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Abstract

This study investigates the modification of materials by doping with foreign elements to enhance electrocatalytic activity and

focuses on the engineering of an inorganic material composed of transition heterometal-rich pentlandite (Fe3Co3Ni3S8, FCNS)

doped with silicon (FCNSSi) as a bifunctional catalyst for the overall electrochemical water splitting process. The FCNSSi

electrode exhibits remarkable catalytic activity for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).

The OER performance of FCNSSi was evaluated in a 1.0 M KOH solution, achieving an overpotential of 313 mV at 10 mA cm-2.

The FCNSSi electrode exhibits a current density of -10 mA cm-2 at a remarkably low overpotential of 164 mV with a Tafel

slope of 80.7 mV/dec in HER. Density functional theory (DFT) calculation suggests that Si doping adjusts the binding energies

of intermediates on the surface, which weakened the *OH, *O, and *OOH adsorption energies, resulting in enhanced activity

for both OER and HER. Moreover, Si doping enhances the hydrogen adsorption activity of all sites. Finally, a two-electrode

zero-gap cell assembly was used to investigate the durability of FCNSSi catalyst towards efficient and durable alkaline water

electrolysis, demonstrating the promising potential of this catalyst for practical applications at 500 mA cm-2.
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Abstract 

This study investigates the modification of materials by doping with foreign elements to enhance electrocatalytic 

activity and focuses on the engineering of an inorganic material composed of transition heterometal-rich 

pentlandite (Fe3Co3Ni3S8, FCNS) doped with silicon (FCNSSi) as a bifunctional catalyst for the overall 

electrochemical water splitting process. The FCNSSi electrode exhibits remarkable catalytic activity for oxygen 

evolution reaction (OER) and hydrogen evolution reaction (HER). The OER performance of FCNSSi was 

evaluated in a 1.0 M KOH solution, achieving an overpotential of 313 mV at 10 mA cm-2. The FCNSSi electrode 

exhibits a current density of -10 mA cm-2 at a remarkably low overpotential of 164 mV with a Tafel slope of 80.7 

mV/dec in HER. Density functional theory (DFT) calculation suggests that Si doping adjusts the binding energies 

of intermediates on the surface, which weakened the *OH, *O, and *OOH adsorption energies, resulting in 

enhanced activity for both OER and HER. Moreover, Si doping enhances the hydrogen adsorption activity of all 

sites. Finally, a two-electrode zero-gap cell assembly was used to investigate the durability of FCNSSi catalyst 

towards efficient and durable alkaline water electrolysis, demonstrating the promising potential of this catalyst 

for practical applications at 500 mA cm-2. 

 

Keywords: silicon, heterotrimetallic sulfides, hydrogen, water splitting, water oxidation. 
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Introduction 

Climate change has emerged as a pressing global concern due to the significant changes it causes in Earth's 

atmosphere, temperature, and air quality, primarily resulting from the emission of CO2 generated by the 

combustion of fossil fuels and industrial steam reforming for hydrogen production [1-2]. The development of 

renewable energy sources capable of replacing these environmentally damaging technologies has become an 

urgent requirement. Among the promising candidates for clean hydrogen production with zero CO2 emission, 

water electrolysis has recently gained significant attention [3]. Hydrogen generated through water electrolysis is 

highly demanded for sustainable economic and societal development [4]. However, this process is energetically 

demanding and requires a minimum voltage of 1.23 V versus RHE under standard conditions [5], which is only 

achievable at a much higher potential of at least 1.6 to 2.0 V vs. RHE in practice due to cathodic and anodic 

overpotentials [6]. Additional energy losses occur due to multiple proton and electron transfer reactions resulting 

in pH changes and irreversible redox reactions [7]. 

To minimize the required energy and maintain continuous and efficient electrochemical water splitting for 

sustainable hydrogen production, the development of stable and efficient electrocatalysts is critical [8]. However, 

the current industrial use of scarce noble metal-based electrocatalysts, such as Pt/C and IrO2, in proton exchange 

membrane (PEM) technology incurs high H2 production costs [9]. Similarly, the developed Ni and Co-based 

materials, alloys, hydroxides, etc. catalysts used in alkaline water electrolyzers still lack in efficiency compared 

to commercial PEM [10]. 

Recent research efforts have focused on using earth-abundant elements as non-precious catalysts for the hydrogen 

evolution reaction (HER) and oxygen evolution reaction (OER) [11-12]. Along this line, transition metal 

chalcogenides have emerged as promising catalysts for water electrolysis due to their abundance, cost-

effectiveness, high conductivity, efficient redox chemistry, and stability [13-15]. A variety of nickel, iron, and 

cobalt-based transition metal-based catalysts have been developed for electrocatalytic hydrogen production to 

date [11-12, 16-18]. Among them, metal-rich pentlandite-type catalysts have been suggested as a promising material 

class [17-18]. For instance, a Fe4.5Ni4.5S8 electrode from the natural ore pentlandite achieved a current density of 

10 mA cm-2 at 280 mV for catalytic hydrogen evolution under acidic conditions [19]. Similarly, Co9S8 

nanoparticles supported by carbon nanosheets catalyst exhibited an overpotential of 294 mV at 10 mA cm-2 for 

OER in alkaline electrolyte [20]. Our group recently adapted a mechanochemical method for making various 

compositions of nanosized pentlandites which work efficiently as cathodic electrocatalysts in a zero-gap PEM 

electrolyzer for water splitting [21]. Additionally, more insights into the electrocatalytic activity of pentlandites 

upon variation of the metal content were reported [22]. To further improve the HER and OER performance of these 
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materials, doping with non-metallic foreign elements such as nitrogen and phosphorus heteroatoms were shown 

as a viable strategy [16, 23]. 

In addition to transition metal chalcogenides, silicon has been extensively investigated as an electrode material in 

electrochemical semiconductors due to its high theoretical gravimetric hydrogen storage efficiency of 14 wt.%, 

suggesting its excellent potential for hydrogen generation [24]. Yang and colleagues have reported that Si prepared 

by molten salt electrolysis has potential applications in large-scale H2 production [25]. Recent studies have also 

shown that electrolyzed silicon can generate hydrogen when exposed to pure water [26]. This hydrogen liberation 

can occur in both ionic and atomic forms of silicon [26]. The chemical split of water molecules on silicon can 

proceed spontaneously without requiring additional external energy. In addition, silicon possesses an anodic 

polarization in alkaline and fluoride solutions, and hydrogen evolution is the dominant reaction at silicon 

electrodes in alkaline aqueous solutions [27-28]. However, pure silicon electrodes are not preferrable in water 

splitting applications due to the formation of a silicon dioxide passivation layer, which limits its electrochemical 

activity [27-28].  

To connect the promising electrochemical properties of pentlandite materials and silicon for overall 

electrochemical water splitting, we investigated the doping of silicon into the pentlandite crystal structure. Herein, 

the discrepancy in atomic radius between S and Si atoms is expected to modify the overall electronic structure of 

the active site due to the change in bond length, the common behavior of sulfur atom in metal sulfides, originating 

from Si doping [29]. Thus, in this article, we propose a synthetic protocol for Si incorporation into pentlandite to 

regulate and investigate their electrocatalytic activity towards the overall water splitting. Moreover, we studied 

the effect of silicon adsorption at the pentlandite surface on the electrochemical performance compared to the 

doped material. The developed silicon-doped pentlandite (FCNSSi) material showed significantly improved HER 

and OER performances than the trimetallic pristine FCNS material. Furthermore, FCNSSi demonstrated a 

significantly improved catalytic HER performance after activation for 24 hours in 0.5M H2SO4 during long-term 

chronoamperometry test at -0.1 V vs. RHE. Finally, a promising performance and durability of FCNSSi towards 

alkaline water electrolysis at elevated current densities was shown in membrane. 

 

Experimental details 

Materials: Iron powder (≥ 99.0%, reduced), cobalt powder (2 μm particle size, 99.8%), nickel powder (99.9%, 

3N), sulfur powder (99.5-100.5%), silicon tetrachloride (99.0%), Nafion perfluorinated resin 5% in alcohol, 

potassium hydroxide, and sulfuric acid were purchased from Sigma-Aldrich, Merck, Germany. Sustainion® XA-9 

Alkaline Ionomer 5% in ethanol was purchased from Dioxide Materials, USA. SiLibeads Ceramic beads Type 

ZY-S were purchased from Sigmund Lindner GmbH, Germany. 0.05 µm polishing alumina suspension for 

electrode polishing were purchased from Gamry.  
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Synthesis of Fe3Co3Ni3S8 (FCNS): FCNS was synthesized via a modified mechanochemical synthesis recently 

published by our group [16]. A reaction mixture (mtotal = 25 g) composed of stoichiometric amounts of the elements 

iron, cobalt, nickel, and sulfur were milled employing a planetary ball mill (Fritsch Pulverisette 7, premium line) 

with ZrO2 milling containers (V = 80 mL) and ZrO2 milling balls (100 g, d = 5 mm). The reaction mixture was 

prepared inside a glovebox to assure an inert argon atmosphere inside the milling vessel. Ball milling was 

performed at a constant rotation speed of 900 rpm for 4 x 60 min, with a 60 min break after each cycle. 

Synthesis of Fe3Co3Ni3S8-xSix (FCNSSi) for silicon atom doping in pentlandite structure: FCNSSi was 

prepared through annealing of FCNS at 800 oC in an inert nitrogen gas atmosphere with a flow rate of 80 mL 

min-1 in presence of SiCl4 as Si source (Figure 1, right side). FCNS powder (1.0 g) and SiCl4 liquid (3.0 g) were 

placed and mixed in a separate quartz-boat. A large excess of SiCl4 was used due to anticipated losses of Si e.g. 

by evaporation. After aging for 1 h, the annealing process was initiated by heating from room temperature up to 

57 oC, the boiling point of SiCl4, within 1 h. After continuous annealing at 57 oC for 1 h, the temperature was 

raised up to 800 oC within 2 h. After continuous annealing at 800 oC min-1 for 4 h, the powder was cooled inside 

the furnace at a rate of 10 °C min−1. The obtained FCNSSi powder was collected for characterization and 

electrochemical testing.  

Synthesis of Fe3Co3Ni3S8-xSix (FCNSSi-RT) for silicon adsorption at pentlandite surface: FCNSSi-RT was 

prepared through mixing FCNS and SiCl4 at room temperature in an inert atmosphere (Figure 1, left side). FCNS 

and SiCl4 (wt./wt. = 1/3) were mixed in a small vial in an inert atmosphere. The vial was aged tightly closed in a 

fume hood overnight. Afterwards the vial was opened and aged in the fume hood until a dry powder is obtained.  

The obtained FCNSSi powder was collected for characterization and electrochemical testing.  

Electrochemical measurements: A conventional H-type three-electrode electrochemical cell or an in-house built 

zero-gap membrane reactor (see below) was used for OER and HER measurements. All electrochemical tests 

were performed on a GAMRY 1010B interface/potentiostat. A glassy carbon electrode (GCE) of a geometric 

surface area of 0.071 cm2 and carbon paper electrode (CPE) with a geometric surface area of 0.16 cm2 coated 

with our catalysts were used as working electrodes, saturated calomel electrode (SCE) as a reference electrode, 

and a platinum mesh as a counter electrode. The reported potential versus the reversible hydrogen electrode (RHE) 

was estimated using the following equation: 𝐸!"# 	= 	𝐸$%# 	+ 0.241	 + 0.059	𝑝𝐻 . To prepare the ink for the 

working electrode, 5 mg of our catalyst was well-dispersed in a mixture of water and ethanol (950 μL, 3:1 v/v) 

until obtaining a homogenous solution. 50 μL of Nafion (5 wt %) perfluorinated resin solution was added into the 

prepared suspension while keeping the sonication continuous for one additional hour until affording a 

homogeneous ink (N.B. Sustainion® XA-9 Alkaline Ionomer 5% in ethanol is used as a binder for making ink 

for zero gap cell/membrane electrode assembly measurements (Figure 8)). Finally, 5 μL of prepared ink was 

drop-casted at GCE surface and 10 μL of prepared ink was drop-casted at CPE surface and then dried at room 

temperature. Linear sweep voltammetry (LSV) measurements were performed at a potential range between 1.0 V 

to 2.0 V vs. RHE for OER testing in KOH solution and 0.2 V and -0.8 V vs. RHE in H2SO4 solution for HER 
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with a scan rate of 50 mV s−1. Tafel plots were derived from LSV curves around the onset potential region. Cyclic 

voltammetry (CV) measurements were performed at different scan rates to estimate the electrochemical active 

surface area (ECSA). The calculation of ECSA was performed according to the formula, 𝐸𝐶𝑆𝐴	 = 	𝑅&𝑆, in which 

S represents the geometric surface area of the smooth electrode, equivalent to the geometric area of the working 

electrode. The roughness factor (Rf) was obtained from the formula, 𝑅& 	= 	
%!"
%#

, in which the double layer 

capacitance (Cdl) was equal to the slope of the double layer charging current versus the scan rate slope using this 

formula 𝑖	 = 𝑣𝐶'(. The general specific capacitance Cs corresponded to the average double layer capacitance of a 

smooth surface about 20-40 μF cm−2 [30]. Electrochemical impedance spectroscopy (EIS) measurements were 

performed to determine the charge transfer speed. Finally, chronoamperometry and chronopotentiometry tests 

were performed for 24 h to determine the catalyst durability and stability for long-term OER and HER 

performance. 

Zero-gap cell assembly: An in-house made zero-gap cell with an active area of 2 cm2 was employed for all 

experiments at high current densities [31-32]. The compression and position of the porous transport electrodes were 

adjusted by polytetrafluorethylene (PTFE) gaskets. We focused our investigation on AEM-based zero-gap 

electrolyzers, for which chalcogenide materials hold greater promise for both the anodic and cathodic side. The 

employed Fumasep FAA-3-PK-130 membrane was conditioned in 1.0 M KOH for one day prior the 

electrochemical measurements. KOH (1.0 M) was used as an electrolyte for both the anode and the cathode and 

were flooded through the used titanium parallel flow-fields with a flow rate of 10 mL min-1.  

Characterizations: Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D2 Phaser 

diffractometer equipped with a Lynx Eye XE-T detector operating at 30 kV acceleration voltage and 10 mA 

emission current using Cu K-α radiation (λ = 1.54184 Å). The data was recorded in a range from 10–70° 2θ. The 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed using Netzsch 

STA 449 F3 Jupiter equipped with nitrogen-purged SiC-Oven (<1550°C), DSC-Sample holder. The device was 

properly calibrated using the pure elements In, Zn, Al, Ag and Au. The FTIR spectra were collected using 

Shimadzu IR Tracer-100 with a Pike miracle ATR unit. Scanning electron microscopy (SEM) was performed on 

a ZEISS Gemini2 Merlin HR-FESEM equipped with an OXFORD Aztec Energy X-ray microanalysis system for 

energy dispersive X-ray spectroscopy (EDX). The SEM images were recorded at an acceleration voltage of 4 kV 

while EDX mappings were performed from 0-20 kV. XPS measurements were carried out in an ultra-high-

vacuum (UHV) setup equipped with a polychromatic Al Kα X-ray source (1486.6 eV) or Mg Kα X-ray source 

(1253.6 eV) and a hemispherical analyzer (type CLAM2, VG, Scientific, Thermo Fischer Scientific). The base 

pressure in the measurement chamber was maintained at about 10−9 mbar. All spectra were recorded with a pass 

energy of 100 eV at beam current of 13 mA and a high voltage of 14 kV, which equals a Power of 13*14=182 W. 

ICP was performed to measure the elements Fe, Ni and Co after microwave digestion on an Analytik Jena Model 

ContrAA800 AAS. The nitrogen gas adsorption-desorption isotherms were obtained using a Autosorb-1, 



6 
 

Quantachrome Instruments. The pore size distribution was calculated based on the DFT model. Prior the 

measurements the materials have undergone preheating treatments at 100 oC for 24 h. 

Online gas chromatography (GC) measurements: An Agilent 7820A GC system for gas analytics was used 

for qualitative and quantitative analysis of O2 and H2 gases and for faradaic efficiency (FE%) calculations. The 

gas chromatography system is equipped with two columns (HaySep Q and molesieve 5A), a flame ionization 

detector (FID) and a thermal conductivity detector (TCD). Argon was used as carrier gas for standard 

measurements. 

Computational methods: The spin-unpolarized DFT calculations with the Perdew-Burke Ernzerhof (PBE) 

exchange-correlation functional were performed using the Vienna ab initio simulation package (VASP) [33]. The 

projector augmented wave method (PAW) [34], with a plane-wave kinetic energy cutoff of 400 eV, was used, with 

the Gaussian smearing of 0.05 eV. The Brillouin zone was sampled by only the 3*3*1 K-point. The pentlandite 

Fe3Co3Ni3S8 (111) surface was modeled by a (2*3*2) supercell, and a vacuum layer of 15 Å was added to 

eliminate artificial interactions between periodic images for modeling surface chemistry. We substituted the 

surface sulfur atoms with silicone for doped pentlandite systems (FCNSSi sample) to evaluate the dopant effects. 

All atoms were allowed to relax during geometry optimization, and the atomic positions were optimized until the 

forces were less than 0.02 eV/ Å. The effects of van der Waals corrections were modeled using Grimme’s method, 

with Becke–Johnson damping [35]. The adsorption energy of hydrogen atom (EHad) is defined as the energy 

difference before and after the adsorption with respect to the gas-phase H2 molecule as shown in the following 

equation: EHad = Etotal - Esurafce – ½ EH2 , where EHad, EH2, and Etotal are the energies for the clean surface, H2 

molecule in the gas phase, and hydrogen atom adsorbed on the surface, respectively. The Gibbs-free energy of H 

adsorption (DGH) is obtained by applying the entropy correction as shown in the equation DGH = DEH + DEZPE 

- DSH. 

The HER takes place on the surface of the cathode via multi-step electrochemical process. Specifically, in acidic 

conditions the multi-step electrochemical process occurs via the following reactions [36-37]. 

H3O+ + e- + M → M-H + H2O (Volmer) 

M-H + H3O+ + e- → H2 + H2O + M (Heyrovsky) 

2M-H → 2M + H2 (Tafel) 

The OER performance of Pentlandite system can be predicted using the Gibbs-free-energy (DG) profiles for the 

following sequence of elementary OER sub-steps, according to Rossmeisl et al. [38]: 

Step I: OH- + * → *OH + e- 

Step II: *OH + OH- → *O + H2O + e- 

Step III: *O + OH- → *OOH + e- 

Step IV: *OOH → * + O2 + e- 
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where * represents the bare site and *OH, *O, *O2, and *OOH denote the surface featuring different chemisorbed 

species. The free energy difference for all the elementary steps above (DGOH*, DGO*, DGOOH*) involve an 

electron transfer is calculated by the equation DG = DE + DZPE - TDS + DG U + DG pH, where DE, DZPE, and 

DS correspond to the energy difference between adsorption energy, zero-point energy, and entropy, respectively. 

The DZPE and TDS values were obtained from harmonic vibrational frequency calculations and DFT. DGU = -

eU, where U represents a potential based on a standard hydrogen electrode. 

Under ideal conditions, the OER reaction with a total energy change of 4.92 eV can be driven at 1.23 V, whereas 

the free energy of each elementary reaction would be equally divided into 1.23 eV. Thus, the overpotential (h) is 

introduced to represent the additional required potential and rationalize the catalytic performance of the catalyst, 

which is defined in theoretical calculations as: h(PLS) = max(DG(1,2,3,4))/e - 1.23 eV 

 

Results and discussion 

Materials characterization  

Using a combinatorial chemical synthesis approach that involves planetary ball milling followed by monitored 

annealing in an inert atmosphere and in the presence of SiCl4, we were able to successfully obtain Si-doped 

pentlandite powder (as depicted on the right side of Figure 1). Likewise, to prepare Si adsorbed at the surface of 

pentlandite, we conducted an additional control experiment at room temperature as shown on the left side of 

Figure 1. The sample obtained through annealing is denoted as FCNSSi, while the sample obtained at room 

temperature is labeled as FCNSSi-RT. 

 

 

Figure 1 Schematic illustration of the synthetic pathway of Si-doped trimetallic pentlandite (FCNSSi) and Si-

adsorbed at trimetallic pentlandite (FCNSSi-RT) surface  

 



8 
 

 

Figure 2 a) Top-view SEM and the corresponding atoms (Fe, Co, Ni, S, and Si) mapping images of FCNSSi on 

carbon paper electrode.  b) Wide scan XPS survey of FCNSSi powder and high-resolution XPS spectra of c) S 

2p, d) Si 2p, e) Ni 2p, f) Fe 2p, and g) Co 2p orbitals.  

 

We first analyzed the crystal structure and phase purity of the materials using PXRD diffraction (Figure S1). All 

materials exhibited diffraction peaks consistent with the trimetallic pentlandite phase (PDF card no. 30-0444) [39]. 

The dominant diffraction peaks of FCNSSi also matched the pentlandite phase, indicating that the doping of Si 

atoms into FCNS had no significant impact on the pristine crystal structure (Figure S2). Additionally, the peaks' 

intensity and sharpness increased, suggesting an improvement in the overall crystallinity of the material. While 

some peaks associated with NiS and Ni31Si12  phases were detected (Figure S1) [40], they were minor compared 

to the main pentlandite phase in terms of peak intensity, likely due to phase preferential crystallization. 
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To examine the morphology and composition of FCNSSi on carbon paper electrodes, we used SEM in 

combination with an energy-dispersion X-ray system (EDX). The microscale particles of FCNSSi (1-10 μm) were 

distributed across the electrode surface (as displayed in Figure 2a). The EDX images (Figure 2) and spectra 

(Figure S3) revealed the presence and overlapping distribution of Fe, Co, Ni, S, and Si atoms throughout the 

entire FCNSSi electrode surface. 

X-ray photoelectron spectroscopy (XPS) analysis was then conducted to determine the oxidation state of the 

elemental and material composition of FCNSSi powder (Figures 2b). The photopeaks corresponding to Fe 2p, 

Co 2p3/2, Ni 2p3/2, S 2p, and Si 2p orbitals were clearly observed in the XPS survey scan (Figure 2b). The Fe 

2p orbital photopeak was deconvoluted into two splits that are assignable to the Fe 2p3/2 and Fe 2p1/2 orbitals 

(Figure 2c) [16]. The peak at 709.8 eV for FCNSSi is attributed to the Fe-S bond in pentlandite phase [41]. The Co 

2p3/2 photopeaks were then deconvoluted into four peaks which indicate not only presence of Co3+ and Co2+ 

species at tetrahedron and octahedron positions in pentlandite, but high intensity photopeak at 780.2 eV is 

assigned to Co-S phase [42]. Similarly, Ni 2p3/2 is deconvoluted into three peaks at 852.4eV, 855.35eV, and 

860.85 eV attributed to NiS, Ni(OH)2, and a shake-up satellite, respectively [43]. The S2p photopeak was 

deconvoluted into two peaks at 160.6 eV and 161.9 eV, characteristic of S 2p3/2 and S 2p1/2 orbitals in metal-

sulfur bond in pentlandite phase, respectively [44]. An additional doublet at 161.7 eV and 163.0 eV can be assigned 

to disulfide phase [45]. The signals at 167.6 eV and 168.9 eV corresponding to S 2p3/2 and S 2p1/2 orbitals can 

be assigned to sulfate species [45]. Finally, the S 2p signal is deconvoluted to one dominant peak at 101.22 eV and 

two additional peaks at 102.5 eV and 103.4 eV characteristics of Si2+, Si3+, and Si4+, respectively [46-47]. We are 

assuming that the peak observed at 101.22 eV originates from the silicon-metal bond due to silicon doping as 

proposed by the DFT calculations (see below) and/or Ni31Si12 alloy [48]. The additional peaks at 102.5 eV and 

103.4 eV are assigned to oxidized silicon [49]. 

To further confirm the successful doping of the pentlandite materials, the chemical composition of the materials 

was determined using Inductively Coupled Plasma- Optical Emission Spectrometry (ICP-OES). The 

compositional analysis confirmed the presence of Si in pentlandite as a part of the material's composition (Table 

S1). The chemical composition of the FCNS sample was determined as Fe2.97Co2.98Ni3.01S8, while that of FCNSSi 

was Fe2.82Co2.84Ni2.8S7.7Si0.3, which is almost typical of the composition of the pentlandite phase. Notably, a low 

content of silicon doping was preferred to avoid passivation caused by silicon dioxide formation intentionally.  

At the same time, incorporation of an large amount of Si may disrupt the crystal structure of pentlandite phase as 

a common behavior of sulfur boned atom [29]. On the other hand, the Si-adsorbed FCNSSi-RT sample had a 

chemical composition of Fe3.1Co2.94Ni2.95S8.61Si2.21, which is not in accord with the chemical composition of the 

pentlandite phase and provided evidence of Si adsorption and/or SiO2 formation at the surface of FCNS at room 

temperature. This observation is further explained in XPS spectra that provide evidence to the surface 

modification of the FCNS sample after aging in SiCl4 at room temperature (Figure S4). The Si 2p orbital peak 

was deconvoluted into several peaks, revealing the presence of Si with different oxidation states, as expected from 
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SiCl4. Additionally, deconvolution of the high-resolution XPS scan of the S 2p orbital shows a peak at around 

103.5 eV that could be attributed to oxidized silicon at FCNS surface [49]. 

To investigate the effect of silicon on the porous nature of FCNS and FCNSSi powders, we performed nitrogen 

gas adsorption-desorption isotherms (Figure S5a). There was a clear change in sorption behavior, which could 

be attributed to the incorporation of Si atoms and resulted in a remarkable increase in the BET surface area of 

FCNSSi (120.19 m g-1) compared to FCNS, which had a BET of 93.49 m g-1 (Figure S5a). Surprisingly, the 

FCNSSi-RT shows a significant improvement in the specific surface area (230.08 m g-1) reflecting the significant 

changes in the surface due to Si adsorption, but without support to the electrocatalytic activity (Figure S5a). The 

average pore size distribution curves are depicted in Figure S5b. The three samples each showed an average pore 

size distribution of 170 nm within the range of macroporous materials according to IUPAC classifications [50], 

which might indicate that porosity originated from the interlayer spaces. In addition, FCNSSi-RT sample shows 

one more different average pore size distribution of 70.4 nm within the macropores change as well. This result 

might be additional evidence for foreign phase formation at FCNS surface due to treatment with SiCl4 at room 

temperature. 

 

OER performance of FCNS and FCNSSi 

To assess the OER performance of our catalysts, we subsequently analyzed the materials using LSV both with 

and without iR compensation. Figure 3a and 3b illustrate the results obtained. To precisely evaluate the catalyst 

performance, we performed the measurements before and after iR compensation (between 4 to 7 Ω) for the whole 

electrodes. We found that FCNSSi exhibited superior OER performance, with an overpotential of 315 mV at 10 

mA cm-2, outperforming pristine FCNS, which showed an overpotential of 350 mV (Figure 3a). At elevated 

current density of 100 mA cm-2, still FCNSSi shows superior performance (465 mV) compared to pristine FCNS 

(549 mV) (Figure 3a). In particular, FCNSSi showed an overpotential of 313 mV at 10 mA cm-2, compared to 

FCNS, which showed an overpotential of 353 mV (Figure 3b). The improvement is significant at higher current 

density (100 mA cm-2), whereas FCNSSi displays an overpotential of 400 mV, which is significantly better than 

that of pristine FCNS (452 mV) at identical conditions (Figure 3b). 

To gain additional insight into the kinetics of oxygen formation on our catalysts, we calculated the Tafel slopes 

and exchange current densities (J0) (Figure 3c and 3d). Our results indicate that the FCNSSi sample exhibited 

fast oxygen formation kinetics with the lowest Tafel slope of 70.7 mV dec-1 (Figure 3c) and a high J0 of 

3.09 mA cm-2 (Figure 3d). These findings represent a significant improvement over previously published results 

(see Table S2).  
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Figure 3 LSV curves a) before and b) after iR compensation in 1.0 M KOH solution at scan rate of 10 mV s-1, c) 

derived Tafel plots from LSV curves, d) the estimated exchange current density (J0), and EIS at e) 1.708 V vs. 

RHE and f) 1.608 eV of our materials on glassy carbon electrode. 

 

To elucidate the charge transfer speed, we conducted Electrochemical Impedance Spectroscopy (EIS) at different 

potentials at 1.71 V and 1.61 V versus RHE to enable polarization at the catalyst surface (refer to Figure 3e,f). It 

is widely recognized that pentlandites have high conductivity due to their high metal-to-sulfide ratio [51]. The 

FCNSSi sample displayed a very narrow Nyquist arc (117 Ω cm-1 at 1.71 V vs. RHE and 275 Ω cm-1 at 1.61 V 

vs. RHE), indicating a fast charge transfer at the interface between electrode and electrolyte, supporting its 

excellent OER performance. We calculated the electrochemical surface-active area (ECSA) by measuring the 

dielectric charging current in a non-faradic region using cyclic voltammetry at various scan rates (refer to Figure 

S6). The FCNSSi material demonstrated a higher Cdl value (2.66 mF cm-2), implying a high ECSA (6.39 cm-2), 

which represents a twofold increase over pristine FCNS (1.28 mF cm-2 and 3.07 cm-2). This result, combined with 

an improved specific surface area/BET, supports our initial hypothesis that Si doping can increase the number of 

active sites for better OER performance. 

To identify the gases produced during the oxidation process, we analyzed the gases obtained in an inert argon gas 

carrier using gas chromatography (GC) at 20 mA cm-2 for 1 hour (refer to Figure S7). It is evident that the primary 

product is O2 gas. Catalyst stability is a crucial factor for its potential industrial applications; therefore, we 

performed a long-term stability test of our materials for 24 hours at a high current density of 100 mA cm-2 (Figure 

S8a). FCNSSi exhibited an increase in performance in the first few hours followed by almost stable catalytic OER 
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performance, reflecting its high durability compared to pristine FCNS, which continuously loses its OER activity 

over time. At the same time, we examined the surface structure, morphology, and composition of the FCNSSi 

sample on carbon paper electrode after the stability test using Scanning Electron Microscopy (SEM) (Figure 4a), 

XPS (Figure 4b,c), Energy-Dispersive X-ray Spectroscopy (EDX) (Figure S9), PXRD (Figure S8b). The SEM 

and atom mapping images clearly depict the homogenous distribution of Fe, Co, Ni, S, and Si atoms on the surface 

of carbon paper, even after the long-term stability test (Figure 4).  

The high resolution XPS spectra of S 2p orbital collected from FCNSSi/CPE is like those of the as-prepared 

powder (Figure 4b-1). There are three doublets that are assignable to sulfides, disulfides, and sulfate species. 

After one hour of performance the doublet corresponding to sulfides and disulfides species are decreased in 

intensity and, at the same time, the doublet corresponding to sulfate species are remarkably increased (Figure 4b-

2). After 24 hours of performance the whole surface is oxidized ((Figure 4b-3), which is in agreement with the 

XRD patterns (Figure S8) reflecting that the surface tends to oxidize during OER performance, forming a more 

thermodynamically stable transition metal oxyhydroxide shell, which is in line with our previous work [16]. The 

XRD peaks are assigned to carbon paper [52], iron and cobalt oxyhydroxide [53], nickel oxyhydroxide [54], and iron 

oxides [55]. This phenomenon has been extensively studied previously, as transition metal oxides and hydroxides 

(oxyhydroxides) are more thermodynamically stable than transition metal chalcogenides, particularly sulfides [56-

58]. On the other hand, XPS spectra of the Si 2p orbital collected from the as-prepared FCNSSi/CPE and after one-

hour OER performance are similar to the spectra collected from the as-prepared powder (Figure 4c-1, c-2).  The 

peak at 103.4 eV disappeared, which suggests the dissolution of some oxidized silicon species after long term 

OER performance (Figure 4c-3) [49]. The decrease in sulfur content herein was determined by EDX after long-

term OER performance (24h at 100 mA cm-2) on FCNSSi (Fe3.01Co3.078Ni2.93S4.98Si0.95) (Figure S9). All previous 

results indicate that sulfur from the surface is oxidized during OER, and the surface is dominantly composed of 

Si, S, and O atoms which we anticipate is significant contribution to OER catalytic performance.   

 



13 
 

 

Figure 4 a) Top-view SEM and the corresponding atom mapping images of FCNSSi on carbon paper electrode 

after chronopotentiometry test at 100 mA cm-2 for 24h. High resolution XPS spectra of b) S 2p and c) Si 2p 

orbitals of the prepared electrode, and after 1h and 24h OER. 

 

Due to its low boiling point of 57.6°C and tendency to evaporate at room temperature, we also tested the doping 

process of SiCl4 on pentlandite (Fe4.5Ni4.5S8) at ambient conditions (Figure 1, left side). To characterize the 

morphology and composition, we performed SEM and EDX measurements on FCNSSi-RT powder (Figure S10). 

The SEM images suggest that either a phase segregation occurred, or that more than one phase is produced 

(Figure S10a). The element mapping images reveal that the overlapping of Fe, Co, Ni, S, O, and Cl, while the Si 

signals are not overlapping. These results, in addition to presence of chloride ions, may likewise indicate an 

unsuccessful Si doping at room temperature, which suggests that the Si atoms may have been only adsorbed on 
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the surface (Figure S10b). Notably, XRD analysis showed typical diffraction peaks characteristic of pentlandite, 

indicating that the FCNS crystal structure was retained (Figure S11a). Despite this observation, the FCNSSi-RT 

sample exhibited poor OER and HER performances compared to FCNSSi obtained at 800°C (Figure S11d,e), 

supporting the idea that Si doping in FCNS is preferable to Si adsorption on FCNS for OER. It is expected that 

Si adsorption may block the active centers on the metal surface, leading to a decrease in OER catalytic activity. 

 

Theoretical study of FCNSSi on OER 

To understand the observed enhancement of OER activity for FCNSSi, DFT calculation was conducted to analyze 

the whole process of the four-electron OER reaction on different metal site moieties embedding in FCNSSi matrix. 

Considering the conditions of OER in our previous work the surface of catalyst was oxidized as is the case here 

the surface would oxidize to be covered by 7/4 ML of O* [16]. The calculations were performed on the optimized 

(111) surface. As expected, the oxidation of the surface lead to the formation of self-assembled amorphous metal 

oxide (Figure S12), where similar observations were noted for pentlandite doped by nitrogen and phosphorus in 

our previous work by combining systematic experimental and theoretical studies [16]. These findings may explain 

the outstanding OER activity of the pentlandite catalyst compared to other crystalline catalysts since the 

amorphous catalysts are reported to show better activities of water splitting reaction than their crystalline 

counterparts [59]. 

To quantify further OER activity of the FCNSSi, we investigated the atomic-scale mechanism of OER on the 

clean FCNSSi and FCNSSi oxidized surface, as depicted in Figure 5. We found that the potential limiting step 

for the unoxidized FCNSSi surface corresponds to the oxidation of *OOH intermediate to form the O2 product. 

The calculated overpotential on clean FCNSSi surface was 2.08, 2.26 and 2.30 V for Ni, Fe, and Co metal sites, 

respectively. The high overpotential can be ascribed to the strong binding between *OOH and metal atoms. 

However, as described in Figure 5a, oxidation of FCNSSi surface significantly adjusts binding of the 

intermediates on the surface, which weakened the *OH, *O and *OOH adsorption energies compared with those 

on clean FCNSSi surface. Therefore, the calculated theoretical overpotential significantly decreased to 0.20, 0.26 

and 0.48 V on Ni, Fe, and Co metal site, respectively in oxidized FCNSSi. By comparing the OER energy profile 

of Si with the N and P dopant in our previous publication [16], it is clear that Si dopant leads to moderate adsorption 

energy of intermediates closer to the ideal energy profile showing the advantage of Si doping over the pristine 

FCNS and N and P dopants as well. 
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Figure 5 a) Quantum-theoretical calculations at the level of density functional theory (DFT) on the 

electrocatalytic OER performance in FCNSSi, and b) the computational optimized OER intermediates on Fe in 

FCNSSi. 

 

HER performance of FCNS and FCNSSi 

As mentioned in the introductory part, both ionic and metallic forms of silicon show promise for hydrogen 

production. Therefore, it is necessary to also evaluate the potential of FCNSSi for HER. The catalytic HER 

performance of the FCNSSi sample was thus subsequently assessed using LSV measurements on a glassy carbon 

electrode (GCE). While the HER performance of the as-prepared FCNSSi electrode was significantly improved 

compared to the pristine FCNS, it achieved a current density of only -10 mA cm-2 at a high overpotential of 

425 mV (Figure 6a).  

However, the FCNSSi electrode showed a much smaller Nyquist arc around 45.0 Ω cm-2, compared to FCNS 

(600 Ω cm-2) (Figure 6b), indicating a faster charge transfer between the electrode-electrolyte interface. After 24 

hours of FCNSSi electrode performance, a significant HER improvement was observed (Figure 6c) and the 

activated FCNSSi electrode achieved a current density of -10 mA cm-2 at an overpotential of 164 mV and a low 

Tafel slope of 80.7 mV dec-1, which was significantly better than the pristine FCNS materials (316 mV and 152.7 

mV dec-1, respectively) at identical conditions (Figure 6d and e). These results were also better than those 

reported for previously published pentlandite materials in terms of energy required for water reduction and 

kinetics of hydrogen formation (Table S3). Additionaly FCNSSi (ɳ100 = 326 mV) significantly displays HER 

performance better than pristine FCNS (ɳ100 = 534 mV) at -100 mA cm-2 (Figure 6c). To obtain further 

information concerning the HER rate and kinetics, we estimated the exchange current density (J0) from the 

intercept between the equilibrium potential at an overpotential of zero (Figure 6f). The calculated J0 for FCNSSi 

was 0.26 mA cm-2, which is almost twice the value for FCNS reflecting the faster hydrogen formation rate in case 

of FCNSSi electrocatalyst (0.12 mA cm-2). 

Furthermore, to identify and estimate the amount of H2 produced through hydrogen evolution in acid solution, we 

performed gas chromatography (GC) (Figure S13). We applied a current density of -20.0 mA cm-2 for 10 hours 
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and injected the GC one time every hour. The chromatogram showed that the main product was H2 gas, with 

negligible traces of O2 and N2 that might have been due to air inside the tubes (Figure S14a). The faradic efficiency 

was calculated to be 109 ± 10 % for FCNSSi and 94 ± 10 % for FCNS on a carbon paper electrode at identical 

conditions (Figure 7b) (Table S4). To receive postmortem information on a FCNSSi on a carbon paper electrode 

before and after chronopotentiometry tests at -20.0 mA cm-2 for 10 hours, we performed PXRD analysis (Figure 

S14). The pentlandite crystal structure was well-preserved, indicating high structural stability and durability of 

FCNSSi during H2 evolution in acidic solution. 

The HER results in combination with the OER clearly demonstrate that the FCNSSi electrode is a highly active 

and stable bifunctional electrocatalyst for both HER and OER. To investigate its potential and durability for 

overall water splitting, we designed a two-electrode cell in which FCNSSi served as both anode and cathode in 

an alkaline solution (Figure S15 and S16). 

 

 
 

Figure 6 a) LSV curves of the as-prepared FCNS and FCNSSi in 0.5 M H2SO4 solution at scan rate of 50 mV s-

1, b) EIS at -0.155 vs. RHE, c) chronoamperometry test at -0.1 vs. RHE, d) LSV curves after HER performance 

for 24 e,f) the derived Tafel plots of FCNS and FCNSSi samples on glassy carbon electrode.  

 

Theoretical study of FCNSSi on HER 

To further understand the HER activity and nature of active sites on the hypothetical silicon doped FCNS, the 

adsorption free energy of hydrogen for the possible sites were calculated to estimate their catalytic activity toward 

HER (Figures S17a). The hydrogen adsorption free energy is calculated at a potential U = 0 relative to the 
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standard hydrogen electrode (SHE) at pH = 0. Although our synthesis strategy envisioned doping of FCNS with 

Si, we considered Si adsorption as an alternative possibility for the modification of the material (Figures S17b 

and S17c). We proposed Si atom adsorbed and atomically dispersed on the surface. After optimization of the 

structure, we found that the adsorption of a single Si atom on the surface is unstable. The DFT calculation suggests 

that the adsorbed Si atoms lead to aggregate forming small clusters Si3 or Si4 atoms on the metal site (Fe, Co and 

Ni) on the surface leading to blocking hydrogen adsorption active sites, which agrees with our experimental 

results (Figures 7 and S11b). In this case the Si sites were supposed to be the only possible site for HER. The 

calculated free energy illustrated in Figure 7a shows that the Si site exhibit a high DG*H, indicating its limited 

HER activity due to excessive binding strength. 

On the other hand, compared to Si adsorbed at FCNS (FCNSS-RT), Si doping in FCNS (FCNSSi) enhances the 

hydrogen adsorption activity of all sites. We found the global minimum energy of hydrogen adsorption on each 

type of metal site tends to be much closer to zero, where the DG*H in the range of (0.10, -0.2) eV, as depicted in 

Figure 7a. Moreover, DFT calculations have shown that H* adsorbs on the surface as bridging two metal atoms 

explaining the improvement of H adsorption activity over the sites following Heyrovsky mechanism (Figure 

S15c,d). 

Alternatively, the hydrogen evolution could proceed via the Tafel reaction. Therefore, we studied the Tafel 

reaction energetics on Fe octahedral site as an example (Figure 7b). The results show that the Tafel reaction 

requires an energy barrier of 0.91 eV. The overall reaction energy from 2H⁎ to H2(g) is -0.84 eV (exothermic). 

This result indicates that the Tafel reaction seems to be kinetically unfavorable compared to Heyrovsky reaction 

in our study. This result is in accordance to our previous work, whereas a Volmer-Heyrovsky mechanism is 

favorable to the pristine FCNS [17]. Smialkowski et al. found that the content of Co plays a significant role in 

manipulating the HER mechanism and kinetics [17]. The Co-rich FCNS adapts a Volmer-Heyrovsky mechanism, 

while the mechanism shifts to a Volmer-Tafel mechanism with increasing Fe or Ni content. 

 

  
Figure 7 Quantum-theoretical calculations at the level of density functional theory (DFT) on the electrocatalytic 

HER performance in FCNSSi via a) Volmer-Heyrovsky and b) Volmer-Tafel mechanisms. 
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Zero-gap Cell Experiments 

To assess the effectiveness of the materials presented here on an industrial scale, we constructed a zero-gap cell 

in-house using FCNSSi deposited through thermal drop casting at 90 ⸰C on Ni-foam on the anodic side 

(FCNSSi/Ni foam), and Pt/C(40%) on CPE on the cathodic side (Pt-C/CPE) for alkaline water electrolysis 

(Figure 8a). The results of LSV measurements showed that FCNSSi had better performance towards water 

oxidation compared to the pristine FCNS electrode (Figure 8b). The overpotential estimated for the FCNSSi/Ni 

foam electrode at 500 mA cm-2 is 2.28 V, outperforming the pristine FCNS/Ni foam electrode (2.56 V). The long-

term chronopotentiometry test at an elevated current density of 500 mA cm-2 further confirmed the high 

performance and durability of FCNSSi/Ni foam, with an overall cell potential of approximately 2.31 V for 16 h 

(Figure 8c). There is a potential increase of around 23.0 mV after 16h of consecutive performance at 500 mA 

cm-2, which represents a loss of 0.99% (3 mV h-1) in the overall cell voltage (Figure 8c). It is currently unclear if 

this drop stems from an overall material decomposition or mechanical faults of the electrode assembly/membrane. 

In contrast, the pristine FCNS/Ni foam electrode demonstrated lower performance, with a higher cell potential of 

2.58 V. 

As a reference cell, we constructed a zero-gap cell using bare CPE as the cathode and FCNSSi/Ni foam and bare 

Ni foam as anodes. The chronopotentiometry test at 500 mA cm-2 showed an improvement in the FCNSSi/Ni 

foam electrode compared to bare Ni foam by 679 mV, reflecting the significant contribution of the FCNSSi 

catalyst towards the water oxidation activity (Figure S18).  

Likewise, to evaluate the HER catalytic performance in 1.0M KOH, we constructed a zero-gap cell in which 

FCNSSi/CPE acted as the cathode against bare Ni foam as the anode (Figure S19a). The cell achieved a cell 

voltage of 2.56 V at -100 mA cm-2, with an average steady FE% of 104±5% within 10 hours of performance 

(Figure S19b), which agrees with the three-electrode set up results (Figure S13b).  
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Figure 8 a) Zero-gap cell assembly using FCNSSi on Ni foam at anodic side against Pt/C (40%) on CPE at 

cathodic side, and b) LSV measurements, and c) chronopotentiometry test at 500 mA cm-2 for 16 h of both 

pristine FCNS and FCNSSi on Ni foam electrodes. 

 

Conclusion 

In this study, we successfully doped heterotrimetallic pentlandite (FCNS) with silicon (Si) atoms through 

controlled annealing at 800˚C in an inert atmosphere of pristine FCNS and SiCl4 mixture. The obtained FCNSSi 

exhibited superior performance and durability towards electrochemical OER in alkaline solution with an 

overpotential 313 mV at 10 mA cm-2 and a Tafel slope of 70.7 mV/dec and HER in acid solution with an 

overpotential 164 mV at -10 mA cm-2 and a Tafel slope of 80.7 mV/dec for overall electrochemical water splitting, 

outperforming pristine FCNS. Moreover, the FCNSSi electrode exhibited exceptional durability and robustness 

for long-term HER and OER. For comparison, the pristine FCNS was treated with SiCl4 at room temperature to 

obtain FCNSSi-RT. We found that the FCNSSi-RT has neither improved OER nor HER implying that heating is 

necessary for Si atom doping. The DFT calculation suggested that the surface oxidation of FCNSSi during OER 

improved its performance by weakening the adsorption energy of *OH, *O and *OOH. Additionally, Si doping 

in FCNS structure led to moderate adsorption energy of intermediates closer to the ideal energy profile, showing 

the advantage of Si doping over the pristine FCNS. Furthermore, Si doping in FCNS structure enhanced the 
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hydrogen adsorption activity of all sites, where the global minimum energy of hydrogen adsorption on each type 

of metal site tended to be much closer to zero, thereby improving the HER performance.  

Our results suggest competitive performance of FCNSSi with previously published materials towards overall 

electrochemical water splitting. The zero-gap cell testing further confirmed the excellent FCNSSi activity and 

robustness for long-term alkaline water electrolysis. Si doping of metal sulfides is therefore an effective strategy 

to improve catalytic activity by adsorption of hydrogen on unoxidized pentlandite and *OOH on oxidized 

pentlandites and possibly other metal chalcogenides.  
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