Site effects removing and signal enhancement using dual-projection based ICA model

Yuxing Hao¹, Huashuai Xu², Mingrui Xia³, Chenwei Yan¹, Yunge Zhang¹, Dongyue Zhou¹, Tommi Kärkkäinen², Lisa Nickerson⁴, Huanjie Li¹, and Fengyu Cong¹

¹Dalian University of Technology ²University of Jyväskylä ³Beijing Normal University ⁴Harvard Medical School

May 22, 2023

Abstract

Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular approach for constructing larger datasets to greatly enhance the reliability and reproducibility of neuroscience research. However, the scanner/site variability is a significant confound that complicates the interpretation of the results, so effective and complete removal of the scanner/site variability is necessary to realize the full advantages of pooling multi-site datasets. Independent component analysis (ICA) and general linear model (GLM) based harmonization methods are the two primary methods used to eliminate scanner/site-related effects. Unfortunately, there are challenges with both ICA-based and GLM-based harmonization methods to remove site effects completely when the signals of interest and scanner/site-related variables are correlated, which may occur in neuroscience studies. In this study, we propose an effective and powerful harmonization strategy that implements dual-projection (DP) theory based on ICA to remove the scanner/site-related effects for removal without losing signals of interest. Both simulations and vivo structural MRI datasets, including a dataset from Autism Brain Imaging Data Exchange II and a traveling subject dataset from the Strategic Research Program for Brain Sciences, were used to test the performance of DP-based ICA harmonization methods.

Hosted file

Hao,Xu-EJN-manuscript.docx available at https://authorea.com/users/621074/articles/644797site-effects-removing-and-signal-enhancement-using-dual-projection-based-ica-model