M
o
d
el

2
56

,9
7
%

5
6
,1
7
%

56
,2
0
%

57
,7
5
%

57
,3
6
%

58
,1
3
%

50
,7
7
%

57
,2
1
%

57
,2
5
%

M
o
d
el

3
57

,3
6
%

5
8
,5
2
%

56
,9
7
%

59
,6
8
%

56
,2
0
%

59
,3
8
%

60
,0
7
%

58
,5
2
%

5
9,
9
3
%

M
o
d
el

4
59

,3
0
%

5
8
,1
3
%

61
,2
4
%

57
,3
6
%

58
,9
1
%

59
,6
8
%

56
,9
7
%

56
,2
0
%

5
6,
9
7
%

T
ab

le
A
.1
2:

V
al
id
at
io
n
ac
cu
ra
ci
es

o
f
a
ll
p
o
ss
ib
le

m
o
d
el

co
m
b
in
a
ti
o
n
s

43



Figure A.26: Reward during training for the DRQNs

Figure A.27: MDA during validation for the DRQNs

44



Appendix B. Second preliminary investigation

Figure B.28: Reward during training with the extended training data and the best models

Figure B.29: MDA during validation with the extended training data and the best models

45



References

Alpaydin, E., 2022. Maschinelles Lernen. 3 ed., Berlin, Boston: De Gruyter
Oldenbourg.

Amiri, R., Mehrpouyan, H., Fridman, L., Mallik, R.K., Nallanathan, A., Mato-
lak, D., 2018. A machine learning approach for power allocation in hetnets
considering qos, in: 2018 IEEE International Conference on Communications
(ICC).

Bajpai, S., 2021. Application of deep reinforcement learning for indian stock
trading automation, in: ArXiv e-prints.

Breaban, A., Noussair, C.N., 2018. Emotional state and market behavior, in:
Review of Finance 22 (1), p. 279–309.

Bundeszentrale für politische Bildung, 2021. Aktienbestand und Aktienhandel.
https://www.bpb.de/nachschlagen/zahlen-und-fakten/globalisierung

/52590/aktien. Accessed on 12.12.2021.

Burkov, A., 2019. Machine Learning kompakt: Alles, was Sie wissen müssen. 1
ed., Frechen: Mitp Verlag.

Camacho, J.D., Villaseñor, C., Alanis, A.Y., Lopez-Franco, C., Arana-Daniel, N.,
2019. Kadam: Using the kalman filter to improve adam algorithm, in: Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications.

Chollet, F., 2018. Deep Learning mit Python und Keras Das Praxis-Handbuch
vom Entwickler der Keras-Bibliothek. 1 ed., Frechen: Mitp Verlag.

Clevert, D.A., Unterthiner, T., Hochreiter, S., 2015. Fast and accurate deep net-
work learning by exponential linear units (elus), in: ArXiv e-prints.

Dang, Q.V., 2019. Reinforcement learning in stock trading, in: International
Conference on Computer Science, Applied Mathematics and Applications.

Dauphin, J.F., Dybczak, K., Maneely, M., Sanjani, M.T., Suphaphiphat, N.,
Wang, Y., Zhang, H., 2022. Scalable approach using dfm, machine learning
and novel data, applied to european economies, in: Nowcasting GDP. Washing-
ton, D.C.: International Monetary Fund.

de Lima e Silva, P.C., Severiano, C.A., Alves, M.A., Silva, R., Weiss Cohen, M.,
Guimarães, F.G., 2020. Forecasting in non-stationary environments with fuzzy
time series, in: Applied Soft Computing 97.

46

https://www.bpb.de/nachschlagen/zahlen-und-fakten/globalisierung/52590/aktien
https://www.bpb.de/nachschlagen/zahlen-und-fakten/globalisierung/52590/aktien


Ditzler, G., Roveri, M., Alippi, C., Polikar, R., 2015. Learning in nonstationary
environments: A survey, in: IEEE Computational Intelligence Magazine 10 (4),
pp. 12–25.

Du, Y., Wang, J., Feng, W., Pan, S., Qin, T., Xu, R., Wang, C., 2021. Adarnn:
Adaptive learning and forecasting of time series, in: ArXiv e-prints.

Duxbury, D., Gärling, T., Gamble, A., Kla, V., 2020. How emotions influence be-
havior in financial markets: a conceptual analysis and emotion-based account of
buy-sell preferences, in: The European Journal of Finance 26 (14), p. 1417–1438.

Elliot, A., Hsu, C.H., 2017. Time series prediction: Predicting stock price, in:
ArXiv e-prints.

Franceschetti, M., Lacoux, C., Ohouens, R., Raffin, A., Sigaud, O., 2022. Making
reinforcement learning work on swimmer, in: ArXiv e-prints.

Gandhmal, D.P., Kumar, K., 2019. Systematic analysis and review of stock market
prediction techniques, in: Computer Science Review 34.

Gu, Y., Shibukawa, T., Kondo, Y., Nagao, S., Kamijo, S., 2020. Prediction of
stock performance using deep neural networks, in: Applied Sciences 10 (22).

Guo, Y., Han, S., Shen, C., Li, Y., Yin, X., Bai, Y., 2018. An adaptive svr for
high-frequency stock price forecasting, in: IEEE Access 6, pp. 11397 – 11404.

Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow Concepts, Tools, and Techniques to Build Intelligent Systems. 2 ed.,
Sebastopol: O’Reilly Media.

van Hasselt, H., Guez, A., Silver, D., 2015. Deep reinforcement learning with
double q-learning, in: ArXiv e-prints.

Hausknecht, M., Stone, P., 2017. Deep recurrent q-learning for partially observable
mdps, in: ArXiv e-prints.

Hodson, T.O., 2022. Root-mean-square error (rmse) or mean absolute error (mae):
when to use them or not, volume 15.

Huyen, C., 2022. Designing Machine Learning Systems. 1 ed., Sebastopol: O’Reilly.

Imansyah, S., Mustafa, M.H., 2021. The analysis of financial ratios effect on the
stock price of consumer goods sector companies listed in kompas100 index, in:
Dinasti International Journal of Digital Business Management 2 (2).

47



Jiang, W., 2021. Applications of deep learning in stock market prediction: Recent
progress, in: Expert Systems with Applications 184.

Jin, Z., Yang, Y., Liu, Y., 2019. Stock closing price prediction based on sentiment
analysis and lstm, in: Neural Computing and Applications 32, p. 9713–9729.

Kara, Y., Acar, M., Baykan, O., 2011. Predicting direction of stock price index
movement using artificial neural networks and support vector machines: The
sample of the istanbul stock exchange, in: Expert Systems with Applications 38
(5), pp. 5311–5319.

Karunakaran, D., Worrall, S., Nebot, E., 2020. Efficient statistical validation with
edge cases to evaluate highly automated vehicles, in: ArXiv e-prints.

Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimization, in:
ArXiv e-prints.

Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S., 2017. Self-normalizing
neural networks, in: ArXiv e-prints.

Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M., 2020. En-
semble learning for data stream analysis: A survey, in: Information Fusion 37,
p. 132–156.

Kurani, A., Doshi, P., Vakharia, A., Sha, M., 2021. A comprehensive comparative
study of artifcial neural network (ann) and support vector machines (svm) on
stock forecasting, in: Annals of Data Science.

Lapan, M., 2020. Deep Reinforcement Learning: Das umfassende Praxis-
Handbuch. 1 ed., Frechen: Mitp Verlag.

Li, B., 2023. An explanation for the distribution characteristics of stock returns,
in: ArXiv e-prints.

Li, Y., Ni, P., Chang, V., 2020. Application of deep reinforcement learning in stock
trading strategies and stock forecasting, in: Computing, p. 1305–1322.

Lin, G., Shen, W., 2018. Research on convolutional neural network based on
improved relu piecewise activation function, in: Procedia Computer Science
131, pp. 977–984.

Mnih, V., Koray Kavukcuogl and, D.S., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M., 2013. Playing atari with deep reinforcement learning, in: ArXiv
e-prints.

48



Nguyen, D.H.D., Tran, L.P., Nguyen, V., 2019. Predicting stock prices using
dynamic lstm models, in: Applied Informatics, pp. 199–212.

Pesaran, H., Timmermann, A., 1992. A simple nonparametric test of predictive
performance, in: Journal of Business and Economic Statistics.

Raza, H., Prasad, G., Li, Y., 2013. Dataset shift detection in non-stationary
environments using ewma charts, in: 2013 IEEE International Conference on
Systems, Man, and Cybernetics.

Raza, H., Prasad, G., Li, Y., 2015. Ewma model based shift-detection meth-
ods for detecting covariate shifts in non-stationary environments, in: Pattern
Recognition 48 (3), pp. 659–669.

Selvamuthu, D., Kumar, V., Mishra, A., 2019. Indian stock market prediction
using artificial neural networks on tick data, in: Financial Innovation 5 (16).

Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M., 2020. Financial time series forecast-
ing with deep learning: A systematic literature review: 2005–2019, in: Applied
Soft Computing 90.

Shah, D., Campbell, W., Zulkernine, F.H., 2018. A comparative study of lstm and
dnn for stock market forecasting, in: 2018 IEEE International Conference on
Big Data (Big Data), pp. 4148–4155.

Shah, D., Isa, H., Zulkernine, F., 2020. Stock market analysis: A review and
taxonomy of prediction techniques, in: Stock Market Analysis: A Review and
Taxonomy of Prediction Techniques 7 (2).

Shi, Y., Li, W., Zhu, L., Guo, K., Cambria, E., 2021. Stock trading rule discovery
with double deep q-network, in: Angewandte Soft Computing 107.

Singh, V., Chen, S.S., Singhania, M., Nanavati, B., kumar kar, A., Gupta, A.,
2022. How are reinforcement learning and deep learning algorithms used for
big data based decision making in financial industries–a review and research
agenda, in: International Journal of Information Management Data Insights 2
(2).

Souza, V.M.A., dos Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A., 2020. Chal-
lenges in benchmarking stream learning algorithms with real-world data, in:
Data Mining and Knowledge Discovery 34, p. 1805–1858.

49



Stewart, W.J., 2009. Probability, Markov Chains, Queues, and Simulation: The
Mathematical Basis of Performance Modeling. 1 ed., New Jersey: Princeton
University Press.

Thakkar, A., Chaudhari, K., 2020. Crest: Cross-reference to exchange-based stock
trend prediction using long short-term memory, in: Procedia Computer Science
167, pp. 616–625.

Thakkar, A., Chaudhari, K., 2021. A comprehensive survey on deep neural net-
works for stock market: The need, challenges, and future directions, in: Expert
Systems With Applications 117.

Velankar, N., Chandani, A., Ahuja , A.K., 2017. Impact of eps and dps on stock
price: A study of selected public sector banks of india, in: Prestige international
journal of management and IT & Sanchayan 6 (1), pp. 111–121.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.,
2015. Dueling network architectures for deep reinforcement learning, in: ArXiv
e-prints.

Watkins, C.J.C.H., 1989. Learning from delayed rewards. PhD Thesis. Cambridge:
King’s College.

Watkins, C.J.C.H., Dayan, P., 1992. Q-learning, in: Machine Learning 8, p.
279–292.

World Health Organization, 2020. WHO Director-General’s opening remarks at
the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dire
ctor-general/speeches/detail/who-director-general-s-opening-remar

ks-at-the-media-briefing-on-covid-19---11-march-2020, last accessed
on 01/03/2024.

Zhang, J., Lei, Y., 2022. Deep reinforcement learning for stock prediction, in:
Scientific Programming 2022, pp. 1–9.

Zhang, Y., Chen, C., Shi, N., Sun, R., Luo, Z.Q., 2022. Adam can converge
without any modification on update rules, in: Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., Oh, A. (Eds.), Advances in Neural Information
Processing Systems 35.

Zhong, X., Enke, D., 2017. Forecasting daily stock market return using dimen-
sionality reduction, in: Expert Systems with Applications 67, pp. 126–139.

50

https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Markov decision process
	Q-learning
	DQN
	Double DQN
	Dueling DQN
	DRQN
	Covariate shift
	Mean Directional Accuracy
	Root Mean Square Error

	Research Methodology
	Data
	Agent environment
	Neural Network architectures
	Hyperparameters
	DQN algorithm
	Update Strategies

	Results
	First preliminary investigation
	Second preliminary investigation
	Main investigation
	Comparison with supervised learning algorithms
	Statistical analysis of the improvement

	Discussion
	Future work
	Conclusion
	First preliminary investigation
	Second preliminary investigation

