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Abstract

Three-dimensional (3D) imaging, such as micro-computed tomography (micro-CT), is increasingly being used by organismal

biologists for precise and comprehensive anatomical characterization. However, the segmentation of anatomical structures

remains a bottleneck in research, often requiring tedious manual work. Here, we propose a pipeline for the fully-automated

segmentation of anatomical structures in micro-CT images utilizing state-of-the-art deep learning methods, selecting the ant

brain as a test case. We implemented the U-Net architecture for 2D image segmentation for our convolutional neural network

(CNN), combined with pixel-island detection. For training and validation of the network, we assembled a dataset of semi-

manually segmented brain images of 76 ant species. The trained network predicted the brain area in ant images fast and

accurately; its performance tested on validation sets showed good agreement between the prediction and the target, scoring

80% Intersection over Union (IoU) and 90% Dice Coefficient (F1) accuracy. While manual segmentation usually takes many

hours for each brain, the trained network takes only a few minutes. Furthermore, our network is generalizable for segmenting

the whole neural system in full-body scans, and works in tests on distantly related and morphologically divergent insects (e.g.,

fruit flies). The latter suggests that methods like the one presented here generally apply across diverse taxa. Our method

makes the construction of segmented maps and the morphological quantification of different species more efficient and scalable

to large datasets, a step toward a big data approach to organismal anatomy.
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Abstract
Three-dimensional (3D) imaging, such as micro-computed tomography (micro-CT), is
increasingly being used by organismal biologists for precise and comprehensive
anatomical characterization. However, the segmentation of anatomical structures
remains a bottleneck in research, often requiring tedious manual work. Here, we propose
a pipeline for the fully-automated segmentation of anatomical structures in micro-CT
images utilizing state-of-the-art deep learning methods, selecting the ant brain as a test
case. We implemented the U-Net architecture for 2D image segmentation for our
convolutional neural network (CNN), combined with pixel-island detection. For training
and validation of the network, we assembled a dataset of semi-manually segmented
brain images of 76 ant species. The trained network predicted the brain area in ant
images fast and accurately; its performance tested on validation sets showed good
agreement between the prediction and the target, scoring 80% Intersection over Union
(IoU) and 90% Dice Coefficient (F1) accuracy. While manual segmentation usually
takes many hours for each brain, the trained network takes only a few minutes.
Furthermore, our network is generalizable for segmenting the whole neural system in
full-body scans, and works in tests on distantly related and morphologically divergent
insects (e.g., fruit flies). The latter suggests that methods like the one presented here
generally apply across diverse taxa. Our method makes the construction of segmented
maps and the morphological quantification of different species more efficient and
scalable to large datasets, a step toward a big data approach to organismal anatomy.

Key Points
• Development of a deep learning based pipeline for the fully-automated

segmentation of micro-CT images of insects, using ant brains as a starting point.

• Creation of an open access dataset of micro-CT images of ant heads for training
and testing.

• Generalizable computer vision methodology, extendable across diverse taxa and
anatomical features.
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INTRODUCTION 1

Three-dimensional (3D) imaging of animals by X-ray micro-computed tomography 2

(micro-CT) has become popular in morphological biology as a non-destructive method 3

to acquire high-precision data on organismal anatomy [1, 2, 3, 4, 5]. The high-resolution 4

3D data enables the users to visualize and quantify internal and external structures, 5

forming the basis for a wide range of biological applications. 6

A key challenge for the use of micro-CT lies in the analysis of large amounts of 7

acquired data. In particular, while the 3D images are usually reconstructed after 8

scanning, the reconstructed 3D images do not yet provide measures for morphological 9

studies. What is needed for this is the segmentation of the 3D images. Only then can 10

they be visualized and quantified. Thus, segmentation for the processing of the data is 11

essential. 12

The most common segmentation method is manual processing, which is extremely 13

time-consuming and compromises reproducibility [6]. This limits the number of samples 14

that can be included in a given study, and thus the scientific applications of 3D 15

scanning. For example, developmental biologists may want to analyze large numbers of 16

experimental treatments and replicates. Or, in comparative biology, we may seek to 17

analyze the evolution of a body part across hundreds or thousands of species. The 18

recent emergence of large databases and coordinated projects to scan many species in 19

specific taxonomic groups (e.g., oVert) [7] offers rich opportunities for new research 20

directions if limitations on segmentation can be overcome. 21

In the medical literature, image segmentation methods have recently become more 22

powerful and efficient due to significant developments in machine learning algorithms. 23

To date, the main focus of automated segmentation methods has been on cells and 24

human organs (e.g., human CT or MRI image segmentation for cancer detection [8, 9] 25

or bone structure [10]. However, there is a great potential for automated segmentation 26

to accelerate biological research on organisms across the tree of life [11, 12, 13, 14]. 27

New software for biomedical image analysis has steadily progressed during recent 28

years, with the capability for analysis and segmentation of 2D or 3D biological images 29

and to build own data processing pipelines [15]. However, despite the unconstrained 30

accessibility to free general-purpose software tools, the development of specific 31

segmentation algorithms is essential to achieve high accuracy, objectivity, and 32

reproducibility. Recently, deep learning and convolutional neural networks (CNNs) have 33

been successfully applied in numerous image classification and semantic segmentation 34

problems [16, 17]. CNNs have recently become widely used in image processing due to 35

their high performance, the efficiency of GPUs, and the availablity of free software 36

platforms and pre-trained networks [18]. 37

Toolsets and pipelines that use classical statistical methods [19, 20, 21] such as 38

ANTs [22], Biomedisa [23], and Freesurfer [24] are accessible and accurate for the 39

segmentation of high-resolution images. However, these are either not fully automated 40

and still require an expert user and considerable amounts of time and effort [25] 41

(requiring training examples within the same scan), or are not adaptable to diversity 42

and complexity in the target set. On the other hand, accurate and general toolkits and 43

application frameworks that use machine learning techniques such as SlideCam have 44

been successfully used for medical image segmentation as well as computer-aided 45

diagnosis and analysis of images spanning from human brain segmentation to cancer 46
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detection [26]. However, to date no toolkit has been designed to recognize homologous 47

parts across a wide diversity of animal species, which would require an appropriate 48

choice of network architecture, fine-tuning of hyperparameters, and the production and 49

curation of substantial, high-quality datasets. When it comes to analyzing such images, 50

segmentation remains a most challenging task, and often manual or semi-automated 51

segmentation is still the only way to analyse the data. 52

U-Net is a CNN architecture that has shown high accuracy and robustness for 53

biomedical image segmentation [27]. It uses relatively small amounts of training images 54

to achieve precision even for segmentation of areas with unclear borders. The simple 55

architecture of U-Net makes it easy to develop and very fast to train. Once a U-Net is 56

trained, the acceleration of the segmentation is extreme: for example, the segmentation 57

time for one ant brain, which may be up to a whole day’s work if performed manually, is 58

reduced to merely 1-2 minutes by automatic segmentation. 59

In this paper, we present an automated pipeline for segmentation of different parts 60

of insects in volumetric data, using micro-CT scans, and specifically ant brains across a 61

diverse set of different ant species, as a test case. A basic question for such studies is 62

how general algorithms can be applied across the tree of life. Can an algorithm trained 63

to recognize a part in one type of organism be used on more distant relatives, or do they 64

break down once applied outside the group for which they were developed? Ants are a 65

well-defined clade following a similar overall body plan but reflect > 100 million years of 66

diversification and a large range in ecological, sensory, and behavioral modes [28, 29]. 67

We expect ant brains to have an intermediate level of diversity and thus be a reasonable 68

test case: they will change in size and shape across species, while the general 69

organization and tissue composition should be conserved [30]. As a secondary 70

experiment, we assess whether the ant brain segmenting algorithm we developed can be 71

applied with minimal modification to recognize brains in distantly related insects. 72

RESULTS 73

Overview of segmentation pipeline 74

Our strategy for the development of an automated micro-CT image segmentation 75

pipeline can be broken down into eight steps, as listed below and schematically 76

illustrated in Figure 1. More methodological details can be found in the first section of 77

the Supplementary Information document. A proposed segmentation workflow for 78

potential users should contain modules 1, 2, 4, 6, and 7. 79

1. Sample preparation: Before scanning, all specimens were kept in 97% ethanol 80

until they were transferred to iodine staining solution (2%) for an average of two 81

weeks. Subsequently they were washed with ethanol before they were transferred 82

to a specimen holder. As a specimen holder, we chose a plastic pipette tip filled 83

with 99% ethanol. 84

2. Image acquisition and reconstruction: An X-ray micro-CT image dataset 85

was acquired from 76 species of ants. The acquired images were reconstructed 86

along all three perpendicular dimensions that comprise a Cartesian system 87

forming a detailed cross-section dataset. 88

3. Volume rendering: The reconstructed raw images were used for creating a 3D 89

model for volume rendering, to be used for visual inspection and future 90

morphological studies. 91
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4. Semi-automated segmentation: Raw images of heads were segmented 92

semi-automatically using the seed-based watershed tool of the Amira software first 93

and manually cleaning its result subsequently. Labels were assigned to areas of 94

interest, starting with the brain. The databases of both raw and labeled images 95

were pre-processed to enhance their homogeneity and used as training and 96

validation data. 97

5. CNN development: An implementation of the U-Net architecture was built for 98

automated segmentation. 99

6. Training: 60% of the acquired segmented brain images (46 species) were used for 100

network training. 101

7. Testing: The remaining 40% (30 species) were reserved for testing. 102

8. Pixel island detection and post-processing: After segmentation by U-Net, 103

pixel island detection was used to identify the largest continuous areas to remove 104

isolated segments. 105

FIGURE 1. Segmentation pipeline overview. (A) Specimens are placed in iodine for
staining for two weeks and then placed in small vials containing 99% ethanol to prevent
them from moving during scanning. (B) The CT scanner acquires successive X-ray
images of the stepwise rotating specimen, and, using a user-defined reference image,
automatically reconstructs them to produce orthogonal cross-section stacks that are
used for the volume reconstruction of the specimen. (C) Volume rendering for future
morphological studies is performed using Amira software. (D) Semi-automated
segmentation of the brain volume of each scan (in orange) using the watershed method
in Amira. (E) Schematic representation of the U-Net architecture used as the core of
the pipeline for the development of a fully automated brain segmentation method. (F)
The acquired brain images are used for training after pre-processing augmentation and
manual creation of masks. (G) The network’s prediction (in yellow) is post-processed
for smoothing out over-predicted areas (in red).
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Segmentation of ant brains 106

First, we applied our method to our primary taxonomy group of choice, i.e., ants, and 107

trained our network to segment the brain areas in micro-CT scans from different ant 108

species. Our processed data of 38,000 520×520 pixel images from 46 species were used 109

for training and validation (randomly split into 80% for training and 20% for validation) 110

and the remaining 20,000 520×520 pixel images from 30 species were used for testing. 111

As shown in Table 1, both IoU and F1 scores steadily increased as we added more 112

2D images from planes along the same x-y directions of different species, and even more 113

so after we included reconstructed 2D images from planes along all three directions of 114

our 3D brain scans. To estimate the generalized performance of our network, we 115

calculated the true positive rate (TPR) values and false positive rate (FPR) values of 116

our images by changing the discrimination threshold of our network [31], shown in 117

Figure 2. The deviation from the no-discrimination diagonal (which would be the result 118

of random guessing) toward the top-left corner, produced by the relatively high TPR 119

and low FPR for both graphs (testing and training), indicates that our network 120

predicted the brain region and its border accurately but without over-predicting. 121

Results for test and training images are similar, suggesting good generalization 122

capabilities for optimized hyperparameters of our network. 123

Accuracy scores
Number of images of training set IoU F1

3,500 - xy plane 50% 62%
10,000 - xy plane 63% 71%

38,000 - along all three directions - no post-processing 72% 80%
38,000 - along all three directions - after post-processing 80% 90%

Table 1. Performance evaluation of our proposed pipeline. Both performance
descriptors studied (IoU and F1 scores) increase steadily with increasing number of
images and post-processing.
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FIGURE 2. Network performance evaluation. High TPR and low FPR values for
training (blue) and testing data (red) indicate the network’s high generalizability.

Finally, a post-processing step also boosted the performance of our network further. 124

Example results of our network’s performance on validation and testing data are shown 125

in Figure 3 demonstrating a predicted area in good agreement with the ground truth. 126

The overpredicted areas of the brain are removed as we form the 3D prediction of the 127

brain. As such, it is essential to see the prediction of all three directions and evaluate 128

the results accordingly. Our automated segmentation pipeline achieves an approximate 129

maximum of 80% IoU and 90% F1 score. Prediction times were in the order of only a 130

few minutes, significantly lower than for the semi-automated segmentation commonly 131

used. 132
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FIGURE 3. Pipeline performance demonstrated both for validation (top row) and
testing (bottom row) sets. (A, D) Raw images of head of Acromyrmex versicolor and
Carebara atoma ant specimens, cropped along the x-y axes. The manually segmented
brain areas are indicated in blue. (B, E) Network predictions before post-processing (in
yellow). Areas in yellow dotted circles are pixel islands not connected to the brain area
that were over-predicted. (C, F) Predictions after post-processing (in red). The borders
of the predicted areas show good agreement with the manual segmentation in both sets.
Note that in overlapping manually and automatically segmented areas in B, C, E, and
F, colors appear green or purple.

3D volume rendering 133

After segmenting the 2D slices, the 3D brain volume was readily computed by loading 134

the stack of images in Amira or ITK-snap (version 3.4.0, PICSL-SCI). Thus, using a 2D 135

network allowed us to maintain high accuracy, performing 3D segmentation in a faster 136

and easier to train way. An exemplar predicted brain area is shown in Figure 4; 3D 137

volume was reconstructed from the 2D predicted images with Amira software. The 138

switch from 2D to 3D is straightforward, giving the user of the pipeline the ability to 139

adapt it to their own dataset circumventing the complications of using an actual 3D 140

CNN. 141
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FIGURE 4. 3D volume of ant brain reconstructed from 2D images (original 520× 520
px) predicted by the algorithm. 3D reconstructed brain prediction of an Atta texana
worker.

Generalization to other neural systems and other insects 142

The U-Net step appears to be largely driven by textures, with the pixel island detection 143

step used to isolate the brain. Even though our customized U-Net was designed for the 144

segmentation of ant brains, it was also successfully applied for the segmentation of 145

neural tissue in other parts of ants and works on distantly related species. Our network 146

was able to predict the whole neural system in full-body scans of ants, as shown in 147

Figure 5, being able to predict the same texture as the brain in different ganglia in the 148

thorax (called mesosoma in ants). 149

FIGURE 5. Prediction of ganglia in the thorax. As the tissue texture in the image is
similar to that of the brain, the network accurately predicts other areas of nervous
tissue in the organism. The pixel island detection step isolates the brain, but without
this step neural tissue can be isolated.

Our network also gave good prediction for the brain area in scans of various different 150
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distantly related insect species. We used our pre-trained (on ant-brains) network to 151

segment the brain areas of micro-CT scans of model organisms such as flies (Drosophila) 152

and wasps, as well as closely related insects such as praying mantises (Leptomantella) 153

and termites. Both wasp and praying mantis scan samples were stained with iodine and 154

kept in ethanol, using a similar protocol as with ants. For both scans, the same CT 155

scanner was used as for ants. Naturally, the scanning parameters were different, as these 156

were larger samples; thus, a vertical stitch method was used. Since its prediction 157

capability relies mainly on identifying the texture of the brain area, which does not 158

differ significantly among different insect species, our pre-trained network was able to 159

perform satisfactorily without further adaptation on the data. Exemplar results are 160

shown in Figure 6 for (A-B) wasp and (C-D) praying mantis brain prediction, 161

respectively (also for termite and fly brain prediction in Supplementary Information 162

Figure S7). Our network was successful in segmenting the brains of different insects 163

without significant prediction accuracy losses (when compared to predictions for ants), 164

indicating its flexibility and its lack of necessity for training on each specific distinct 165

species. This is remarkable, considering, for example, that the eyes of the praying 166

mantis are very large, directly connected to the brain, and show the same texture as the 167

brain; none of these features help the segmentation task. It should be noted, however, 168

that in these cases our stated good prediction is merely qualitative, based on the figures 169

themselves, as no metrics were calculated. 170
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FIGURE 6. Application of pipeline for other insect species. The brain textures of
various insect species can be very similar to those of ants, facilitating the prediction by
the network even without pre-training on specific insect brain scans. (A) Raw image of
wasp head (original 1000× 1000 px) and (B) its prediction without post-processing
(original 520× 520 px), indicating satisfactory identification of the borders of the brain
area. (C) 2D image of praying mantis head (520× 520 px) and (D) the prediction of its
brain area without post-processing. Even though the network over-predicts some small
pixel islands, it excludes from its prediction areas of the muscles, fibers and cuticle.

DISCUSSION 171

To bring morphology fully into the big data era, we need automated methods to retrieve 172

biological meaning from large volumes of images. The proposed automated pipeline is a 173

step in that direction, presenting considerable advantages over other standard 174

methodologies. First of all, automated segmentation is achievable within a few minutes 175

for each specimen, producing user-independent and accurate results faster than manual 176

or semi-automated segmentation. A noteworthy additional advantage is that once 177

algorithms have been trained, advanced expertise in morphology is not required, while 178

manual and semi-automated segmentation usually require advanced knowledge [32]. In 179

fact, during testing our network often outperformed even experienced users and 180

compensated for their oversights or misjudgments, predicting correctly brain areas that 181

were accidentally missed out during manual segmentation. 182

The two approaches in our method, U-Net and pixel-island detection, represent two 183

complementary steps which suggest a path forward for automated segmentation of 184

structures in complex organisms. U-Net was efficient at retrieving tissue with similar 185

properties in the image, but in our implementation did not make use of shape and 186

position. Thus, we found it retrieved all the structures of neural tissue across the body, 187
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even though it was trained on the brain alone. The brain was then delineated with the 188

pixel-island detection by isolating the largest structure in the head. In general, we 189

expect a combination of tissue-level identification followed by other methods that make 190

use of size and spatial organization to be a powerful combination that should generalize 191

to a wide range of anatomical tissues and parts. Additionally, our pre-trained network’s 192

weights can be transferred and further fine-tuned through transfer learning algorithms 193

to be used with other desired datasets. 194

During testing with other insect species, we used both high and low 195

resolution/quality images acquired from different laboratory and synchrotron-based 196

micro-CT scanners. Our results showed that our segmentation pipeline can perform 197

without significant loss of accuracy to predict the brain area across highly divergent 198

insect species and across scanning methods. Our network’s generalizability is high and 199

it can be widely used not only for head but also for whole-body scans of ants and other 200

insects. Finally, the prediction performance of low-resolution images indicates that there 201

is a threshold in the image resolution below which our network does not perform well. 202

The fact that in this preliminary testing our network worked reasonably well on 203

other groups of insects separated by 300 million years of evolution is noteworthy. It 204

implies that, in principle, such algorithms can identify and shed light on highly 205

conserved features across taxa and/or genera. By this we do not imply that the 206

algorithm we trained for ants is ready out of the box to use for all insect brains in its 207

current form. Instead, we are postulating that discovery of such highly conserved 208

features raises hope for generalized algorithms that could work satisfactorily for 209

different taxa (perhaps with the help of additional tuning). 210

Last, it should be noted that both automated classification and segmentation tasks 211

typically require big datasets for training and validation, which can be a challenge for 212

researchers to produce for any given application. Since no publicly available dataset of 213

micro-CT images of ant brains existed for our case study, we created a new, extensive 214

dataset across a wide variety of ant species. Since neural anatomy across insects share 215

features that make them targets for segmentation, our dataset can act as a starting 216

point for the development of an even bigger library of micro-CT images of insects, and 217

work as a pre-training dataset for future CNNs [33]. To this end, we have provided all 218

our data available online. 219

CONCLUSION 220

In this paper, we introduce a U-Net based CNN for the fully-automated segmentation of 221

micro-CT images of insects. We also present an extensive dataset of manually 222

segmented brain images that can be used to pre-train other networks of interest. Our 223

trained network predicted the brain area in ant images quickly and with high accuracy. 224

Further, our network was able to generalize and predict the whole neural system in 225

full-body scans, as well as to predict ganglion areas that were missed by manual 226

segmentation. After training, the network’s performance was tested on training and 227

validation data showing good agreement between prediction and mask scoring 80% IoU 228

and 90% F1. Our pipeline allows successful segmentation in only a few minutes instead 229

of hours which are typically required for manual segmentation. 230

One of the most important features of the framework described here is that it can be 231

applicable to other anatomical features. Preliminary results on other organs have shown 232

that it can be easily tuned and trained to predict muscles as well as the cuticle of the 233

insect bodies. Specific attention was paid so that the application of the pre-trained 234

network is straightforward and user-friendly, which we aspire will enable the community 235

to adopt it as a valuable resource. 236

The development of large-scale 3D datasets across phylogenetically diverse taxa 237
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opens up new vistas for comparative research [34]. Likewise, developmental biologists 238

may want to use high-throughput scanning to image hundreds or thousands of specimens 239

as part of an experiment. However, just as DNA sequence data needs bioinformatic 240

algorithms to process massive datasets, large scale image collections require algorithms 241

to digest and extract biologically meaningful data. Algorithms such as this one offer a 242

way forward for powering a "big data" approach to organismal morphology. 243
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