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Abstract

The prediction of protein-ligand complexes (PLC), using both experimental and predicted structures, is
an active and important area of research, underscored by the inclusion of the Protein-Ligand Interaction
category in the latest round of the Critical Assessment of Protein Structure Prediction experiment CASP15.
The prediction task in CASP15 consisted of predicting both the 3-dimensional structure of the receptor
protein as well as the position and conformation of the ligand. This paper addresses the challenges and
proposed solutions for devising automated benchmarking techniques for PLC prediction. The reliability of
experimentally solved PLC as ground truth reference structures is assessed using various validation criteria.
Similarity of PLC to previously released complexes are employed to judge the novelty and difficulty of a
PLC as a prediction target. We show that the commonly used PDBBind time-split test-set is inappropriate



for comprehensive PLC evaluation. Finally, we introduce a fully automated pipeline that predicts PLC and
evaluates the accuracy of the protein structure, ligand pose, and protein-ligand interactions.

1 Introduction

The latest round of the Critical Assessment of Protein Structure Prediction experiment CASP15, held in
2022, introduced a novel category for protein-ligand interaction prediction (CASP-PLI), aiming to evaluate
cutting-edge methodologies on a blind target set of experimentally resolved complexes. In contrast to typical
ligand docking benchmark experiments like Teach Discover Treat (TDT)!, Continuous Evaluation of Ligand
Prediction Performance (CELPP)?, Drug Discovery Data Resource (D3R)3°, or Community Structure-
Activity Resource (CSAR)7®, the prediction task in CASP consisted of predicting both the structure of the
receptor protein as well as the position and conformation of the ligand, hereafter referred to as protein-ligand
complex (PLC) prediction. The evaluation results of this experiment are presented elsewhere in this issue?,
as well as the technical details and challenges encountered during the establishment of the new category as
part of CASP'C. These challenges include, (1) PLC with incomplete ligands or suboptimal quality to be used
as ground truth ligand poses, (2) the need for extensive manual verification of data input and prediction
output, and (3) the lack of suitable scoring metrics that consider both protein structure and ligand pose
prediction accuracy, which necessitated the development of novel scores.

By integrating the insights and developments from the CASP-PLI experiment, automated systems for the
continuous benchmarking of combined PLC prediction can be established. We discuss challenges and insights
associated with the development of two complementary approaches for PLC benchmarking: a continuous eva-
luation of newly released PLC in the Protein Data Bank PDB!!, as implemented in Continuous Automated
Model EvaluatiOn (CAMEO, https://beta.cameo3d.org/)!?, and a comprehensive evaluation of PLC pre-
diction tools based on a diverse, curated, and annotated benchmark dataset of PLC.

CAMEO is a benchmarking platform conducting fully automated blind evaluations of three-dimensional
protein prediction servers based on the weekly prerelease of sequences of those structures, which are going to
be published in the upcoming release of the Protein Data Bank!'3 !5, Since 2012, the 3D structure prediction
category has been assessing the accuracy of single-chain predictions. Additional assessment categories have
been implemented over time to serve the structural bioinformatics community, in particular around the
assessment of quality estimates (QE). Recently, efforts were made towards the assessment of protein-protein
complexes (quaternary structures) and protein-ligand pose prediction!?.

While CAMEO allows for continuous validation of newly developed methods, it is dependent on the dis-
tribution of PLC released in the PDB in a given period. Thus, CAMEO evaluation in a given time period
may not be representative of the entire PLC space and method developers may not have immediate access
to problem cases or specific sets of PLC where their algorithm under or overperforms. This suggests a se-
cond, complementary angle to automated benchmarking, namely the creation of a diverse dataset of PLC
with representative complexes from across protein-ligand space, which would allow both global comparative
scoring as well as pinpointing cases that method developers would need to address to improve their global
performance. While many recent deep-learning docking methods train and validate their approach on the
time-split PDBBind set'® of PLC (where 363 protein-ligand pockets are used for benchmarking), we demons-
trate that this approach has shortcomings arising from the lack of crystal structure quality verification and
the lack of consistent redundancy removal.

Previous research has shown that the quality of experimentally resolved structures can vary significantly'”.
Efforts have been made to establish criteria for assessing the quality of such structures, like the Iridium
criteria'®. Comparing prediction results to lower quality structures can skew the perception of their per-
formance, an especially important consideration when assessing deep learning-based tools which have been
trained to reproduce results seen in experimentally resolved structures. Additionally, many crystal structures
with ligands contain missing atoms or missing residues in the binding site, complicating their use as ground



truth.

Even in the era of deep learning, determining the difficulty of predicting a PLC still relies, to some degree, on
previously experimentally resolved structures. This was exemplified in this year’s CASP-PLI results®, where
template-based docking methods outperformed others due to the availability of previously solved highly
similar PLC for many of the targets. Thus, incorporating the novelty of a PLC into automated benchmarking
setups is crucial for a fair and comprehensive evaluation. For CAMEQ, this consists of filtering out ”easy”
targets based on sequence and ligand information available in the PDB pre-release. For the generation of a
representative benchmark set, one can additionally look at the novelty of the binding site and ligand pose
on a structural level.

Proteins are inherently flexible, exhibiting a range of conformations in line with their functions. Not every
observed conformation is compatible with ligand binding, and this can significantly impact the accuracy
of docking predictions even when using high quality experimentally resolved structures!?:2°. These factors
are further complicated by the use of computationally predicted protein structures, as previous studies
indicate that even state-of-the-art methods for structure prediction are not always suited for the task of
ligand docking, due to inaccuracies in conformations and side-chain positioning?'. Moreover, some ligands
have highly flexible regions that mainly interact with the solvent, where evaluating the conformation of the
flexible part may not be as meaningful as the parts of the ligand forming crucial interaction with protein
residues. Thus, it is necessary to develop and employ evaluation metrics that extend beyond rigid ligand
pose assessments.

2 Results

2.1 Is the ground truth good enough?

To assess the distribution of high quality crystal structures of PLC in the Protein Data Bank (PDB)?2, we
extracted protein, ligand, and binding pocket (defined as a 6A radius around the ligand) information from
PDB validation reports from 114,973 PLC entries in the PDB solved by X-ray crystallography for which
Electron-Density Server (EDS) validation information is made available in the PDB** 2% and which contain
at least one protein chain (polymer entity) and at least one non-polymer entity (small molecule ligand or ion).
Ligands present in the BioLIP artifact list were excluded?®. This list contains 463 frequent crystallization
artifacts such as solvents and buffers. It may also filter out a few biologically relevant ligands, however this
is rare and we considered the trade-off acceptable for this study.

We analyzed 236,538 small molecule pockets across 75,065 PLC PDB entries and 32,273 unique small-
molecule ligands, and 798,651 ion pockets across 84,215 PLC and 138 unique ions. In total, this corresponds
to over a million pockets.

The authors of the Iridium dataset defined a highly stringent set of criteria regarding the quality of cry-
stal structures, with emphasis on the suitability for pose prediction, virtual screening and binding affinity
estimation'®. These include criteria on the protein (resolution [?] 3.5A, R < 0.4, Rpee < 0.45, absolute
difference between R and Ryee [?] 0.05) as well as ligand and pocket criteria (full density with RSR [?] 0.1
and RSCC [?] 0.9, full atom occupancies and no alternative configurations for ligand atoms and protein
atoms within 6A of ligand.)

We applied the Iridium criteria to the binding pockets within our set of PLC. Ouly 0.3% (721) of small
molecule pockets across 504 PLC and 0.98% (315) of unique small molecule ligands, and 0.66% (5,248) of
ion pockets across 3,379 PLC and 35.51% (49) of unique ion ligands passed the criteria. In total, 0.58% of
all pockets are acceptable according to the Iridium criteria, across 3.21% (3,686) of PLC and 1.12% (364) of
unique ligands..

Thus this criteria is too stringent for both of the applications we explore. For continuous evaluation methods



such as CAMEO which runs on a weekly basis, the majority, if not all PLC would be discarded. Similarly,
restricting to such a small fraction of the PDB is incompatible with creating a diverse and representative
dataset of PLC for comprehensive benchmarking. We suggest alternative “relaxed” criteria with RSCC >
0.8 and >90% protein residues within 6A of ligand with RSCC > 0.8, with the remaining criteria the same
as Iridium. The threshold of 0.8 for RSCC is in accordance with the widely accepted rule of thumb that 0.8
< RSCC < 0.95 are generally ok, RSCC > 0.95 indicate a very good fit, and RSCC < 0.8 indicate that the
experimental data may not accord with the ligand placement?’. Having such a set of relaxed criteria could
be used as a post-filter step in the CAMEOQO setting and, in the latter case, the stringent Iridium criteria
could be used to create the starting set with more PLC being added based on their novelty and the relaxed
criteria.

Figure 1 shows the distribution of validation data values across all binding pockets as well as the selected
relaxed thresholds for four criteria: resolution (Figure 1A), absolute difference between R and Ryee (Figure
1B), RSCC (Figure 1C) and percentage of protein residues within 6A of the ligand with RSCC > 0.8 (Figure
1D). The most stringent criterion is by far the absolute difference between R and Rgree , which removes
almost 15% of the pockets.

We applied these relaxed criteria to the dataset of binding pockets. We found that 44.96% (106,357) of
small molecule pockets across 36,959 PLC and 51.34% (16,568) of unique small molecule ligands passed the
relaxed criteria. Similarly, 48.73% (389,217) of ion pockets across 55,594 PLC and 89.86% (124) of unique
ion ligands passed. Thus, the criteria retains 47.87% (495,574) of all pockets, spread across 62.38% (71,720)
of PLC and 51.50% (16,692) of unique ligands.
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Figure 1: Distributions across PLC pockets of A) experimental resolution, B) Difference between R and
Riree, C) Ligand RSCC, and D) The percentage of protein atoms within 6A of the ligand, which have an
RSCC > 0.8. Pockets are divided into categories depending on the number of rotatable bonds of the ligands
they contain. In each panel, the black line shows the suggested threshold, and the percentage of pockets
passing this criterion is displayed.

In an automated benchmarking setting such as CAMEQ, where quality information is not available at the
time the targets are selected, filtering out even half of the data after predictions have been generated would
be unfortunate, indicating that even the relaxed criteria are too stringent as a post-filter. An alternative
would be to take quality into account in the scoring process, and downweight low quality regions of a



structure in aggregate scores, without removing the entire target. Ideally an atom-level weighting would
be used, especially for larger ligands that can display variable levels of quality within the residue itself.
Unfortunately the PDB does not make atom-level quality information available in the validation reports at
the time of writing, and the only information that would be available is occupancy numbers which are part
of the structural data.

However, analyzing and incorporating validation data is a critical step towards creating a representative
dataset for other benchmarking settings. For example, of the 255 small molecule pockets in the PDBBind
time-split test-set, 105 do not pass the relaxed criteria, which could bias the results seen in recent benchmar-
king efforts using this test set. Previous efforts have been made to create high-quality subsets of PDBBind
specifically for evaluation purposes?®. However, these produced very small test sets, unlikely to be represen-
tative of the entire protein-ligand space. The stringent Iridium criteria, the suggested relaxed criteria, and
the assessment of novelty and diversity described in the next section form the basis for the creation of a
representative benchmark dataset. Indeed, similar efforts to create benchmark sets for PLC are ongoing in
the ELIXIR 3D-Biolnfo community?®. The results of that initiative could be incorporated in this assessment
once they are available.

2.2 Is a protein-ligand complex target interesting to assess?

In the context of large scale structural databases, such as the PDB, it is possible to encounter several
very similar PLC or complexes with the same protein and ligand that have been crystallized in different
experimental conditions or resolved by means of different experimental methods. When it comes to automated
benchmarking of PLC prediction, besides the quality of the structure, an important aspect to consider is the
novelty of the PLC to assess.

The CASP15 CASP-PLI assessment’highlighted the superiority of template-based methods to model PLC
accurately. While most top predictions were produced by human groups rather than automated methods,
it is likely that automated methods will in the future also leverage template information to predict PLC.
Therefore, when generating a benchmarking dataset for PLC prediction, we need to ensure that PLC are
not already represented in the PDB. For a challenge such as CAMEOQO, the exact protein conformation and
the pose of the ligand within the protein complex is unknown. Thus, we will use the sequence as a proxy
for protein novelty. As very similar ligands can have striking differences in their poses, and we would like to
retain as many PLC as possible in the CAMEQ pre-filtering setting, we use ligand names as a proxy for the
novelty of the ligand pose. To that end, we investigated the novelty of the 236,538 small molecule pockets
across 75,065 PLC and 32,273 unique small-molecule ligands described in section 1.1.

We assessed the novelty of PLC released every year in the PDB by verifying whether a particular combination
of polymer entities and ligands was present in previously released structures. For that purpose, we performed
sequence-based clustering of all polymer entities followed by the assignment of an identifier to each PLC
entry, consisting of the sequence cluster identifiers of each entity and the chemical component code of the
ligands present in the PLC. Using different minimum sequence identity thresholds helps reveal the level
of novelty between the entities of a PLC compared to previously seen PLC. Similarly, even for PLC with
identical proteins, the combination of ligands seen may differ. The distribution of sequence clusters and
ligand combinations seen per year is shown in Figure 2, along with the fraction of PLC that pass the relaxed
quality criteria from Section 1. For example, the four different bars for the 70-90% cluster in the year 2022
represent, in order,(1) all PLC released in 2022 where every entity in the PLC has 70-90% identity to every
entity in a matching PLC from a previous year but the ligands are not all the same, (2) same as (1) but
only the PLC passing the relaxed quality criteria from Section 1 (8)all PLC released in 2022 where every
entity has 70-90% identity to every entity in a matching PLC from a previous year and the ligands are all
the same, and (4) same as (3) but only the PLC passing the relaxed quality criteria from Section 1.

We see that, from the protein perspective, 78.85% of PLC (and 71.83% of valid PLC) released in 2022 have
at least 30% sequence identity to a matching PLC from previous years (across all entities). However, most



of these (79.14%) still have different combinations of ligands, indicating that they may still be interesting to
assess for PLC prediction. We consider two different minimum sequence identity thresholds, 30% for creating
a diverse dataset and 90% for PLC prediction in CAMEOQ, and define a PLC as novel if the minimum sequence
identity between any of its entities is less than the threshold in all matching PLC, or at least one ligand in
the PLC is not seen in matching PLC. With this classification criteria, we found that out of all the PLC
released in 2022, 4515 (83.55%) PLC were novel and 889 were redundant at a threshold of 30%, and 4833
(89.43%) PLC were novel and 571 were redundant at a threshold of 90%. Hence, even at 30% sequence
identity, 83.55% of all released structures contained some kind of novelty, with at least one previously unseen
protein(entity)-ligand combination. Among the PLC that passed the validation criteria, 2202 (86.76%) PLC
were novel and 336 were redundant at a threshold of 30%, and 2360 (92.99%) PLC were novel and 178 were
redundant at a threshold of 90%.

Thus, most newly-released PLC are novel from either the protein or the ligand perspective. However, every
year some redundant PLC are also released in the range of 10-20% redundant structures per year, out of
which more than half are highly redundant structures (90-100% sequence identity and same ligands). The
PDBBind time-split test-set also suffers from a high degree of redundancy, with 62% of the test-set proteins
having >90% sequence identity with other test-set proteins and 59% having >90% identity to proteins in
the training-set. This indicates that this set would not be able to accurately represent protein-ligand space,
even if all the ligands were chemically dissimilar, which is not the case.
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Figure 2 : Protein-ligand complexes (PLC) released per year (in brown and orange) and those passing the
relaxed quality criteria (in green and blue), divided according to sequence identity to PLC seen in previous
years. The left two bars of each year (in brown and green) are PLC with ligand combinations which differ
from previous PLC, and the right two bars (in orange and blue) are PLC containing the same set of ligands
as a matching PLC at that sequence identity.

This approach can be used in CAMEQ to select the set of PLC to send out for prediction, without sacrificing
too many PLC and ensuring that predictors do not waste resources on previously seen PLC or those with very
similar templates. However, this approach has some shortcomings mainly due to the limited information
available to CAMEQO when selecting targets, namely the unique protein sequences and ligand chemical
identities.

First, highly redundant regions or pockets in a PLC might be classified as novel due to the presence of other
novel pockets in different areas of the complex. On the other hand, small molecule binding poses, even for
the same or very similar chemical compounds, can vary significantly even within the same protein due to
different protein conformations or a small number of mutations in crucial binding regions. This cannot be
accounted for in the CAMEOQ pre-filtering step but is useful information for evaluation and highly necessary
for representative dataset creation. Therefore, utilizing structure and binding pocket clustering from the
protein side and 3D ligand conformation clustering from the small molecule side is recommended. The same
considerations apply to the oligomeric state of each entity and the stoichiometries of each ligand in a PLC,



information that is not available from the PDB pre-release. These factors are particularly important when
the same ligand is present in different protein pockets or in cases where a ligand is involved in protein
oligomerization. Therefore, this information must be incorporated for assessment and when creating a
representative benchmark dataset, and will be explored in future efforts.

2.3 Can we automatically score predicted protein-ligand complexes?

We developed an automated benchmarking workflow, consisting of two components: (1) Preprocessing, in-
put preparation, set-up and running of five PLC prediction tools (Autodock Vina3%3! SMINA 32, GNINA
33 DiffDock®*, and TankBind3®) with different input parameters, and (2) Assessment of PLC prediction
results using different scoring metrics. The workflow is implemented using Nextflow®® to enable efficient par-
allelization and distributed execution, making it well-suited for handling large datasets and computationally
intensive tasks. Each process is encapsulated in a module, with dependency management controlled using
Conda?®” or Singularity®® . The resources for each step in the pipeline are defined individually, ensuring
that only the required resources are reserved and failed processes are automatically restarted with increased
resources. Upon completion, all the predicted binding poses are collected and a summary of scores is created,
along with reporting on resource usage across the evaluated tools.

We run this workflow using the PDBBind time-split test-set of 363 protein-ligand pockets. As the two most
recent deep learning tools in our set, TankBind and DiffDock, are trained on the remaining proteins in
PDBBind, this is the most fair set to use for their evaluation at the current time. However, it is important
to emphasize that the aim of this experiment is to demonstrate the feasibility of an automated benchmarking
workflow, and not a comprehensive evaluation of the tools, due to the issues in this test set already discussed
in the previous sections.

As these tools already take a protein structure as input and we are interested in extending this to settings
where also the structure may be computationally modeled or in a different conformation, we also evaluated
PLC prediction results on 256 AlphaFold3’structures of monomeric proteins from the same test-set. 77%
(197) of the AlphaFold models are within 2 A RMSD of the crystal structure.

In order to demonstrate the workflow in different input settings, we use P2Rank 4%to detect pockets in each
protein in the test set and report results in two scenarios: Blind docking , which is considered the worst-
case scenario for docking tools where no indication is provided about the possible location of the ligand,
and Best pocket docking , representing the best-case scenario where the correct binding pocket is known
and used to define the docking search space. P2Rank was able to predict the center of the correct binding
pocket for 89.2% (324) of the receptors within 8 A distance of the true binding site center, defined as the
mean coordinate of the ligand in the pocket. On the other hand, for the AlphaFold modeled receptors, the
percentage was 81.1% (206), where the ground truth pocket is defined by structural superposition of the
model with the reference structure. For the evaluation of Best pocket docking, the P2Rank pocket that had
the smallest distance from the true binding site center was considered the best pocket.

The reporting workflow utilizes BiSyRMSD (referred to as RMSD) and IDDT-PLI scoring to evaluate the
predicted ligand structures generated by the different docking methods. Both of these are novel scoring
metrics developed for the CASP15 CASP-PLI experiment® that consider both predicted protein structure
and predicted ligand conformation. In addition, IDDT-PLI focuses on the interactions between protein and
ligand atoms. Table 1 and Table 2 display the outcomes for PLC prediction using the 363 receptors from
the PDBbind test-set and the 256 AlphaFold modeled receptors respectively. The full results are available as
Supplementary Table 1 and 2 for the experimentally solved and AlphaFold modeled receptors, respectively.
The highest ranked pose (top-1) and the best scored pose out of the top-5 ranked poses (where the ranking
is an output of each tool) are assessed for blind docking where the entire protein is employed to define the
search box. Furthermore, for all tools except DiffDock where this option is not present, the same assessment
is carried out for the best-case scenario using the best pocket for defining the search box. Figure 3 depicts
the distributions of these scores for the top-1 and best out of top-5 poses for experimental and modeled



receptors for both docking scenarios.

Table 1 : Prediction of small molecule binding to crystallized protein structures from the PDBbind testset
containing 363 PLC. For some PLC the pipeline did not complete successfully. Shown are the number of PLC
(n), the success rate (SR) defined as the percentage of predictions with RMSD < 2 A, the median RMSD,
the mean IDDT-PLI, and the standard deviation of IDDT-PLI. DiffDock does not use a pocket definition.
TANKBiInd gives only one prediction per search box.

Top-1 Top-1 Top-1 Top-1 Top-5 Top-5
RMSD (A) RMSD (A) IDDT-PLI IDDT-PLI RMSD (A) RMSI
Method n SR (%) median mean std SR (%) media;
Blind docking Autodock Vina 360 14.72 7.82 0.36 0.34 25.28 5.71
SMINA 362 17.40 7.75 0.37 0.34 27.07 5.67
GNINA 362 22.65 8.68 0.38 0.38 30.66 4.84
TANKBind 363 9.09 6.39 0.35 0.27
Best pocket Autodock Vina 359 29.81 5.01 0.53 0.34 47.35 2.19
SMINA 361 30.75 5.00 0.53 0.34 45.71 2.41
GNINA 361 42.11 2.61 0.62 0.34 55.96 1.71
TANKBind 362 11.60 5.09 0.44 0.25
DiffDock 361 37.67 3.24 0.59 0.31 44.04 2.55
Table 2 : Prediction of small molecule binding to AlphaFold predicted structures for 256 monomeric proteins
from the PDBbind testset. For some PLC the pipeline did not complete successfully. Shown are the number
of PLC (n), the success rate (SR) defined as the percentage of predictions with RMSD < 2 A, the median
RMSD, the mean IDDT-PLI, and the standard deviation of IDDT-PLI. DiffDock does not use a pocket
definition. TANKBind gives only one prediction per search box.
Top-1 pose Top-1 pose Top-1 pose Top-1 pose Top-5 poses Top-
RMSD (A) RMSD (A) IDDT-PLI 1IDDT-PLI RMSD (A) RM!
Method n SR (%) median mean std SR (%) med
Blind docking  Autodock Vina 255 3.92 11.84 0.20 0.24 5.49 7.70
SMINA 256  3.52 12.06 0.20 0.23 6.25 7.97
GNINA 256  4.69 18.47 0.17 0.26 9.38 9.44
TANKBind 256  4.30 7.65 0.29 0.25
Best pocket Autodock Vina 252 4.76 8.52 0.28 0.25 10.71 5.62
SMINA 253 4.35 8.51 0.27 0.24 12.25 5.83
GNINA 253  8.70 7.46 0.33 0.28 14.62 5.69
TANKBind 253  5.53 6.15 0.36 0.26
DiffDock 252 21.03 4.15 0.48 0.29 32.94 3.07
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Figure 3: Distribution of the scores shown in Table 1 and Table 2 for A) Topl-pose RMSD, B) Topl-pose
IDDT-PLI, C) Top5-pose RMSD, and D) Top5-pose IDDT-PLI. The lines and the black dots in the bars
represent the median and the mean respectively.

As expected, the results for the Best pocket docking are better than Blind docking, as the search space is
restricted. DiffDock performs well on this set despite only offering blind docking mode, as also reported by
the authors along with the suggestion to use DiffDock as a ligand-specific pocket detector3*. The difference
between the two scoring metrics is especially seen when comparing blind docking results of GNINA and
TankBind in Table 1. The median RMSD is worse for GNINA indicating more “severe” failures which
bring up the RMSD, as it is an unbounded metric. In contrast, IDDT-PLI is bounded, and all PL.C poses
beyond the thresholds used are assigned a score of 0, and are less penalized by very bad predictions. In
addition, IDDT-PLI does not penalize parts of the ligand which are floating in areas not in contact with
the protein. All the tools have a significant performance decrease when using AlphaFold models as input.
This is especially striking when considering Best pocket docking, where exact side-chain and conformation
positioning seem to be crucial for obtaining the right ligand pose for physics-based docking tools, as seen in
Figure 4, where the backbone RMSD of the AlphaFold model is 3.56 A and it is clear that a rearrangement
has pushed a helix into the binding pocket, preventing the correct ligand pose from being found. This trend
is not as striking for the deep learning tool DiffDock, as its training has less reliance on side-chain atoms,
although the performance is still lower than on crystal structures.



Figure 4: An example of GNINA docking results on the Hsp90 receptor in complex with ligand 9J0 (PDB
ID: 5ZR3). The crystal structure of the receptor is shown in purple with the ground truth ligand in green.
The AlphaFold model is shown in gray. The GNINA docked conformation using the AlphaFold model as
input is in white and the docked conformation using the crystal structure as input is in orange.

While these results have proven valuable for testing our automated workflow, they are not meant to be
a comprehensive evaluation of these PLC prediction tools especially in the context of the challenges and
concepts discussed in the previous sections. In the small set of 363 PLC used: (1) 108 protein-ligand pairs
have peptide and oligosaccharide ligands which are not ideal as most docking tools are not calibrated for these
types of ligands3!. (2) Only 104 out of the remaining 255 small molecule and ion pockets pass the relaxed
validation criteria, and (3) the test set was created using a time-based split and thus contains redundant
proteins within itself, indicating a biased representation of PLC space, as well as with the PDBBind training
set, indicating an overestimation of prediction results for the tools trained on this set. Thus, it is critical
to repeat this analysis on a diverse benchmarking dataset created with both structure quality and PLC
diversity taken into account, and after ensuring that the PLC prediction tools based on machine learning
or deep learning are trained on a dataset different from the benchmark set. This will both ensure a more
reliable and comprehensive evaluation as well as allow for more specific pinpointing of problem cases for
different tools to aid in their further development.

For four out of the 363 complexes the workflow failed due to issues with various steps in the process. The
inability to generate conformers using RDKit for the stapled peptide ligand of 6q4q resulted in the failure
of both DiffDock inference and the definition of the search box required to run Autodock Vina, SMINA,
and GNINA. For the 600h protein-ligand pair DiffDock failed because the language model embeddings did
not have the right length for the protein. In addition, 6uhu and 6rtn failed to run with Autodock Vina due
to the presence of unsupported atoms. Furthermore, for the 6d07 receptor, P2Rank was unable to predict
a binding pocket. During the analysis of the 256 AlphaFold modeled receptors, P2Rank failed to predict a
binding pocket for three receptors (6d07, 6d08 and 6qlt). Further, complexes 600h and 6uhu suffered the
same issues already mentioned above. In addition, DiffDock inference failed for three more complexes (6¢jj,
6jib, and 6jid). These failures were automatically identified,reported and isolated by the workflow. Overall,
we demonstrate that automated workflows can be employed for PL.C preparation, prediction and assessment.
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3 Methods

3.1 PLC validation criteria

PLC were obtained from the PDB, release 2023-03-15. The PDB Chemical Component Dictionary*! was
downloaded on March 17, 2023. X-ray validation information was extracted from the XML files provided
by the PDB. Additional information including the entry ID to polymer entity ID mapping, release date and
polymer composition for each entry as well as the canonical one-letter code sequence for each entity in the
dataset was retrieved with the GraphQL-based API of the RCSB PDB Web Services*? on 2023-03-28. 37
entries marked as obsolete in the API results were discarded.

Ligands were defined as any non-polymer entity. A PLC was defined as a PDB entry with at least one polymer
and one non-polymer entity (ion or small molecule). PDB entries for which the “polymer composition” was
one of “DNA” "RNA”, "DNA/RNA”, "NA-hybrid”, ”other type pair”, ”NA /oligosaccharide” or ”other
type composition”, as well as any remaining entry containing DNA or RNA polymers were ignored.

Binding pockets were defined as the set of amino acid residues in the reference structure with at least one
heavy atom within a 6 A radius of any heavy ligand atom.

The filtering thresholds for the Iridium criteria were extracted from the original manuscript!®. The suggestion
to filter PLC where atoms from crystal packing are within 6 A of any ligand atom was not used as this
information could not easily be extracted from the PDB validation report.

3.2 PLC clustering and novelty assessment

For PLC clustering, the set of PLC described in section 3.1 was used. PLC were grouped together based
on the cluster identifier of all the unique polymer entities and the chemical component 3-letter code of the
ligands (i.e. identical ligands) they contained. Polymer entity cluster identifiers were obtained by performing
sequence-based clustering of all polymer entities in the dataset with the cluster module from the MMseqs2
software (version 13.45111)%3. Six different sequence-based clustering patterns were obtained as a result of
clustering with minimum sequence identity thresholds of 100%, 95%, 90%, 70%, 50% and 30% respectively.
For the sequence alignment, a coverage threshold of 90% (-c 0.9) of both the query and target sequences was
used (—cov-mode 0). The sensitivity of the prefiltering was set to (-s 8.0). Clustering was performed with
the connected component algorithm (—cluster-mode 1) with the option (—cluster-reassign) to reassign cluster
members to other clusters if they no longer fulfill the clustering criteria after each iteration. Each PLC entry
in the dataset was subsequently given an identifying string consisting of the cluster ids of the entities and
the 3-letter code of the unique ligands present in the PLC.

The assessment of the novelty of a given PLC with respect to a different set of PLC, at a given minimum
sequence identity threshold, was performed by comparing its PLC identifier to the set of all PLC identifiers
of the other set.

3.3 Benchmarking state-of-the-art docking tools

A Nextflow36pipeline (20.10.0) was developed to run and assess 5 state-of-the-art PLC prediction tools. This
is available athttps://github.com/PickyBinders/PickyBinder
3.3.1 Benchmark dataset

The 363 PLC in the PDBBind time-split test-set that were not used as training data by TANKBind and
DiffDock were used as a test set to demonstrate the automated benchmarking workflow'6. To compare
docking on experimental and predicted structures, AlphaFold v2.3.0 3*was used to predict models for 256
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monomeric proteins in this set, using the canonical one-letter code sequence, and default parameters and
relaxation. Results are present on the best relaxed model (according to average pLDDT) for each protein.

3.3.2 Molecule preparation

Each ligand was prepared starting from the SMILES string. Ligands were first standardized by neutralizing
the charges and re-adjusted for pH 7 using protonation rules. Explicit hydrogen atoms were then added. The
3D conformation was generated using the ETKDG method from RDKit**, and stored in SDF format. For
docking tools related to the AutoDock family, the Python package Meeko (v0.4.0) was used to generate the
PDBQT input files %°.

3.3.3 PLC prediction tools
The predictions were run with the default parameters given by the tools unless stated differently below.

(1) Autodock Vina version 1.2.330:3'docking was performed with exhaustiveness set to 64 within
a Conda®"environment containing the required python bindings. Meeko v0.4.0 was used to trans-
form the PDBQT output file into an SDF file, to be used by the evaluation tools. (2) SMINA32
was run within a Conda environment (v2020.12.10, conda-forge:b08c07¢c, based on AutoDock Vina
1.1.2) with exhaustiveness set to 64. (3) GNINA3? was run using a Singularity image downloaded
frombhttps://hub.docker.com/r/nmaus/gnina(digest: 7087cbfddafd, gnina v1.0.2 (master:0cb5eb8, built Sep
29 2022)) with exhaustiveness set to 64. (4) TANKBind3®, input preparation and inference was run accor-
ding to the code provided athttps://github.com/luwei0917/TankBindusing a Singularity image for the de-
pendencies downloaded fromhttps://hub.docker.com/r/qizhipei/tankbind_py38. (5) DiffDock3*inference was
run using —samples_per_complex 40 —batch_size 10 —actual_steps 18 —no_final step_noise within a Conda en-
vironment built according to the setup guide (master:2c7d438, built Mar 13 2023).

Each tool except DiffDock allows for the definition of a pocket center and grid size, within which the search
space for ligand conformations is restricted. To assess predictions for different pockets, P2Rank*? (v2.4) was
used to predict and rank multiple binding pockets,with default parameters for experimental structures and
-c¢ alphafold option for AlphaFold predicted models. The box in which Autodock Vina,GNINA and SMINA
search for binding poses was constructed around each predicted P2Rank pocket center. The diameter of the
search box was the diameter of the ligand conformer generated by RDKit with an additional 10 A on all 6
sides of the search box.Thus for each tool (p+1)*n predicted ligand poses were obtained as outputs, where
p is the number of pockets predicted by P2Rank and n is the number of poses returned by the tool.

3.3.4 Scoring

BiSyRMSD (shortened to RMSD throughout this manuscript) and IDDT-PLI scores were calculated with
OpenStructure version 2.4.0*6 with default parameters. The methods are identical to those described in
the CASP15 CASP-PLI assessment paper’. Every ligand was scored separately and a summary CSV file
containing scores for each ligand pose, pocket, and blind docking is generated.

4 Conclusion

With combined prediction of protein-ligand complexes forming the next frontier for deep learning in com-
putational structural biology, we need approaches for independent, comprehensive and blind assessment of
prediction methods to better assess the advantages and shortcomings of classical and novel approaches. Two
complementary approaches can be employed for this purpose: weekly continuous evaluation of structures
released in the PDB, and the creation of a representative, diverse dataset for benchmarking.

In this study, we examined three challenges essential for establishing such systems in an automated and
unsupervised manner: determining whether an experimentally solved PLC can be used as ground truth,
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assessing the interest or difficulty of a PLC for prediction, and automating the scoring of predicted PLC.
In the process, we defined quality criteria for PLC pockets, assessed novelty in the PDB over the years,
and developed an automated workflow for PLC prediction and assessment using newly developed scoring
metrics. Ligand preparation is a known challenge in docking and throughout our research we faced obstacles
in automating ligand preparation, in particular with molecule parsing and protonation.

The PDBBind dataset has been frequently utilized for training deep-learning based docking methods and
evaluating their accuracy. Many deep learning methods retained 363 PDBBind PLC as a test set based
on their release date after 2019. However, this selection is not ideal for benchmarking, as only half of
the structures meet the quality criteria indicating unreliable ground truth, redundancy removal was not
performed, and diversity was not considered when choosing the PLC. Consequently, there is a need for a
representative dataset that follows the concepts presented in this study.
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