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Abstract

In this paper, we consider propagation direction, which can be used to predict which species will occupy the habitat or win

the competition eventually, of bistable wave for a 3-species time-periodic lattice competition system with bistable nonlinearity,

aiming to address an open problem proposed in [J.-S. Guo et al, The sign of traveling wave speed in bistable dynamics, Discret.

Contin. Dyn. Syst., 40 (2020), 3451]. As a first step, by transforming the competition system to a cooperative one, we study

the asymptotic behavior for the bistable wave profile and then prove the uniqueness of the bistable wave speed. Secondly,

we utilize comparison principle and build up two couples of upper and lower solutions to judge the sign of the bistable wave

speed which provides partially the answer to the open problem. As an application, we reduce the time-periodic system to a

space-time homogeneous system, we obtain the corresponding criteria and carry out numerical simulations to illustrate the

availability of our results. Moreover, an interesting phenomenon we found is that the two weak competitors can wipe out the

strong competitor under some circumstances.
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The wave speed for a time-periodic bistable 3-species

lattice competition system

Jiali Zhan∗, Hongyong Wang†

Abstract

In this paper, we consider propagation direction, which can be used to predict which

species will occupy the habitat or win the competition eventually, of bistable wave for a 3-

species time-periodic lattice competition system with bistable nonlinearity, aiming to address

an open problem proposed in [J.-S. Guo et al, The sign of traveling wave speed in bistable

dynamics, Discret. Contin. Dyn. Syst., 40 (2020), 3451]. As a first step, by transforming the

competition system to a cooperative one, we study the asymptotic behavior for the bistable

wave profile and then prove the uniqueness of the bistable wave speed. Secondly, we utilize

comparison principle and build up two couples of upper and lower solutions to judge the

sign of the bistable wave speed which provides partially the answer to the open problem.

As an application, we reduce the time-periodic system to a space-time homogeneous system,

we obtain the corresponding criteria and carry out numerical simulations to illustrate the

availability of our results. Moreover, an interesting phenomenon we found is that the two

weak competitors can wipe out the strong competitor under some circumstances.

Keywords and Phrases: Propagation direction, bistable wave, lattice system

2020 Mathematics Subject Classifications: Primary 35A01, 35C07, 35K57.

1 Introduction

This paper is devoted to the propagation direction, which is determined by the sign of wave

speed, of traveling wave solutions (TWS) for the following bistable lattice system
u′j(t) = d1(t)D2[uj ](t) + uj(t)(r1(t)− a11(t)uj(t)− a12(t)vj(t)),
v′j(t) = d2(t)D2[vj ](t) + vj(t)(r2(t)− b11(t)vj(t)− b12(t)uj(t)− b13(t)wj(t)),
w′j(t) = d3(t)D2[wj ](t) + wj(t)(r3(t)− c11(t)wj(t)− c12(t)vj(t)), j ∈ Z, t > 0.

(1.1)
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In model (1.1) and in the sense of biology, one can interpret uj(t), vj(t) and wj(t) as the pop-

ulation densities of three species at position j and time t respectively, di(t) as the diffusivity

coefficient and ri(t) as the growth rate of the species. Here, the coefficients a1i(t), c1i(t), i = 1, 2

and dk(t), b1k(t), k = 1, 2, 3 are assumed to be positive T -periodic functions with T being a

positive number. Biologically speaking, a1i(t), b1k(t), c1i(t) are the intra-specific competitive co-

efficients as i = k = 1, while i = 2 or k = 2, 3, they represent the inter-specific competitive

coefficients. The term D2[sj ](t) appeared in (1.1) is the second order central difference and is

defined as D2[sj ](t) := s(t, j + 1) + s(t, j − 1)− 2s(t, j) for s = u, v, w. Obviously, system (1.1)

is a competitive system, it models such a relationship between three species: v competes with

u and w for common resources, while there is no competition between u and w. The biological

interpretation is that species u and w have different preferences for food resources, while species

v has the same food preferences as u and w.

As we all know, nature is a constantly changing and relatively stable system, in which

competition for survival between species is a common phenomenon in nature. Therefore, to

study the dynamic behavior between different species, it is necessary to study the phenomenon

of competition between species and establish a reasonable model. Lotka-Volterra competitive

diffusion system is one of the classical biological models to describe inter- and intra-specific

interactions. When the environment is assumed to be homogenous, the general form of 3-species

Lotka-Volterra competition diffusion model in the above biological context is as follows:
ut = d1uxx + r1u(1− u− a1v),

vt = d2vxx + r2v(1− v − a2u− a3w),

wt = d3wxx + r3w(1− w − a4v), t ∈ R+, x ∈ R,
(1.2)

where dk, rk, k = 1, 2, 3 and al, l = 1, 2, 3, 4 are positive constants. As a matter of fact, system

(1.2) can be regarded as an extension of the classic 2-species Lotka-Volterra system which has

been studied extensively in past decades, see for examples [1,12,21–23,29,32] and more references

therein. Due to the benefit from the classic Lotka-Volterra system in application of ecology, more

and more works also have been devoted to the system (1.2). For instance, we refer the readers

to [14,26] for the selection mechanism of minimum wave speed in the monostable model; [4] for

the stability of monotone traveling wave solutions; [5] for the exact traveling wave solutions of

(1.2) with nontrivial three components; [25] for the uniqueness of traveling wavefronts; [13, 33]

for the sign of wave speed in the bistable model. Related to the present paper, we particularly

mention that Guo et al [13] studied two different cases for system (1.2): (1) the case where

two species are weakly competitive and one species is strongly competitive, (2) the case where

all three species are very strong competitors. They obtained some new observations in contrast

with the 2-species Lotka-Volterra model. In addition to system (1.2), we further refer the readers

to [11,15,17,28,31] for discrete three-species competition system; [8] and [19] for three-component

competition system with nonlocal dispersal; [18, 24] for competitive-cooperative Lotka-Volterra

system of three species.

In their recent paper, besides the model (1.2), Guo et al [13] also proposed a discrete version

2



of (1.2) as below
u′j(t) = d1D2[uj ](t) + r1[uj(1− uj − b2vj)](t),
v′j(t) = d2D2[vj ](t) + r2[vj(1− b1uj − vj − b3wj)](t),
w′j(t) = d3D2[wj ](t) + r3[wj(1− b2vj − wj)](t), t ∈ R+, j ∈ Z,

(1.3)

in which, the parameters dk, rk and bk, k = 1, 2, 3 are positive numbers and can be interpreted

as the ones in system (1.2). In (1.3), although the sign of wave speed of (1.2) has been addressed

for certain special cases, it is still largely left open for the discrete case (1.3). One of the reasons

is that their method used on system (1.2) relies on the integration of the corresponding wave

profile system, so it seems that such a method can’t be applied to system (1.3) directly due

to the central difference involved in (1.3). Another might be that the combination of patchy

environments and periodicity can make the corresponding analysis more difficult. In this paper,

we try to make some progress in this direction and this is our main motivation. Our strategy

is to use the upper-lower solution method to investigate the sign of the bistable wave speed of

(1.1). As a matter of fact, this method has been proved to be valid in this subject for several

diffusion systems, see for instances [22,26,29].

In recent years, an increasing number of scholars are attracted to traveling wave solutions that

have advantages in describing the development, migration and invasion of biological populations.

In particular, the sign of wave speed of traveling wave solution can be used to explain the outcome

of competition between different species which makes it a meaningful topic. In this paper, we

will study the propagation direction of traveling wave solutions for (1.1) which is a lattice

competition system. To the best of our knowledge, the research of lattice dynamical systems

which is more in line with nature originated from Bunimovich and Sinai [3] in 1988. After that,

lattice dynamical models are widely used in biological issues, see for examples [7,10,16,27,29,30].

Generally speaking, it is more effective in case of the species live in patchy environments.

Obviously, the corresponding space-homogenous ordinary differential system of (1.1) is as

follows, 
u′(t) = u(t)[r1(t)− a11(t)u(t)− a12(t)v(t)],

v′(t) = v(t)[r2(t)− b11(t)v(t)− b12(t)u(t)− b13(t)w(t)],

w′(t) = w(t)[r3(t)− c11(t)w(t)− c12(t)v(t)], t ∈ R+.

(1.4)

It is easy to see that system (1.4) at least has three nonnegative T -periodic solutions, which

are the equilibrium points of (1.1). We denote them by e0 := (0, 0, 0), e1 := (0, q(t), 0), e2 :=

(p(t), 0, r(t)) respectively, in which p(t), q(t), r(t) can be expressed as

p(t) =
p0e

∫ t
0 r1(s)ds

p0
∫ t
0 a11(s)e

∫ s
0 r1(θ)dθds+ 1

, p0 =
e
∫ T
0 r1(s)ds − 1∫ T

0 a11(s)e
∫ s
0 r1(θ)dθds

,

q(t) =
q0e

∫ t
0 r2(s)ds

q0
∫ t
0 b11(s)e

∫ s
0 r2(θ)dθds+ 1

, q0 =
e
∫ T
0 r2(s)ds − 1∫ T

0 b11(s)e
∫ s
0 r2(θ)dθds

,

3



r(t) =
r0e

∫ t
0 r3(s)ds

r0
∫ t
0 c11(s)e

∫ s
0 r3(θ)dθds+ 1

, r0 =
e
∫ T
0 r3(s)ds − 1∫ T

0 c11(s)e
∫ s
0 r3(θ)dθds

.

It is direct to check that p(t), q(t) and r(t) are T -periodic functions and satisfy p(t + T ) =

p(t), q(t+ T ) = q(t) and r(t+ T ) = r(t) for all t ∈ R+.

Since our main focus is on bistable waves of (1.1), we have to make the following assumption

throughout this paper:

(A)
∫ T
0 r1(t)dt <

∫ T
0 a12(t)q(t)dt,

∫ T
0 r2(t)dt <

∫ T
0 b12(t)p(t) + b13(t)r(t)dt and

∫ T
0 r3(t)dt <∫ T

0 c12(t)q(t)dt,

so that, e1 and e2 are linearly stable equilibrium points.

As mentioned above, we are concerned with periodic traveling wave of system (1.1), which

bears the form of uj(t)vj(t)

wj(t)

 =

U(t, j + ct)

V (t, j + ct)

W (t, j + ct)

 =:

U(t, z)

V (t, z)

W (t, z)

 , z = j + ct, (1.5)

satisfying U(t+ T, z)

V (t+ T, z)

W (t+ T, z)

 =

U(t, z)

V (t, z)

W (t, z)

 ,

and subjects to the boundary conditions

(U, V,W )(t,−∞) = (0, 0, 0), (U, V,W )(t,+∞) = (1, 1, 1), (1.6)

where c is called as the wave speed, (U, V,W ) are called as the wave profile. The limits in (1.6)

holds uniformly in t ∈ R+.

After a substitution of (1.5), (1.1) can be rewritten as a wave profile system
Ut + cUz = d1(t)D2[U ](t, z) + U(r1(t)− a11(t)U − a12(t)V ),

Vt + cVz = d2(t)D2[V ](t, z) + V (r2(t)− b11(t)V − b12(t)U − b13(t)W ),

Wt + cWz = d3(t)D2[W ](t, z) +W (r3(t)− c11(t)W − c12(t)V ),

(1.7)

where D2[S](t, z) = S(t, z+ 1) +S(t, z−1)−2S(t, z) for S = U, V,W . Via the following changes

Φ(t, z) =
p(t)− U(t, z)

p(t)
,Ψ(t, z) =

V (t, z)

q(t)
,Θ(t, z) =

r(t)−W (t, z)

r(t)
,

4



system (1.7) can be converted into a cooperative system
d1(t)D2[Φ](t, z)− cΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ] = Φt,

d2(t)D2[Ψ](t, z)− cΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1− Φ)− b13(t)r(t)(1−Θ)] = Ψt,

d3(t)D2[Θ](t, z)− cΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ] = Θt,

(1.8)

with periodic conditions and boundary conditions (1.6) become{
(Φ,Ψ,Θ)(t, z) = (Φ,Ψ,Θ)(t+ T, z),

(Φ,Ψ,Θ)(t,−∞) = (0, 0, 0), (Φ,Ψ,Θ)(t,+∞) = (1, 1, 1).

For the sake of convenience, we shall call the first equation of (1.8) as Φ-equation, the second

equation as Ψ-equation and the last one as Θ-equation throughout this paper. Note that the

existence of bistable periodic traveling wave solution of (1.1) can be proved by following the

ideas in [6, 15], or by the abstract theory established in [9].

The remainder of this paper is organized as follows. In Sect.2, we investigate the asymp-

totic behaviors of Φ(t, z),Ψ(t, z) and Θ(t, z) as the co-moving coordinate z tends to infinity,

upon which the uniqueness of bistable wave speed is considered. In Sect.3, we derive two crucial

theorems concerning the determination of the sign of the bistable wave speed by employing com-

parison principle. We will construct suitable upper/lower solutions to obtain explicit conditions

in Sect.4 and the results of numerical simulation are shown in Sect.5.

2 Uniqueness of bistable wave-speed

To facilitate the forthcoming calculation and statement, we define some mathematical notations

as follows:

f(t) :=
1

T

∫ T

0
f(t)dt,

∆1(t) := b11(t)q(t)− b12(t)p(t)− b13(t)r(t),
∆2(t) := a11(t)p(t)− a12(t)q(t),
∆3(t) := c11(t)r(t)− c12(t)q(t),
Γ1(t, µ) := d1(t)(e

µ + e−µ − 2)− cµ− a11(t)p(t),
Γ2(t, µ) := d3(t)(e

µ + e−µ − 2)− cµ− c11(t)r(t),
Γ3(t, µ) := d2(t)(e

µ + e−µ − 2) + cµ− b11(t)q(t).

To investigate the asymptotic behavior of the bistable wave profile, we denote the unique

positive solutions of the following equations

d2(t)(e
µ + e−µ − 2)− cµ+ ∆1(t) = 0,

d1(t)(e
µ + e−µ − 2)− cµ− a11(t)p(t) = 0,

d3(t)(e
µ + e−µ − 2)− cµ− c11(t)r(t) = 0,

5



by µ1(c), µ2(c), µ3(c) respectively. Moreover, by a simple analysis it is not hard to find µ1(c),

µ2(c), µ3(c) are increasing functions in c. And µ4(c), µ5(c), µ6(c) respectively express the unique

positive roots of the following equations in turn:

d1(t)(e
µ + e−µ − 2) + cµ+ ∆2(t) = 0,

d3(t)(e
µ + e−µ − 2) + cµ+ ∆3(t) = 0,

d2(t)(e
µ + e−µ − 2) + cµ− b11(t)q(t) = 0.

Here, µ4(c), µ5(c), µ6(c) are decreasing functions in c.

Based on the above notations, we are already to give the following lemma.

Lemma 2.1 As z → −∞, the wave profile (Φ,Ψ,Θ)(t, z) behave likeΦ(t, z)

Ψ(t, z)

Θ(t, z)

 ∼ A1

φ∗01(t)ψ01(t)

θ∗01(t)

 eµ1z +A2

φ01(t)0

0

 eµ2z +A3

 0

0

θ01(t)

 eµ3z, (2.1)

where µ1 6= µ2 6= µ3 and it holds uniformly in t ∈ R+. As z →∞, the wave profile (Φ,Ψ,Θ)(t, z)

behave likeΦ(t, z)

Ψ(t, z)

Θ(t, z)

 ∼
1

1

1

−B1

φ11(t)ψ∗11(t)

0

 e−µ4z −B2

 0

ψ∗∗11(t)

θ11(t)

 e−µ5z −B3

 0

ψ11(t)

0

 e−µ6z, (2.2)

where µ4 6= µ5 6= µ6 and it holds uniformly in t ∈ R+. In the above formulas, Ai, Bi, i =

1, 2, 3 are nonnegative numbers. The functions ψ01(t), φ01(t), θ01(t), φ
∗
01(t), θ

∗
01(t) are defined as

(2.6),(2.10),(2.11),(2.13),(2.14) respectively; and φ11(t), θ11(t), ψ11(t), ψ
∗
11(t), ψ

∗∗
11(t) are defined

as (2.17),(2.18),(2.21),(2.22),(2.23) respectively.

Proof. First, we are concerned about the situation of z → −∞. It is clear that the linear

system of (1.8) around the equilibrium (0, 0, 0) can be represented by
d1(t)D2[Φ̂](t, z)− cΦ̂z + a12(t)q(t)Ψ̂− a11(t)p(t)Φ̂− Φ̂t = 0,

d2(t)D2[Ψ̂](t, z)− cΨ̂z + [b11(t)q(t)− b12(t)p(t)− b13(t)r(t)]Ψ̂− Ψ̂t = 0,

d3(t)D2[Θ̂](t, z)− cΘ̂z + c12(t)q(t)Ψ̂− c11(t)r(t)Θ̂− Θ̂t = 0.

(2.3)

Substituting Ψ̂ = ψ01(t)e
µz into the second equation of (2.3), we can obtain corresponding

characteristic equation

d2(t)(e
µ + e−µ − 2)− cµ+ ∆1(t)−

ψ′01(t)

ψ01(t)
= 0, (2.4)

where ψ01(t) > 0 is a T -periodic function. Integrating both sides of equation (2.4) from 0 to T
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gives

d2(t)(e
µ + e−µ − 2)− cµ+ ∆1(t) = 0. (2.5)

Noticing
∫ T
0 r2(t)dt =

∫ T
0 b11(t)q(t)dt, and recalling the assumption (A), it can be obtained that

∆1(t) < 0. Thereby equation (2.5) has a unique positive root defined as µ1 := µ1(c). By putting

µ = µ1 into (2.4), ψ01(t) can be calculated as

ψ01(t) = ψ01 exp

(∫ t

0

(
d2(s)(e

µ1 + e−µ1 − 2)− cµ1 + ∆1(s)
)
ds

)
, (2.6)

with ψ01(0) = ψ01 > 0. Thus, the asymptotic behavior of Ψ(t, z) as z → −∞ can be expressed

as

Ψ(t, z) ∼ A1ψ01(t)e
µ1z. (2.7)

Using the same approach, ignoring a12(t)q(t)Ψ̂ and c12(t)q(t)Ψ̂. It is clear that the linear equa-

tions for Φ̂ and Θ̂ of (2.3) respectively are as following:{
d1(t)D2[Φ̂](t, z)− cΦ̂z − a11(t)p(t)Φ̂− Φ̂t = 0,

d3(t)D2[Θ̂](t, z)− cΘ̂z − c11(t)r(t)Θ̂− Θ̂t = 0.
(2.8)

Setting Φ̂ = φ01(t)e
µz and Θ̂ = θ01(t)e

µz, (2.8) can be simplified as
d1(t)(e

µ + e−µ − 2)− cµ− a11(t)p(t)−
φ′01(t)

φ01(t)
= 0,

d3(t)(e
µ + e−µ − 2)− cµ− c11(t)r(t)−

θ′01(t)

θ01(t)
= 0.

(2.9)

Likewise, we can obtain

φ01(t) = φ01 exp

(∫ t

0
Γ1(s, µ2)ds

)
, (2.10)

θ01(t) = θ01 exp

(∫ t

0
Γ2(s, µ3)ds

)
. (2.11)

In the first and third equation of (2.3), if the terms containing Ψ̂ are not considered, the asymp-

totic behaviors of Φ̂ and Θ̂ when z → −∞ can be expressed as A2φ01(t)e
µ2z and A3θ01(t)e

µ3z.

Next, we consider (2.3). Replacing Ψ̂ with A1ψ01(t)e
µ1z, we get{

d1(t)D2[Φ̂](t, z)− cΦ̂z − a11(t)p(t)Φ̂− Φ̂t = −A1a12(t)q(t)ψ01(t)e
µ1z,

d3(t)D2[Θ̂](t, z)− cΘ̂z − c11(t)r(t)Θ̂− Θ̂t = −A1c12(t)r(t)ψ01(t)e
µ1z.

It is not hard to obtain {
Φ(t, z) ∼ A1φ

∗
01(t)e

µ1z +A2φ01(t)e
µ2z,

Θ(t, z) ∼ A1θ
∗
01(t)e

µ1z +A3θ01(t)e
µ3z.

(2.12)
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Here

φ∗01(t) = exp

(∫ t

0
Γ1(s, µ1)ds

)
·
[ ∫ t

0
a12(s)q(s)ψ01(s) exp

(
−
∫ s

0
Γ1(τ, µ1)dτ

)
ds+ φ∗01(0)

]
,

(2.13)

θ∗01(t) = exp

(∫ t

0
Γ2(s, µ1)ds

)
·
[ ∫ t

0
c12(s)r(s)ψ01(s) exp

(
−
∫ s

0
Γ2(τ, µ1)dτ

)
ds+ θ∗01(0)

]
,

(2.14)

with

φ∗01(0) =

∫ T
0 a12(s)q(s)ψ01(s) exp

(
−
∫ s
0 Γ1(τ, µ1)dτ

)
ds

exp

(
−
∫ T
0 Γ1(s, µ1)ds

)
− 1

,

θ∗01(0) =

∫ T
0 c12(s)r(s)ψ01(s) exp

(
−
∫ s
0 Γ2(τ, µ1)dτ

)
ds

exp

(
−
∫ T
0 Γ2(s, µ1)ds

)
− 1

.

By making use of the method of successive approximation (see, e.g. [20]), we conclude that (2.7)

and (2.12) lead to (2.1).

Next, we intend to consider the asymptotic behavior of (Φ,Ψ,Θ)(t, z) as z →∞. The linear

system of (1.8) around the equilibrium (1, 1, 1) can be expressed as following:
d1(t)D2[Φ̂](t, z)− cΦ̂z + [a11(t)p(t)− a12(t)q(t)]Φ̂− Φ̂t = 0,

d2(t)D2[Ψ̂](t, z)− cΨ̂z − b11(t)q(t)Ψ̂ + b12(t)p(t)Φ̂ + b13(t)r(t)Θ̂− Ψ̂t = 0,

d3(t)D2[Θ̂](t, z)− cΘ̂z + [c11(t)r(t)− c12(t)q(t)]Θ̂− Θ̂t = 0.

(2.15)

In the same way, the characteristic equations of the first and last of (2.15) are given by
d1(t)(e

−µ + eµ − 2) + cµ+ ∆2(t)−
φ′11(t)

φ11(t)
= 0,

d3(t)(e
−µ + eµ − 2) + cµ+ ∆3(t)−

θ′11(t)

θ11(t)
= 0,

(2.16)

where φ11(t) > 0, θ11(t) > 0 are T -periodic functions. From (2.16), we can solve that

φ11(t) = φ11 exp

(∫ t

0

(
d1(s)(e

µ4 − e−µ4 − 2) + cµ4 + ∆2(s)
)
ds

)
, (2.17)

θ11(t) = θ11 exp

(∫ t

0

(
d3(s)(e

µ5 − e−µ5 − 2) + cµ5 + ∆3(s)
)
ds

)
, (2.18)

with φ11 := φ11(0) > 0, θ11 := θ11(0) > 0. The asymptotic behaviors of Φ(t, z) and Θ(t, z) as
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z →∞ are given by {
Φ(t, z) ∼ 1−B1φ11(t)e

−µ4z,

Θ(t, z) ∼ 1−B2θ11(t)e
−µ5z.

(2.19)

Following a similar argument for (2.12), we can get

Ψ(t, z) ∼ 1−B1ψ
∗
11(t)e

−µ4z −B2ψ
∗∗
11(t)e−µ5z −B3ψ11(t)e

−µ6z, as z →∞. (2.20)

Here

ψ11(t) = ψ11(0) exp

(∫ t

0
Γ3(s, µ6)ds

)
, (2.21)

ψ∗11(t) = exp

(∫ t

0
Γ3(s, µ4)ds

)
·
[ ∫ t

0
b12(s)p(s)φ11(s) exp

(
−
∫ s

0
Γ3(τ, µ4)dτ

)
ds+ ψ∗11(0)

]
,

(2.22)

ψ∗∗11(t) = exp

(∫ t

0
Γ3(s, µ5)ds

)
·
[ ∫ t

0
b13(s)r(s)θ11(s) exp

(
−
∫ s

0
Γ3(τ, µ5)dτ

)
ds+ ψ∗∗11(0)

]
,

(2.23)

with

ψ∗11(0) =

∫ T
0 b12(s)p(s)φ11(s) exp

(
−
∫ s
0 Γ3(τ, µ4)dτ

)
ds

exp

(
−
∫ T
0 Γ3(s, µ4)ds

)
− 1

,

ψ∗∗11(0) =

∫ T
0 b13(s)r(s)θ11(s) exp

(
−
∫ s
0 Γ3(τ, µ5)dτ

)
ds

exp

(
−
∫ T
0 Γ3(s, µ5)ds

)
− 1

.

Again, by the method of successive approximation, we can get (2.2) from (2.19) and (2.20). The

proof is thus complete. �

Remark 2.2 We make some explanations for the symbol “∼” appeared in (2.1) and (2.2).

Take the first element, namely Φ(t, z), in (2.1) for an example. In the case of µ2 < µ1 < µ3 or

µ2 < µ3 < µ1, we mean Φ(t, z) = A2φ01(t)e
µ2z + o(eµ2z) uniformly in t ∈ R+ where the symbol

o comes from the classic asymptotic definition.

The uniqueness of the wave speed of the bistable wave solutions of (1.8) is presented in the

following theorem. Instead of using the global stability of traveling wave front to prove the

uniqueness, we employ the idea from [21].

Theorem 2.3 Suppose that (1.8) has two bistable traveling wave solutions (c1,Φ1(t, z),Ψ1(t, z),

Θ1(t, z)) with z = x+ c1t and (c2,Φ2(t, z),Ψ2(t, z),Θ2(t.z)) with z = x+ c2t, then c1 = c2.

Proof. To prove the theorem, we use a contradiction argument. Suppose that c2 > c1. Combin-

ing the monotonicity of µi(c), i = 1, 2, 3, 4, 5, 6 and asymptotic behavior established in Lemma
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2.1, we know there exists a suitable positive constants z0 (might be sufficiently large) such that

(Φ2,Ψ2,Θ2)(t, z − z0) < (Φ1,Ψ1,Θ1)(t, z), (t, z) ∈ R+ × R.

Specially, when t = 0, the initial data satisfies

(Φ2,Ψ2,Θ2)(0, j − z0) < (Φ1,Ψ1,Θ1)(0, j), j ∈ Z.

By comparison principle, we have

(Φ2,Ψ2,Θ2)(t, j + c2t− z0) ≤ (Φ1,Ψ1,Θ1)(t, j + c1t).

In particular, there holds

Ψ2(t, j + c2t− z0) ≤ Ψ1(t, j + c1t).

Setting z̄ = j + c1t so that Ψ1(t, z̄) = 1
3 , we get

1

3
= Ψ1(t, z̄) ≥ Ψ2(t, z̄ + (c2 − c1)t− z0)→ 1, as t→∞,

and a contradiction then follows, thus c2 ≤ c1. By a similar manner, it yields c2 ≥ c1. In

summary, c1 = c2. The proof is complete. �

3 The determination of the sign of bistable wave speed

In this section, we aim at establishing two results so that the sign of bistable wave speed can be

determined by comparison. To this end, we first make the following change

ũj(t) = 1− uj(t)

p(t)
, ṽj(t) =

vj(t)

q(t)
, w̃j(t) = 1− wj(t)

r(t)
, t ∈ R+, j ∈ Z,

such that system (1.1) can be rewritten as
ũ′j(t) = d1(t)D2[ũj ](t) + f(ũj(t), ṽj(t), w̃j(t)),

ṽ′j(t) = d2(t)D2[ṽj ](t) + g(ũj(t), ṽj(t), w̃j(t)),

w̃′j(t) = d3(t)D2[w̃j ](t) + h(ũj(t), ṽj(t), w̃j(t)), t ∈ R+, j ∈ Z,
(3.1)

where

f(ũj(t), ṽj(t), w̃j(t)) : = (1− ũj(t))[a12(t)q(t)ṽj(t)− a11(t)p(t)ũj(t)],
g(ũj(t), ṽj(t), w̃j(t)) : = ṽj(t)[b11(t)q(t)(1− ṽj(t))− b12(t)p(t)(1− ũj(t))

− b13(t)r(t)(1− w̃j(t))],
h(ũj(t), ṽj(t), w̃j(t)) : = (1− w̃j(t))[c12(t)q(t)ṽj(t)− c11(t)r(t)w̃j(t)].

To proceed, we investigate two eigen-problems of the ODE system of (3.1) around (0, 0, 0)
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and (1, 1, 1). Denote λ0, λ1 by the eigenvalues of the following systems respectively

dφ

dt
− a12(t)q(t)ψ(t) + a11(t)p(t)φ(t) = λφ(t),

dψ

dt
− [b11(t)q(t)− b12(t)p(t)− b13(t)r(t)]ψ(t) = λψ(t),

dθ

dt
− c12(t)q(t)ψ(t) + c11(t)r(t)θ(t) = λθ(t),

φ(t+ T ) = φ(t), ψ(t+ T ) = ψ(t), θ(t+ T ) = θ(t),

and 

dφ

dt
− [a11(t)p(t)− a12(t)q(t)]φ(t) = λφ(t),

dψ

dt
+ b11(t)q(t)ψ(t)− b12(t)p(t)φ(t)− b13(t)r(t)θ(t) = λψ(t),

dθ

dt
− [c11(t)r(t)− c12(t)q(t)]θ(t) = λθ(t),

φ(t+ T ) = φ(t), ψ(t+ T ) = ψ(t), θ(t+ T ) = θ(t).

Let (φ0(t), ψ0(t), θ0(t)) and (φ1(t), ψ1(t), θ1(t)) be the eigenfunctions corresponding to λ0 and

λ1, respectively. It is easy to calculate that

φ0(t) = (a0(t) + φ0(0)) exp

(
λ0t−

∫ t

0
a11(s)p(s)ds

)
,

ψ0(t) = exp

(∫ t

0
(b11(s)q(s)− b12(s)p(s)− b13(s)r(s))ds+ λ0t

)
,

θ0(t) = (b0(t) + θ0(0)) exp

(
λ0t−

∫ t

0
c11(s)r(s)ds

)
,

where

λ0 = −∆1(t), ψ0(0) = 1,

φ0(0) =

∫ T
0 a12(t)q(t)ψ0(t) exp(

∫ t
0 a11(τ)p(τ)dτ)− λ0t)dt

exp

(∫ T
0 a11(t)q(t)dt− λ0T

)
− 1

,

θ0(0) =

∫ T
0 c12(t)q(t)ψ0(t) exp(

∫ t
0 c11(τ)r(τ)dτ)− λ0t)dt

exp

(∫ T
0 c11(t)r(t)dt− λ0T

)
− 1

,

a0(t) =

∫ t

0
a12(s)q(s)ψ0(s) exp

(∫ s

0
a11(τ)p(τ)dτ − λ0s

)
ds,

b0(t) =

∫ t

0
c12(s)q(s)ψ0(s) exp

(∫ s

0
c11(τ)r(τ)dτ − λ0s

)
ds,
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and 

φ1(t) = exp

(∫ t

0
(a11(s)p(s)− a12(s)q(s))ds+ λ1t

)
,

ψ1(t) = (c1(t) + ψ1(0)) exp

(
λ1t−

∫ t

0
b11(s)q(s)ds

)
,

θ1(t) = exp

(∫ t

0
(c11(s)r(s)− c12(s)q(s))ds+ λ1t

)
,

where

λ1 = −∆2(t) = −∆3(t), φ0(0) = θ0(0) = 1,

ψ1(0) =

∫ T
0 (b12(t)p(t)φ1(t) + b13(t)r(t)θ1(t)) exp(

∫ t
0 b11(s)q(s)ds− λ1t)dt

exp

(∫ T
0 b11(t)q(t)dt− λ1T

)
− 1

,

c1(t) =

∫ t

0
(b12(s)p(s)φ1(s) + b13(s)r(s)θ1(s)) exp

(∫ s

0
b11(τ)q(τ)dτ − λ1s

)
ds.

Next, to construct a pair of crucial upper and lower solutions, we define the transition functions

as follows
p1(t, x) = ζ(x)φ1(t) + (1− ζ(x))φ0(t),

p2(t, x) = ζ(x)ψ1(t) + (1− ζ(x))ψ0(t),

p3(t, x) = ζ(x)θ1(t) + (1− ζ(x))θ0(t),

where ζ(x) is a smooth function with ζ(x) = 0 for x ≤ −2 and ζ(x) = 1 for x ≥ 2.

In order to discuss the sign of bistable wave speed, we give the following two lemmas.

Lemma 3.1 For any ξ± ∈ R, there exist positive numbers β, σ, δ such that (u+j , v
+
j , w

+
j )(t) and

(u−j , v
−
j , w

−
j )(t) defined as

u±j (t) = Φ(t, j + ct+ ξ± ± σδ(1− e−βt))± δp1(t, j + ct+ ξ± ± σδ(1− e−βt))e−βt,

v±j (t) = Ψ(t, j + ct+ ξ± ± σδ(1− e−βt))± δp2(t, j + ct+ ξ± ± σδ(1− e−βt))e−βt,

w±j (t) = Θ(t, j + ct+ ξ± ± σδ(1− e−βt))± δp3(t, j + ct+ ξ± ± σδ(1− e−βt))e−βt,

(3.2)

form a generalized upper/lower solution of the system (3.1).

Proof. The proof is similar to the ideas in Lemma 3.1 in article [2], Thus we omit it for

simplicity here. �

Lemma 3.2 Suppose that the initial data (ũj(0), ṽj(0), w̃j(0)) satisfies

0 < ũj(0) < 1, 0 < ṽj(0) < 1, 0 < w̃j(0) < 1,

and

u−j (0) ≤ ũj(0) ≤ u+j (0), v−j (0) ≤ ṽj(0) ≤ v+j (0), w−j (0) ≤ w̃j(0) ≤ w+
j (0),
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then the solution (ũj(t), ṽj(t), w̃j(t)) of (3.1) fulfills

u−j (t) ≤ ũj(t) ≤ u+j (t), v−j (t) ≤ ṽj(t) ≤ v+j (t), w−j (t) ≤ w̃j(t) ≤ w+
j (t)

for all t ∈ R+, j ∈ Z.

Next, we use the comparison principle based on the above two lemmas to establish the two

crucial theorems.

Theorem 3.3 Assume that (1.8) has a nonnegative non-decreasing upper solution (Φ(t, z),

Ψ(t, z),Θ(t, z)) with speed c < 0 and Φ(t, z),Ψ(t, z) and Θ(t, z) are T -period functions rela-

tive to t, satisfying

(Φ,Ψ,Θ)(t,−∞) < (1, 1, 1), (Φ,Ψ,Θ)(t,∞) ≥ (1, 1, 1), (3.3)

then

c ≤ c < 0.

Proof. For contradiction, we assume that c > c on the contrary and choose the initial datum

(ũj(0), ṽj(0), w̃j(0)) of (3.1) which is continuous, nondecreasing and satisfies

ũj(0) = ṽj(0) = w̃j(0) = 0, for j ≤ −J,

and

ũj(0) = ṽj(0) = w̃j(0) = 1− η, for j ≥ J,

for a sufficiently large positive integer J and a small enough number η > 0. This together with

(3.3) enables us to further suppose that

ũj(0) ≤ Φ(0, j), ṽj(0) ≤ Ψ(0, j), w̃j(0) ≤ Θ(0, j), for j ∈ Z.

Then, by the comparison principle, we have

ũj(t) ≤ Φ(t, z) = Φ(t, j + ct), ṽj(t) ≤ Ψ(t, z) = Ψ(t, j + ct), w̃j(t) ≤ Θ(t, z) = Θ(t, j + ct) (3.4)

for all (t, j) ∈ R+ × Z. On the other hand, by Lemma 3.2, we have

ũj(t) ≥ Φ(t, j + ct+ ξ− − σδ(1− e−βt))− δp1(t, j + ct+ ξ− − σδ(1− e−βt))e−βt,
ṽj(t) ≥ Ψ(t, j + ct+ ξ− − σδ(1− e−βt))− δp2(t, j + ct+ ξ− − σδ(1− e−βt))e−βt,
w̃j(t) ≥ Θ(t, j + ct+ ξ− − σδ(1− e−βt))− δp3(t, j + ct+ ξ− − σδ(1− e−βt))e−βt.

(3.5)

Again, in view of (3.3), we know that there exists a number z0 = j + ct such that Φ(t, z0) < 1.

Combining (3.4) and (3.5), we can derive

1 > Φ(t, z0) ≥ Φ(t, z0 + (c− c)t+ ξ−−σδ(1− e−βt))− δp1(t, j+ ct+ ξ−−σδ(1− e−βt))e−βt → 1,
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as t→∞, which gives a contradiction. Hence, c ≤ c < 0. The proof is complete. �

Theorem 3.4 Suppose that (1.8) has a nonnegative non-decreasing lower solution (Φ(t, z),

Ψ(t, z),Θ(t, z)) with speed c > 0 and Φ(t, z),Ψ(t, z) and Θ(t, z) are T -period functions rela-

tive to t, satisfying

(Φ,Ψ,Θ)(t,−∞) = (0, 0, 0) < (Φ,Ψ,Θ)(t,∞) ≤ (1, 1, 1), (3.6)

then

c ≥ c > 0.

Proof. The proof is similar to that of Theorem 3.3. By choosing proper initial data (depending

on (3.6)) and assume c < c for contradiction, we can obtain

Φ(t, j + ct) ≤ Φ(t, j + ct+ ξ+ + σδ(1− e−βt)) + δp1(t, j + ct+ ξ+ + σδ(1− e−βt))e−βt.

On the plane z = z1 := j + ct, we set Φ(t, z1) = 1
3 . Hence

1

3
= Φ(t, z1) ≤ Φ(t, z1 + (c− c)t+ ξ+ +σδ(1− e−βt)) + δp1(t, j+ ct+ ξ+ +σδ(1− e−βt))e−βt → 0,

as t→∞. Thus, we reach a contradiction. In short, c ≥ c > 0. The proof is complete. �

4 Sign of bistable wave speed with specific conditions

Although Theorems 3.3 and 3.4 provide two criteria about how to predict the sign of bistable

wave speed, explicit condition expressed by the model-parameter does not be presented. This

part aims to gain some of such conditions via constructing explicit upper and lower solutions

which seems to be nontrivial in contrast with the classic constructions, namely, the joint of a

constant function and an exponential function.

Theorem 4.1 The speed c of the bistable traveling wave solution of (1.8) is negative, if there

exist constants k1, k2 such that

−2d2(t)τ10 + d2(t)τ
2
10χ10 + b12(t)q(t)k1 + b13(t)r(t)k2 ≤ 0, (4.1)

and

1 <
a12(t)q(t)

a11(t)p(t) + ∆1(t) + [d2(t)− d1(t)]τ10
< k1 < min

t∈[0,T ]

{
d1(t)τ10(2− τ10χ10)

[d1(t)− d2(t)]τ10 −∆1(t)

}
, (4.2)

1 <
c12(t)q(t)

c11(t)r(t) + ∆1(t) + [d2(t)− d3(t)]τ10
< k2 < min

t∈[0,T ]

{
d3(t)τ10(2− τ10χ10)

[d3(t)− d2(t)]τ10 −∆1(t)

}
, (4.3)

where

τ10 = eµ1(0) + e−µ1(0) − 2, χ10 =
1

τ10 + 4 + 2
√
τ10 + 4

.
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Proof. To make the sign of the bistable wave speed to be negative, by Theorem 3.3, we only

need to construct an upper solution to (1.8). Let

Ψ(t, z) =
ψ01(t)

ψ01(t) + e−µ1(−ε)z
,

and redefine Φ(t, z),Θ(t, z), which are continuous functions, as follows

Φ(t, z) = min{1, k1Ψ(t, z)} =

{
k1Ψ(t, z), z ≤ z1(t),
1, z > z1(t),

(4.4)

Θ(t, z) = min{1, k2Ψ(t, z)} =

{
k2Ψ(t, z), z ≤ z2(t),
1, z > z2(t).

Here, 0 < ε� 1. For any fixed t ∈ R+, z1(t) and z2(t) are uniquely determined by k1Ψ(t, z1(t)) =

1 and k2Ψ(t, z2(t)) = 1 respectively. Without loss of generality, we may assume that k1 > k2
which implies z1(t) < z2(t), t ∈ R+, according to the monotonicity of Ψ(t, z) in z.

To proceed, we note that D2[Ψ] can be reduced to

D2[Ψ] = τ1Ψ(1−Ψ)(1− 2Ψ) + τ21Ψ
2
(1−Ψ)H1(t, z), (4.5)

where

τ1 = eµ1(−ε) + e−µ1(−ε) − 2, H1(t, z) =
e−µ1(−ε)z/ψ01(t)(1− e−µ1(−ε)z/ψ01(t))

(1 + e−µ1(−ε)(z+1)/ψ01(t))(1 + e−µ1(−ε)(z−1)/ψ01(t))
.

It is easy to check that H1(t, z) ≤ χ1 with

χ1 =
1

τ1 + 4 + 2
√
τ1 + 4

.

We first concentrate on the Ψ-equation. Substituting

Ψz = µ1Ψ(1−Ψ), Ψt =
ψ′01(t)

ψ01(t)
Ψ(1−Ψ)

and (4.5) into Ψ-equation, we have

d2(t)D2[Ψ](t, z) + εΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1− Φ)− b13(t)r(t)(1−Θ)]−Ψt

≤ Ψ(1−Ψ)

{
d2(t)τ1 + εµ1 + ∆1(t)−

ψ′01(t)

ψ01(t)
+ Ψ

(
− 2d2(t)τ1 + d2(t)τ

2
1χ1 + Y (t, z)

)}
≤ Ψ

2
(1−Ψ)

{
−2d2(t)τ1 + d2(t)τ

2
1χ1 + Y (t, z)

}
,
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where

Y (t, z) =
b12(t)p(t)(Φ−Ψ) + b13(t)r(t)(Θ−Ψ)

Ψ(1−Ψ)
.

Next, we have to discuss the maximum of Y (t, z) in the following cases.

(1) When z > z2(t), it is easy to realize that Φ(t, z) = 1,Θ(t, z) = 1, 1
k2
≤ Ψ(t, z) ≤ 1. Then

Y (t, z) =
b12(t)p(t) + b13(t)r(t)

Ψ
≤ k2

(
b12(t)p(t) + b13(t)r(t)

)
. (4.6)

(2) When z ≤ z1(t), it follows that Φ(t, z) = k1Ψ(t, z) and Θ(t, z) = k2Ψ(t, z). From (4.4), we

can infer that Ψ ≤ 1
k1

. Therefore, Y (t, z) can be rewritten as

Y (t, z) =
b12(t)p(t)(k1 − 1) + b13(t)r(t)(k2 − 1)

1−Ψ
≤ b12(t)p(t)(k1 − 1) + b13(t)r(t)(k2 − 1)

1− 1
k1

.

(4.7)

(3) When z1(t) < z ≤ z2(t), we have Φ(t, z) = 1 and Θ(t, z) = k2Ψ(t, z). Then

Y (t, z) =
b12(t)p(t)

Ψ
+
b13(t)r(t)(k2 − 1)

1−Ψ
.

It is easy to check that 1
k1
≤ Ψ ≤ 1

k2
, which results in

Y (t, z) ≤ b12(t)q(t)k1 + b13(t)r(t)k2. (4.8)

By comparing (4.6),(4.7), and (4.8), we find the maximum among them is b12(t)q(t)k1+b13(t)r(t)k2.

Thus, by assumption (4.1), we have

−2d2(t)τ1 + d2(t)τ
2
1χ1 +Y (t, z) ≤ −2d2(t)τ1 + d2(t)τ

2
1χ1 + b12(t)q(t)k1 + b13(t)r(t)k2 ≤ 0. (4.9)

Next, we consider the Φ-equation. There are four subcases needed to be discussed.

(i) When z ≥ z1(t) + 1, we get Φ(t, z) = 1 and hence

d1(t)D2[Φ](t, z) + εΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]− Φt = 0.

(ii) When z1(t) < z < z1(t) + 1, we notice that Φ(t, z − 1) = k1Ψ(t, z − 1),Φ(t, z + 1) =

Φ(t, z) = 1. Therefore, the Φ-equation can be evaluated by

d1(t)D2[Φ](t, z) + εΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]− Φt = d1(t)[k1Ψ(t, z − 1)− 1] ≤ 0,

using k1Ψ(t, z − 1) ≤ 1.

(iii) The case z1(t)− 1 < z ≤ z1(t) can be discussed together with the last case.
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(iv) When z ≤ z1(t)− 1, it follows from (4.4) that Φ(t, z) = k1Ψ(t, z). Thus,

d1(t)D2[Φ](t, z) + εΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]− Φt

≤ k1Ψ
{

(1−Ψ)

[
τ1(1− 2Ψ)d1(t) + τ21χ1Ψd1(t) + εµ1 −

ψ′01(t)

ψ01(t)

]
+ (1− k1Ψ)

[
a12(t)q(t)

k1
− a11(t)p(t)

]}
≤ k1ΨF1(Ψ),

where

F1(Ψ) := (1−Ψ)

[
τ1(1− 2Ψ)d1(t) + τ21χ1Ψd1(t) + εµ1 −

ψ′01(t)

ψ01(t)

]
+ (1− k1Ψ)

[
a12(t)q(t)

k1
− a11(t)p(t)

]
.

It is obvious that F ′′1 (Ψ) = 2d1(t)τ1(2 − τ1χ1) ≥ 0 (using τ1χ1 < 1), where the derivative

is respect to the variable Ψ. Therefore, F1(Ψ) is concave for Ψ ∈ [0, 1
k1

]. In can be easily

calculated that

F1(0) = d1(t)τ1 + εµ1 −
ψ′01(t)

ψ01(t)
+
a12(t)q(t)

k1
− a11(t)p(t)

= [d1(t)− d2(t)]τ1 −∆1(t) +
a12(t)q(t)

k1
− a11(t)p(t),

(4.10)

F1(
1

k1
) = (1− 1

k1
)

[
d1(t)τ1 +

1

k1
(τ21χ1 − 2τ1)d1(t) + εµ1 −

ψ′01(t)

ψ01(t)

]
.

For the purpose of proving F1(Ψ) < 0 for Ψ ∈ [0, 1
k1

], we only need to check that F1(0) < 0 and

F1(
1
k1

) < 0 which are ensured by (4.2) as ε→ 0+. To sum up the cases (i)-(iv), we have

d1(t)D2[Φ](t, z) + εΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]− Φt ≤ 0.

By a similar manner, we can infer from (4.3) that

d3(t)D2[Θ](t, z) + εΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ]−Θt ≤ 0.

As such, it is proved that (Φ,Ψ,Θ)(t, z) is an upper solution of (1.8). By Theorem 3.3, the proof

is complete. �

Theorem 4.2 The speed c of the bistable traveling wave solution of (1.8) satisfies c ≥ ε > 0

provided that

max{Π1(t),Π2(t)} < min
t∈[0,T ]

{
1− d2(t)(2τ20 + τ220)

b11(t)q(t)

}
. (4.11)

where

Π1(t) :=
a11(t)p(t) + [d1(t) + d1(t)τ20 + d2(t)]τ20 + ∆1(t)

a12(t)q(t)
,
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Π2(t) :=
c11(t)r(t) + [d3(t) + d3(t)τ20 + d2(t)]τ20 + ∆1(t)

c12(t)q(t)
,

and

τ20 = eµ1(0) + e−µ1(0) − 2.

Proof. We intend to construct a lower solution to show that the wave speed c is positive. Define

Ψ(t, z) =
kψ01(t)

ψ01(t) + e−µ1(ε)z
, Φ(t, z) = Θ(t, z) =

Ψ(t, z)

k

with 0 < ε� 1 and k satisfing

max{Π1(t),Π2(t)} < k < min
t∈[0,T ]

{
1− d2(t)(2τ2 + τ22 )

b11(t)q(t)

}
. (4.12)

By a similar computation with (4.5), we obtain

D2[Ψ] = τ2Ψ(1− Ψ

k
)(1− 2Ψ

k
) + τ22

Ψ2

k
(1− Ψ

k
)H2(t, z)

with

τ2 = eµ1(ε) + e−µ1(ε) − 2, H2(t, z) =
e−µ1(ε)z/ψ01(t)(1− e−µ1(ε)z/ψ01(t))

(1 + e−µ1(ε)(z+1)/ψ01(t))(1 + e−µ1(ε)(z−1)/ψ01(t))
.

On account of the lower bound of H2(t, z) is −1, we have

d2(t)D2[Ψ](t, z)− εΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1− Φ)− b13(t)r(t)(1−Θ)]−Ψt

≥ Ψ2

k
(1− Ψ

k
)

{
−2d2(t)τ2 − d2(t)τ22 + b11(t)q(t)(1− k)

}
.

Thanks to (4.12), we get

d2(t)D2[Ψ](t, z)− εΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1− Φ)− b13(t)r(t)(1−Θ)]−Ψt ≥ 0.

As for the Φ-equation and Θ-equation, we have the following estimation:

d1(t)D2[Φ](t, z)− εΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]− Φt

≥ Φ(1− Φ)

{
−d1(t)τ2 − d1(t)τ22 − d2(t)τ2 −∆1(t) + a12(t)q(t)k − a11(t)p(t)

}
,

and

d3(t)D2[Θ](t, z)− εΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ]−Θt

≥ Θ(1−Θ)

{
−d3(t)τ2 − d3(t)τ22 − d2(t)τ2 −∆1(t) + c12(t)q(t)k − c11(t)r(t)

}
,
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in which the assumption (4.12) is used. Let ε→ 0+, we can derive that

d1(t)D2[Φ](t, z)− εΦz + (1− Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]− Φt ≥ 0,

and

d3(t)D2[Θ](t, z)− εΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ]−Θt ≥ 0.

Thus, we proved that (Φ,Ψ,Θ)(t, z) is a lower solution of (1.8). By Theorem 3.4, the proof is

complete. �
As applications of Theorems 4.1 and 4.2, we want to provide partially the answer to the

open problem proposed in [13] associating to the following constant-coefficient system of (1.1):
u′j(t) = d1D2[uj ](t) + uj(t)(r1 − a11uj(t)− a12vj(t)),
v′j(t) = d2D2[vj ](t) + vj(t)(r2 − b11vj(t)− b12uj(t)− b13wj(t)),
w′j(t) = d3D2[wj ](t) + wj(t)(r3 − c11wj(t)− c12vj(t)), j ∈ Z, t > 0.

(4.13)

For system (4.13), the equilibrium points and bistable condition (A) become respectively

e0 := (0, 0, 0), e1 := (0,
r2
b11

, 0), e2 := (
r1
a11

, 0,
r3
c11

),

and

b11r1 < a12r2, a11c11r2 < b12c11r1 + a11b13r3, b11r3 < c12r2. (4.14)

Applying Theorems 4.1 and 4.2 to (4.13), we have the following two corollaries:

Corollary 4.3 The speed c of the bistable traveling wave solution of (4.13) is negative, if there

exist positive constants k1, k2 such that

−2d2τ10 + d2τ
2
10χ10 + b12

r2
b11

k1 + b13
r3
c11

k2 ≤ 0, (4.15)

and

1 <
a12

r2
b11

r1 + r2 − b12r1
a11
− b13r3

c11
+ (d2 − d1)τ10

<
d1τ10(2− τ10χ10)

(d1 − d2)τ10 − r2 + b12r1
a11

+ b13r3
c11

, (4.16)

1 <
c12

r2
b11

r3 + r2 − b12r1
a11
− b13r3

c11
+ (d2 − d3)τ10

<
d3τ10(2− τ10χ10)

(d3 − d2)τ10 − r2 + b12r1
a11

+ b13r3
c11

. (4.17)

Corollary 4.4 The speed c of the bistable traveling wave solution of (4.13) is positive provided
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that

max
{r1 + [d1 + d1τ20 + d2]τ20 + r2 − b12r1

a11
− b13r3

c11

a12
r2
b11

,

r3 + [d3 + d3τ20 + d2]τ20 + r2 − b12r1
a11
− b13r3

c11

c12
r2
b11

}
< min

t∈[0,T ]

{
1− d2(2τ20 + τ220)

r2

}
.

(4.18)

We can learn from Corollaries 4.3 and 4.4 that almost all of the parameters appeared in

(4.13) should be taken into account in the determination of bistable wave speed sign. Hence,

one can analyze the effect of different coefficients on this determination. For instance, if one of

the diffusivity coefficients di, i = 1, 2, 3 are sufficiently small, then one of the conditions (4.15),

(4.16) and (4.17) would not be valid any more. While we fixed d1 and d3 and let d3 be sufficiently

large, the condition (4.18) is not true. We emphasize that one of our main contributions is that

we proposed a method and obtained some conditions for the determination of bistable wave

speed sign. One can get more criteria by constructing different upper-lower solutions.

5 Numerical Simulation

We can derive that the bistable wave speed is negative in Theorem 4.1, which implies the bistable

wave speed propagates to the right and u and w will win the competition. On the contrary,

Theorem 4.2 ensures that the bistable wave speed is positive, which means the bistable wave

speed propagates to the left and v will win the competition.

In order to illustrate our theoretical results Corollaries 4.3 and 4.4, we choose the initial data

in the form of

uj(0) =

{
0, 1 ≤ j ≤ Nj ,

1, Nj + 1 ≤ j ≤ NL,

vj(0) =

{
1, 1 ≤ j ≤ Nj ,

0, Nj + 1 ≤ j ≤ NL,

wj(0) =

{
0, 1 ≤ j ≤ Nj ,

1, Nj + 1 ≤ j ≤ NL,

with the boundary conditions
u1(t)− u2(t) = uNL

(t)− uNL−1
(t) = 0,

v1(t)− v2(t) = vNL
(t)− vNL−1

(t) = 0,

w1(t)− w2(t) = wNL
(t)− wNL−1

(t) = 0,

where Nj and NL are two integers.
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In (4.13), we choose

a11 = b11 = c11 = 1, a12 = 1.2, b12 = 0.8, b13 = 0.7,

c12 = 1.2, d1 = 1, d2 = 2, d3 = 1.3, r1 = r2 = r3 = 1.
(5.1)

From which, we can compute τ10 = 0.250, χ10 = 0.119. It is easy to see that the set of such

chosen parameters make (4.14)-(4.17) valid. As a result, one may except the bistable wave speed

to be negative. This fact is exactly verified by the numerical results, see Fig. 5.1.

Figure 5.1: The simulation of (4.13) for the setting of (5.1).
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Figure 5.2: The simulation of (4.13) for the setting of (5.2)

.

Figure 5.3: The simulation of (4.13) for the setting of (5.3).
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In (4.13), we choose

a11 = b11 = c11 = 1, a12 = 10, b12 = 1.2, b13 = 1.2,

c12 = 8, d1 = 1, d2 = 0.5, d3 = 1.2, r1 = r2 = r3 = 1.
(5.2)

For the above set of parameters, one can derive that τ20 = 2.800. Meanwhile, they fulfill (4.14)

and (4.18), so the bistable wave speed would be positive according to Corollary 4.4. This is

demonstrated in Fig 5.2.

We all know that the competitive ability of a strong species will be greater than that of a

weak species indicating that the strong species can wipe out the weak one. However, when more

than two species are involved, the outcome may be not that simple. Indeed, the Theorem 3.4 in

Guo [13] proves that it is possible for two weak species to outcompete a strong species in model

(1.2) under certain conditions. Naturally, we want to wonder whether the same phenomenon

can be observed in model (4.13). To this end, we choose

a11 = b11 = c11 = 1, a12 = c12 = 1.1, b12 = b13 = 0.9,

r1 = r2 = r3 = 1, d1 = d2 = d3 = 1.
(5.3)

Fig 5.3 tells us that such a phenomenon still exists.
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