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Abstract

In the emergency rescue and disposal of social public emergencies, supply transportation effectively provides a strong supply

foundation and realistic conditions. The trajectory tracking control of emergency supplies transportation robot is the key

technology to ensure the timeliness of transportation. In this paper, the emergency supplies transportation robot is taken as

the research object, based on Koopman operator theory, combined with radial basis function (RBF) neural network disturbance

observer and adaptive prediction horizon event-triggered model predictive control (APET-MPC) algorithm to investigate the

purely data-driven trajectory tracking control problem of emergency supplies transportation robot when the model parameters

and models are unknown. Firstly, the Koopman operator is used to establish a high-dimensional linear model of the robot.

Secondly, the RBF neural network disturbance observer is designed to estimate the disturbance during the robot operation

and compensate it to the controller. Thirdly, APET-MPC is used to optimize the trajectory tracking control of the emergency

supplies transportation robot to reduce computational complexity. Finally, the performance of the proposed trajectory tracking

controller is verified by Carsim/ Simulink joint simulation. The simulation results show that the model established by Koopman

operator theory can achieve the high accuracy approximation of the robot. Compared with the MPC trajectory tracking

controller, the APET-MPC trajectory tracking controller based on RBF neural network disturbance observer (RBF-APET-

MPC) improves the tracking accuracy of the robot and reduces the total triggering times of the system by more than 50%.
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Summary

In the emergency rescue and disposal of social public emergencies, supply trans-
portation effectively provides a strong supply foundation and realistic conditions.
The trajectory tracking control of emergency supplies transportation robot is the key
technology to ensure the timeliness of transportation. In this paper, the emergency
supplies transportation robot is taken as the research object, based on Koopman op-
erator theory, combined with radial basis function (RBF) neural network disturbance
observer and adaptive prediction horizon event-triggered model predictive control
(APET-MPC) algorithm to investigate the purely data-driven trajectory tracking con-
trol problem of emergency supplies transportation robot when the model parameters
and models are unknown. Firstly, the Koopman operator is used to establish a high-
dimensional linear model of the robot. Secondly, the RBF neural network disturbance
observer is designed to estimate the disturbance during the robot operation and com-
pensate it to the controller. Thirdly, APET-MPC is used to optimize the trajectory
tracking control of the emergency supplies transportation robot to reduce compu-
tational complexity. Finally, the performance of the proposed trajectory tracking
controller is verified by Carsim/ Simulink joint simulation. The simulation results
show that the model established by Koopman operator theory can achieve the high
accuracy approximation of the robot. Compared with the MPC trajectory tracking
controller, the APET-MPC trajectory tracking controller based on RBF neural net-
work disturbance observer (RBF-APET-MPC) improves the tracking accuracy of the
robot and reduces the total triggering times of the system by more than 50%.

KEYWORDS:
Trajectory tracking control, model predictive control, event-triggered mechanism, Koopman operator,
neural network disturbance observer

1 INTRODUCTION

The primary task of emergency management is to reduce casualties and losses in disaster areas through effective emergency
rescue operations,1 and any action of emergency events is inseparable from the guarantee and support of supplies. The smooth
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flow of information requires accurate and timely transportation of emergency communication equipment, the role of disaster
relief personnel depends on the smooth flow of logistics, and the survival of people in disaster areas needs the timely supply
of supplies.2 Therefore, the efficient transportation of emergency supplies is a key link in dealing with emergencies.3 Due to
the suddenness and unpredictability of emergency events,4 carrying out efficient and orderly emergency rescue operations can
minimize casualties and property losses.5 The flexible emergency supplies transportation robot provides convenience for rescue
work. For the randomness and urgency of emergency supplies transportation,6 7 higher requirements are put forward for the
efficient and accurate transportation behavior of emergency supplies transportation robots to ensure people’s livelihood and
improve efficiency.

The emergency supplies transportation robot provides convenience for transporting supplies, and as the top priority of emer-
gency rescue work, the core problem of emergency supplies transportation is how to accurately track the pre-set reference
trajectory in the shortest time, and deliver the supplies to the designated location in the most stable way, taking into account var-
ious factors such as time cost, accuracy and stability to ensure timely delivery of emergency supplies. To improve the robustness
of robot trajectory tracking control, domestic and foreign scholars have carried out a lot of research, and different control meth-
ods have been applied to trajectory tracking control, such as PID control,8 9 adaptive control,10 11 sliding mode control,12 13 14

neural network control,15 16 and so on. Model predictive control (MPC) has the excellent characteristics of easy modeling and
effective handling of multivariate and constrained problems.17 It also has the remarkable characteristics of being able to com-
pensate for the uncertainty caused by model mismatch, disturbance and other factors promptly with better dynamic performance,
which is widely used in robot trajectory tracking control in recent years, such as References 18, 19, 20.

The first step in analyzing complex control objects is usually modeling, so obtaining a high-accuracy model of complex
systems is important. The system model obtained by mechanism modeling can be more limited in its application due to its weak
anti-disturbance ability.21 The robot system has high nonlinearity, strong coupling, parameter uncertainty, etc.22 For the control
of the nonlinear system, the traditional method is to linearize the model locally,23 24 but the computational effort is large. The
Koopman theory was proposed by B. O. Koopman in 1931,25 which is a powerful tool for data-driven modeling emerging in
recent years. The basic idea is to lift the nonlinear system to a linear infinite dimensional space.26 The Koopman theory can be
used to obtain the model of the unknown system from the known data and to globally linearize the nonlinear system.27 Reference
28 to accurately capture the transient process of the power grid, a deep neural network method was used to train observable
functions to approximate the Koopman operator, overcoming the challenge of high-dimensional nonlinearity in the power grid.
Reference 29 applied Koopman theory to the batch pulping process, combined with the model predictive control framework to
regulate the Kappa number and cell wall thickness of fibers. In Reference 30, the Koopman operator was used to capture the
inherent characteristics of driver-vehicle system dynamics and generate an explicit control-oriented driver-vehicle model in an
infinite-dimensional space. The emergency supplies transportation robot operates in a complex environment and will inevitably
be affected by friction and external disturbance during actual operation, so it is necessary to suppress the disturbance to the
system. Reference 31 designed a nonlinear disturbance observer with an extended Kalman filter to suppress random noise and
observe the speed and non-random disturbance of the mobile robot. Reference 32 used RBF neural network design disturbance
observer and adaptive parameter adjustment law to estimate the comprehensive disturbance to the flexible spacecraft in real-
time. Reference 33 designed a nonlinear disturbance observer to estimate external disturbance and parameter uncertainty to the
quadrotor, which the application was more general because the observer did not assume that the disturbance was constant or its
upper bound was known.

The model predictive control needs to solve the optimization problem at each sampling time, which requires a lot of computa-
tional effort34 and only the first control variable of the obtained control sequence is applied to the real system,35 which implies
a waste of computational resources. The event-triggered mechanism can effectively reduce the frequency of solving the opti-
mization problem. Reference 36 proposed a distributed MPC for unmanned aerial vehicles formation control and proposed an
event-triggered mechanism considering the predictive state error and the convergence of the cost function to reduce the compu-
tational effort. In Reference 37, a novel distributed control law with an event-triggered communication mechanism was proposed
for the coordinated control of a multiagent system with input-constrained, and the number of communications between vehicles
was reduced and the communication frequency was reduced by the event-triggered communication mechanism. Reference 38
designed an event-triggered update tracking controller for the unicycle robot, which can reduce the average frequency of solv-
ing the optimization problem, and the dimension of OCP is reduced by adaptively reducing the prediction horizon when the
tracking error approaches the terminal region.

Based on this, this paper combines Koopman theory, radial basis function (RBF) neural network disturbance observer, and
adaptive prediction horizon event-triggered model predictive control (APET-MPC) algorithm to study the trajectory tracking
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control problem of the emergency supplies transportation robot. Firstly, a high-dimensional linear model of the emergency
supplies transportation robot is established by Koopman theory, which is generated by a data-driven method and can effectively
predict the future output of the system. Aiming at the disturbance during the operation of the emergency supplies transportation
robot, the RBF neural network disturbance observer is used to estimate and compensate for the disturbance in real-time. An event-
triggered model predictive control is designed for the trajectory tracking problem of the disturbed incomplete constrained robot,
and an adaptive prediction horizon strategy is introduced to reduce the computational complexity by reducing the frequency
of solving the optimization problem and to reduce the dimensionality of the optimization problem by shortening the prediction
horizon. The introduction of the event-triggered mechanism greatly reduces the MPC computational load. Finally, the modeling
accuracy of the Koopman operator and the effectiveness of the APET-MPC (RBF-APET-MPC) trajectory tracking controller
based on the RBF neural network disturbance observer are verified by simulation experiments. The simulation results show that
using the Koopman operator can obtain a high-accuracy robot model, the RBF neural network disturbance observer can achieve
the approximate estimation of disturbance, and the APET-MPC can reduce the computational load of the controller for real-time
optimization while ensuring the trajectory tracking accuracy.

The rest of this paper is organized as follows. Section 2 establishes a Koopman high-dimensional linear model for emergency
supplies transport robot. Section 3 uses an RBF neural network disturbance observer to estimate the disturbance of the robot
during operation. In Section 4, the APET-MPC trajectory tracking controller is designed. The accuracy of the Koopman linear
model and the trajectory tracking control effect are simulated and analyzed in Section 5. The conclusion is given in Section 6.

2 ROBOT MODELING BASED ON KOOPMAN OPERATOR

2.1 Koopman operator theory
The emergency supplies transportation robot is regarded as a discrete nonlinear system with external input:

𝒙(𝑘 + 1) = 𝑓 (𝒙(𝑘), 𝒖(𝑘)) . (1)

where 𝑘 ∈ ℤ is the discrete time step, 𝒙(𝑘) ∈  ⊆ ℝ𝑛 is the state variable of the system, and 𝒙(𝑘) =
[

𝑥(𝑘) 𝑦(𝑘) 𝜑(𝑘)
]T,

𝒖(𝑘) ∈  ⊆ ℝ𝑚 is the control input of the system, and 𝒖(𝑘) =
[

𝑣(𝑘) 𝛿(𝑘)
]T, 𝑛 and 𝑚 are the dimensions of the system state

and input, respectively,  and  are the state space, ℝ is the real number domain, ℝ𝑛 is the Euclidean space of n-dimensional
real-valued vector, 𝑥 and 𝑦 are the position information, 𝜑 is the yaw angle, 𝑣 is the running speed and 𝛿 is the front wheel
angle. 𝑓 (𝒙, 𝒖) represents the nonlinear kinematics of the system state evolution with time. Figure 1 shows the diagram of the
emergency supplies transportation robot.

Y

X

x 

y

v

0

Figure 1 Diagram of emergency supplies transportation robot.

Assumption 1. Assume that 𝑓 (0, 0) = 0 and 𝑓 (𝒙, 𝒖) = 0 are locally Lipschitz in the domain  × with Lipschitz constant
𝐿𝑓 .

Combine the state variable 𝒙(𝑘) with the control input 𝒖(𝑘) into the extended state:
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𝜻 =
[

𝒙(𝑘)
𝒖(𝑘)

]

. (2)

The extended system is described by introducing the left shift operator  in the input sequence 𝒖:

𝑓𝜁 (𝜻) =
[

𝑓 (𝒙, 𝒖(0))
𝒖

]

. (3)

𝒖(𝑘) = 𝒖(𝑘 + 1). (4)
where 𝑓𝜁 represents the system kinematics equation of the extended state and 𝒖(0) represents the first element of the control
sequence in the current time step.

Define real-valued observation function𝝓: × → ℝ concerning state and input, which belongs to the infinite-dimensional
Hilbert space,39 the Koopman operator  acts on the real-valued observation function 𝝓:

𝝓(𝜻) = 𝝓
(

𝑓𝜁 (𝜻)
)

. (5)
where :  →  is the Koopman operator for the extended state 𝜻 in (2), and  is the observable state space of the extended
observable function.

Even if the original nonlinear system state is finite-dimensional,  still maintains the infinite-dimensional characteristics and
is linear in , i.e.:


(

𝛼𝝓1(𝜻) + 𝛽𝝓2(𝜻)
)

= 𝛼𝝓1(𝜻) + 𝛽𝝓2(𝜻). (6)
where 𝝓1,𝝓2 ∈  is an arbitrary scalar function on the state space and 𝛼, 𝛽 ∈ ℝ is an arbitrary constant. By analyzing the
infinite-dimensional linear operator, the global linearization model of the finite-dimensional nonlinear system can be obtained,
as shown in Figure 2.

Nonlinear

( )Linear

( 1) ( ), ( )k f k kx x u

T
( ) ( )k kx u

( )f ( )f ( )f

1( )

x u

21 N

2( ) ( )N

Figure 2 Koopman modeling diagram.

2.2 Extended dynamic mode decomposition
The linear characteristics of the Koopman operator bring convenience to the application of linear control schemes. However,
the infinite-dimensional characteristics of the Koopman operator pose have hindered practical applications. To solve the high-
dimensional matrix as an approximation of the Koopman operator, the Extended Dynamic Mode Decomposition (EDMD)
algorithm is used to calculate the finite-dimensional projection on the finite-dimensional subspace of all observables.

The Koopman operator is approximated using the dataset generated by the original system,40 that is:
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𝜻+𝑖 = 𝑓𝜁 (𝜻 𝑖) =
[

𝑓 (𝒙𝑖, 𝒖𝑖(0))
𝒖𝑖

]

. (7)

where the superscript + represents the value of the next time step, 𝑖 = 1,⋯ , 𝑁 .
The vector of the extended observable function is:

𝝓(𝜻) =
[

𝝍(𝒙)
𝒖(0)

]

. (8)

where 𝝍(𝒙) =
[

𝜓1(𝒙), 𝜓2(𝒙),⋯ , 𝜓𝑀 (𝒙)
]𝑇 , 𝑀 is the number of observable functions for the system state 𝜓𝑖(𝒙).

The finite-dimensional approximation of the Koopman operator ̃ is obtained by solving the least squares error problem for
the collected dataset by minimizing the following equation:

min
̃

𝑁
∑

𝑖=1

‖

‖

𝝓(𝜻+𝑖 ) − ̃𝝓(𝜻 𝑖)‖‖
2. (9)

where ‖⋅‖ is the Euclidean norm.
Since there is no need to predict the future control input 𝒖+, eliminating the last 𝑚 elements of the term 𝝓(𝜻+𝑖 ) and the last 𝑚

rows of the ̃ matrix in (9) to obtain ̄̃.41 Therefore, the minimization problem (9) can be simplified to:

min
̄̃

𝑁
∑

𝑖=1

‖

‖

‖

𝝍(𝒙+𝑖 ) −
̄̃𝜻 𝑖

‖

‖

‖

2
. (10)

̄̃ can be decomposed into ̄̃ =
[

𝑨 𝑩
]

, where both𝑨 ∈ ℝ𝑀×𝑀 and𝑩 ∈ ℝ𝑀×𝑚 are linear constant matrix, and the minimization
problem (10) is transformed into (11):

min
𝑨,𝑩

𝑁
∑

𝑖=1

‖

‖

𝝍(𝒙+𝑖 ) −𝑨𝝍(𝒙𝑖) − 𝑩𝒖𝑖(0)‖‖
2. (11)

Finally, by using the matrices 𝑨 and 𝑩 derived from (11), the linear system of lifting state 𝒛 = 𝝍(𝒙) ∈ ℝ𝑀 with 𝑀 as the
dimension lifted dimension:

𝒛(𝑘 + 1) = 𝑨𝒛(𝑘) + 𝑩𝒖(𝑘). (12)
In addition, let the output state:

𝒚(𝑘) = 𝑔 (𝒙(𝑘)) . (13)
Solve the following minimization problem in the least squares sense:

min
𝑪

𝑁
∑

𝑖=1

‖

‖

𝑦𝑖 − 𝐶𝝍(𝒙𝑖)‖‖
2. (14)

where 𝑪 ∈ ℝ𝑛×𝑁 is the linear constant matrix. The linear model of 𝒚 can be derived from the matrix 𝑪 :

𝒚(𝑘) = 𝑪𝒛(𝑘). (15)

2.3 Numerical approximation of the Koopman operator
Approximate the Koopman operator from the data using an easy-to-implement least squares method. Assuming that the following
input and output datasets are collected in the nonlinear dynamic system (1):

𝑿 =
[

𝒙1,⋯ ,𝒙𝑘
]

, 𝒀 =
[

𝒚1,⋯ , 𝒚𝑘
]

,𝑼 =
[

𝒖1,⋯ , 𝒖𝑘
]

. (16)
The matrices 𝑿 ∈ ℝ𝑀×𝑘 and 𝒀 ∈ ℝ𝑀×𝑘 contain the observable values of the state. The matrix 𝑼 ∈ ℝ𝑚×𝑘 contains the input.
After obtaining 𝑿, 𝒀 , and 𝑼 in (16), the 𝑨, 𝑩, and 𝑪 matrices in the high-dimensional model can be obtained by solving the
following minimization problem:27
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min
𝑨,𝑩

‖

‖

‖

𝒀 𝑙𝑖𝑓 𝑡 −𝑨𝑿𝑙𝑖𝑓 𝑡 − 𝑩𝑼
‖

‖

‖ 2
. (17)

min
𝑪

‖

‖

‖

𝑿 − 𝑪𝑿𝑙𝑖𝑓 𝑡
‖

‖

‖ 2
. (18)

where the symbol ‖⋅‖2 represents 2-norm, 𝑿𝑙𝑖𝑓 𝑡 =
[

𝝍(𝒙1)⋯ ,𝝍(𝒙𝑘)
]

, 𝒀 𝑙𝑖𝑓 𝑡 =
[

𝝍(𝒚1)⋯ ,𝝍(𝒚𝑘)
]

.
Using the normal equation42 to solve the least squares (17):

𝑽 =
[

𝑨 𝑩
]

𝑮. (19)

where 𝑮 =
[

𝑿𝑙𝑖𝑓 𝑡
𝑼

] [

𝑿𝑙𝑖𝑓 𝑡
𝑼

]T

, 𝑽 = 𝒀 𝑙𝑖𝑓 𝑡

[

𝑿𝑙𝑖𝑓 𝑡
𝑼

]T

, the matrices 𝑨, 𝑩 and 𝑪 are obtained as:

[

𝑨 𝑩
]

= 𝑽 𝑮†. (20)

𝑪 = 𝑿𝑿†
𝑙𝑖𝑓 𝑡. (21)

where † is the Moore–Penrose pseudoinverse.
According to the Koopman operator theory, the linear model of the emergency supplies transportation robot is obtained as

follows:
{

𝒛(𝑘 + 1) = 𝑨𝒛(𝑘) + 𝑩𝒖(𝑘)
𝒚(𝑘) = 𝑪𝒛(𝑘) . (22)

The (22) is the global linearized model of the nonlinear kinematics system under the action of the Koopman operator. The
Koopman high-dimensional model gets rid of the limitations of the original nonlinear system model.

3 DESIGN OF RBF NEURAL NETWORK DISTURBANCE OBSERVER

Koopman operator can use the offline input and output data of the system to obtain a high-dimensional model of the nonlinear
system to predict the robot state. However, the robot itself will inevitably be affected by friction and external disturbance in the
actual control process, and the integrated disturbance is difficult to measure accurately. Therefore, the model generated by offline
data cannot effectively achieve the state prediction, which will lead to the reduction of control accuracy and even make the system
unstable. In the actual system, to obtain a more accurate high-dimensional model of the emergency supplies transportation
robot, the disturbance observer is needed to estimate and compensate the disturbance in real-time, and the high-dimensional
linear model obtained offline is corrected online to achieve a high-accuracy trajectory tracking effect of the emergency supplies
transportation robot.

RBF is a neural network with good local nonlinear approximation, which can approximate any nonlinear function with any
accuracy. Therefore, the disturbance observer based on RBF neural network is designed to estimate the disturbance.

The Koopman high-dimensional model of the emergency supplies transportation robot containing disturbance is:

𝒚(𝑘 + 1) = 𝑪𝑨𝒛(𝑘) + 𝑪𝑩𝒖(𝑘) + 𝒅(𝑘). (23)
where 𝒅(𝑘) is external disturbance. The RBF neural network is used to approximate the disturbance 𝒅(𝑘) in (23) online.
Assumption 2. 43 For any 𝒙 ∈𝑀𝑥, where𝑀𝑥 is a compact set, the optimal weight𝑤∗

𝑖 of the RBF neural network approximation
disturbance is defined as:

𝑤∗
𝑖 = argmin

𝑤𝜄∈Ω𝑖

[

sup
𝑥∈𝑀𝑥

|

|

|

𝑑𝑖 − 𝑑𝑖
|

|

|

]

. (24)

where Ω𝑖 =
{

𝑤𝑖
|

|

‖

‖

𝑤𝑖
‖

‖

≤𝑀𝑤
}

is the feasible region of the parameter and 𝑀𝑤 is the design parameter.

Assumption 3. Given the upper bound of any approximation error 𝜺̄ > 0, there exists a finite number of hidden layer neurons
𝑚 and an ideal𝒘∗, such that the RBF neural network consistently approximates any continuous smooth unknown function 𝒅 on
a compact set, i.e.:
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𝒅 = 𝒘*T𝜸(𝑥) + 𝜺. (25)
where 𝜺 =

[

𝜀1,⋯ , 𝜀𝑛
]T denotes the approximation error and satisfies ‖𝜺(𝑥)‖ ≤ 𝜺̄, 𝜺̄ is a very small real number vector; 𝜸(𝑥) =

[

𝛾1(𝑥), 𝛾2(𝑥),⋯ , 𝛾𝑚(𝑥)
]T is the radial basis function:44

𝛾𝑖(𝑥) = exp

(

−
‖

‖

𝑥 − 𝑐𝑖‖‖
2

𝜃2𝑖

)

, (𝑖 = 1, 2,⋯ , 𝑞). (26)

where 𝛾𝑖(𝑥) is the output of the 𝑖th neuron, 𝑐𝑖 is the center vector of the Gaussian function of the 𝑖th neuron, 𝜃𝑖 denotes the width
of the Gaussian basis function of the 𝑖th neuron, and 𝑞 is the number of neurons in the hidden layer of the neural network.

The equivalent disturbance of the RBF neural network output is:

𝒅̂ = 𝒘̂T𝜸(𝑥). (27)
where 𝒅̂ is the estimated value of the external disturbance; 𝒘̂ =

[

𝑤̂1, 𝑤̂2,⋯ , 𝑤̂𝑛
]T ∈ ℝ𝑚×𝑛 is the corresponding neural network

weight coefficient matrix.
The disturbance estimation error can be obtained by the (25) and (27):

𝒅̃ = 𝒅 − 𝒅̂ =
(

𝒘*T − 𝒘̂T) 𝜸(𝑥) + 𝜺 = 𝒘̃T𝜸(𝑥) + 𝜺. (28)
where 𝒘̃ denotes the fitting error of the weight coefficient matrix between the ideal neural network and the actual neural network.
When the error 𝒅̃ → 0, it means that the output 𝒅̂ of the neural network approximates the unknown disturbance 𝒅 well.

4 DESIGN OF APET-MPC CONTROLLER

Traditional MPC is time-triggered, periodic, and only the first control variable is applied to the control system. Event-triggered
model predictive control (ET-MPC) executes the task when the event-triggered condition is satisfied, avoiding unnecessary re-
source waste and achieving a good balance between system performance and resource utilization. The prediction horizon in MPC
is usually a fixed constant, that is, each step of solving the optimization problem has the same dimension. We adopt an adap-
tive method to reduce the prediction range to reduce the dimension and computational complexity of solving the optimization
problem.38

Figure 3 shows the structure of APET-MPC control based on the RBF neural network disturbance observer. The high-
dimensional linear model of the system obtained by the Koopman operator can be divided into the nominal model without
disturbance and the disturbance model considering external disturbance. The APET-MPC controller is designed for the nominal
model, and the RBF neural network disturbance observer is designed for the disturbance model to estimate the disturbance of
the emergency supplies transportation robot, so that the Koopman high-dimensional model solved offline can better approximate
the real system in the actual control process with disturbance, and the emergency supplies transportation robot can accurately
track the reference trajectory with fewer triggering times.

APET-MPC
   controller

Nonlinear  
system

( , )f+x x u

Data collection

mx2x1x

1u 2u mu

Nominal 
model

Disturbance 
model

Constraint

Optimization

Event-
triggered

ry

y

RBF neural network 
disturbance observer

d

*

nu

*

ny

-

Emergency 
supplies 

transportation 
robot

d̂

1( )CB

du

u
*

nu

Linear-

Figure 3 RBF-APET-MPC control structure diagram.
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4.1 Optimization problem
For the Koopman high-dimensional model with disturbance (23), the control output should contain the output of the undisturbed
nominal system and disturbance compensation value, and the control variable 𝒖(𝑘) can be expressed as:

𝒖(𝑘) = 𝒖𝑛(𝑘) − 𝒖𝑑(𝑘). (29)
where 𝒖𝑛(𝑘) is the nominal system control variable, which can be transformed into linear quadratic programming to solve the
problem by MPC. 𝒖𝑑(𝑘) is the disturbance compensation control variable:

𝒖𝑑(𝑘) = (𝑪𝑩)−1𝒅̂(𝑘). (30)
The Koopman high-dimensional model corresponding to the nominal system control variable 𝒖𝑛(𝑘) is:

{

𝒛𝑛(𝑘 + 1) = 𝑨𝒛𝑛(𝑘) + 𝑩𝒖𝑛(𝑘)
𝒚𝑛(𝑘) = 𝑪𝒛𝑛(𝑘)

. (31)

The output expression of the nominal system in the prediction horizon is:

𝒚𝑛(𝑘 + 1) = 𝑭𝒛𝑛(𝑘) +𝚯𝒖𝑛(𝑘). (32)
where,

𝒚𝑛(𝑘 + 1) =

⎡

⎢

⎢

⎢

⎢

⎣

𝒚𝑛(𝑘 + 1|𝑘)
𝒚𝑛(𝑘 + 2|𝑘)

⋮
𝒚𝑛 (𝑘 +𝑁|𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝒖𝑛(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝒖𝑛(𝑘|𝑘)
𝒖𝑛(𝑘 + 1|𝑘)

⋮
𝒖𝑛 (𝑘 +𝑁 − 1|𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

,𝑭 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪𝑨
𝑪𝑨2

⋮
𝑪𝑨𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,𝚯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪𝑩 0 ⋯ 0
𝑪𝑨𝑩 𝑪𝑩 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑪𝑨𝑁−1𝑩 𝑪𝑨𝑁−2𝑩 ⋯ 𝑪𝑩

⎤

⎥

⎥

⎥

⎥

⎦

.

Define the reference state variable 𝒚r(𝑘) and the reference control input variable 𝒖r(𝑘) in the prediction horizon, the error
between the actual state and the reference state is 𝒚e(𝑘), and the control error is 𝒖e(𝑘).

The objective function is designed to ensure that the emergency supplies transportation robot can track the reference trajectory
quickly and smoothly. Design the following objective function:

𝑱
(

𝒚e(𝑘), 𝒖𝑛(𝑘), 𝑁
)

=
𝑁−1
∑

𝑖=0

(

‖

‖

𝒚e(𝑘 + 𝑖|𝑘)‖‖
2
𝑸 + ‖

‖

𝒖e(𝑘 + 𝑖|𝑘)‖‖
2
𝑹

)

+ ‖

‖

𝒚e(𝑘 +𝑁|𝑘)‖
‖

2
𝑷 . (33)

where the weight coefficients 𝑸, 𝑹 and 𝑷 are diagonal matrices. The first term reflects the accuracy requirement of the system
for tracking the reference trajectory of the controller, the second term reflects the stability requirement of the control input,45

and the third term is the terminal constraint.

4.2 Adaptive prediction horizon event-triggered control
In this section, we design the event-triggered mechanism including the triggering condition that determines the triggering time
and the update method of the prediction horizon 𝑁𝑘𝑗 , so that the optimization problem is solved only at each trigger time. The
prediction horizon determines the length of the rolling optimization solution process. When the prediction horizon is long, the
stability of the system can be guaranteed, but the computational effort will increase. When the prediction horizon is short, the
robustness of the system becomes worse, but the dimension of the optimization problem can be reduced. In the standard MPC,
the prediction horizon is a fixed constant, but as the tracking error gradually approaches the terminal region, a shorter prediction
horizon is sufficient to satisfy the terminal constraint. Therefore, the adaptive prediction horizon event-triggered mechanism is
designed to reduce the computational effort.

Define
{

𝑘𝑗
}

as the triggering time series, and the number of adjacent time updates is:

𝑘𝑗+1 = 𝑘𝑗 + 𝑇 , 𝑘0 = 0. (34)
where 𝑇 is the interval time between events, determined by the current actual state variable. Define𝑁𝑘𝑗 as the prediction horizon
of the triggering time 𝑘𝑗 , adaptively updated as:38

𝑁𝑘𝑗+1 = 𝑁𝑘𝑗 − 𝐿,𝑁0 = 𝑁p. (35)
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where 𝐿 is the length of the prediction horizon shrinkage, which is updated at the current triggering time. 𝑁p is a constant that
guarantees the solution of the optimization problem at the initial time. The upper and lower bounds of the event interval time
are 𝜎 ≤ 𝑇 ≤ 𝑁𝑘𝑗 , where 𝜎 is an adjustable parameter.

Remark 1. Since the sampling period of the emergency supplies transportation robot system is fixed, and the minimum event
interval is 𝜎 and the maximum value is 𝑁𝑘𝑗 , the system will not exhibit Zeno behavior.

At the triggering time 𝑘𝑗 , the optimal state sequence 𝒚∗𝑛(𝑘𝑗) and the optimal control sequence 𝒖∗𝑛(𝑘𝑗) in the prediction horizon
𝑁𝑘𝑗 are obtained by solving the following minimization problem:

min
𝒖𝑛(𝑘𝑗 )

𝑱
(

𝒚e(𝑘𝑗), 𝒖𝑛(𝑘𝑗), 𝑁𝑘𝑗

)

s.t.
𝒚e(𝑘𝑗|𝑘𝑗) = 𝒚e(𝑘𝑗)
𝒚e(𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗) ∈ Ω𝜀

𝒖𝑛(𝑘𝑗 + 𝑖|𝑘𝑗) ∈ 𝕌
.

(36)

where 𝑖 = 0,⋯ , 𝑁𝑘𝑗 − 1, Ω𝜆 =
{

𝒚e ∶ ‖

‖

𝒚e
‖

‖

2
𝑷 ≤ 𝜆2

}

, and 𝜆 > 0 is the terminal region, the terminal constraint ensures stability
by guaranteeing that the state at the end of the prediction horizon enters the terminal set. At each triggering time, the actual
state of the robot is obtained by the first constraint to initialize the controller, and the future behavior is predicted by the second
control input constraint and the system output (32).

The triggering condition is based on the difference between the actual state variable and the optimal state vari-
able obtained at the previous triggering time, and the Euclidean norm of the difference is defined as 𝒚̃(𝑘𝑗 + 𝑇 |𝑘𝑗) =
‖

‖

‖

𝒚𝑛(𝑘𝑗 + 𝑇 ) − 𝒚∗𝑛(𝑘𝑗 + 𝑇 |𝑘𝑗)
‖

‖

‖

.

Lemma 1. 46The bound of the error is: 𝒚̃(𝑘𝑗 + 𝑇 |𝑘𝑗) ≤ 𝐿T−1
𝑓 ⋅ 𝒚̃(𝑘𝑗 + 𝑇 |𝑘𝑗) +

𝐿T−1
𝑓 −1

𝐿𝑓−1
⋅ 𝜀 ≤

𝐿T
𝑓−1

𝐿𝑓−1
⋅ 𝜀.

The triggering condition is designed according to Lemma 1:

𝒚̃(𝑘𝑗 + 𝑇 |𝑘𝑗) ≥
𝐿T
𝑓 − 1

𝐿𝑓 − 1
⋅ 𝜀̄. (37)

where the triggering condition is calculated based on the boundary 𝜀̄ of the disturbance observation error 𝒅̃.
To ensure system stability, the prediction horizon is updated in the form of (35), and the length of the shrinkage is:

𝐿 = min
{

𝑇 − 1, 𝑁𝑘𝑗 − 𝑁̂𝑘𝑗

}

. (38)

where 𝑁̂𝑘𝑗 = inf
{

𝑖 ∶ 𝒚∗e (𝑘𝑗 + 𝑖|𝑘𝑗) ∈ Ω𝜀
}

is the shortest prediction horizon that guarantees the feasibility of the optimization
problem iteration. The prediction horizon at 𝑘𝑗+1 should satisfy:

𝑘𝑗 +𝑁𝑘𝑗 < 𝑘𝑗+1 +𝑁𝑘𝑗+1 ≤ 𝑘𝑗+1 +𝑁𝑘𝑗 . (39)
Combined with the triggering condition, MPC solves the optimization problem only in two cases. (i) Each time𝑁𝑘𝑗 is reached.

(ii) When the error between the actual state variable and the optimal state variable exceeds
((

𝐿T
𝑓 − 1

)

∕
(

𝐿𝑓 − 1
)

)

⋅ 𝜀̄.
Therefore, the triggering rule is:

𝒖𝑛(𝑘𝑗 + 𝑖) =
{

𝒖∗𝑛(𝑘𝑗 + 𝑖|𝑘𝑗),Triggering condition not valid
𝒖∗𝑛(𝑘𝑗+1|𝑘𝑗+1),Triggering condition valid, solve optimization problem . (40)

The event-triggered mechanism can reduce the frequency of optimization problem solving and thereby reducing the
computational effort. Algorithm 1 summarizes the event-triggered MPC algorithm with the adaptive prediction horizon.

The first control action of the optimal control sequence 𝒖∗𝑛(𝑘𝑗) solved by the optimization problem (36) is the nominal system
control variable 𝒖𝑛(𝑘𝑗) at time 𝑘𝑗 . The final control variable 𝒖(𝑘) of the emergency supplies transportation robot obtained by
(29) is:

𝒖(𝑘) = 𝒖∗𝑛(𝑘𝑗) − (𝑪𝑩)−1𝒅̂(𝑘). (41)



10 Yaqi Zhang ET AL

Algorithm 1 APET-MPC algorithm
Initialize system information;
while N doot reach the maximum simulation time of the system

Solve the optimization problem at 𝑘𝑗 to obtain the optimal state 𝒚∗𝑛(𝑘𝑗) and the optimal control 𝒖∗𝑛(𝑘𝑗);
if then𝒚̃(𝑘𝑗 + 𝑇 |𝑘𝑗) <

(

𝐿T
𝑓 − 1

)

⋅ 𝜀̄∕
(

𝐿𝑓 − 1
)

or 𝑖 < 𝑁𝑘𝑗
Apply the control variable 𝒖∗𝑛(𝑘𝑗 + 𝑖|𝑘𝑗) to the nominal system;
𝑖 = 𝑖 + 1;
Measure the actual state 𝒚𝑛(𝑘𝑗 + 𝑖) and go to step 4;

else
Solve for the event interval time 𝑇 = 𝑖;
Find 𝑁̂𝑘𝑗 so that 𝒚∗𝑛(𝑘𝑗 + 𝑁̂𝑘𝑗 |𝑘𝑗) ∈ Ω𝜀 and 𝒚∗𝑛(𝑘𝑗 + 𝑁̂𝑘𝑗 − 1|𝑘𝑗) ∉ Ω𝜀;
Determine the prediction horizon 𝑁𝑘𝑗+1 at time 𝑘𝑗+1;

end if
Update the triggering time 𝑘𝑗+1 → 𝑘𝑗 and go to step 1;

end while

4.3 Stability analysis
Theorem 1. Set at the time 𝑘𝑗 + 𝑖, the emergency supplies transportation robot is subject to optimal control 𝒖∗𝑛(𝑘𝑗 + 𝑖|𝑘𝑗), the
triggering condition is given by (37), and the length of the prediction horizon shrinkage is given by (38). At this time, the system
(31) is stable.

Assumption 4. 46The state objective function 𝑺
(

𝒚e(𝑘 + 𝑖|𝑘), 𝒖𝑛(𝑘 + 𝑖|𝑘)
)

is locally Lipschitz continuous and the Lipschitz
constant is 𝐿𝑠. Assuming 𝑺(0, 0) = 0, then there exist positive integers 𝑎 > 0, 𝑏 ≥ 1, and get:

𝑺
(

𝒚e(𝑘 + 𝑖|𝑘), 𝒖𝑛(𝑘 + 𝑖|𝑘)
)

≥ 𝑎‖
‖

𝒚e(𝑘 + 𝑖|𝑘), 𝒖𝑛(𝑘 + 𝑖|𝑘)‖‖
𝑏. (42)

Assumption 5. 46The terminal objective function 𝑯
(

𝒚e(𝑘 +𝑁|𝑘)
)

is locally Lipschitz continuous and the Lipschitz constant
is 𝐿𝐻 . The local state feedback controller 𝜒

(

𝒚e(𝑘)
)

= 𝐷𝒚e(𝑘) exists and satisfies:

𝑯
(

𝒚e(𝑘 +𝑁|𝑘 + 1)
)

−𝑯
(

𝒚e(𝑘 +𝑁|𝑘)
)

≤ −𝑺
(

𝒚e(𝑘), 𝜒
(

𝒚e(𝑘)
))

. (43)

The optimization problem (33) can be written as:

𝑱
(

𝒚e(𝑘), 𝒖𝑛(𝑘), 𝑁
)

=
𝑁−1
∑

𝑖=0
𝑺
(

𝒚e(𝑘 + 𝑖|𝑘), 𝒖𝑛(𝑘 + 𝑖|𝑘)
)

+𝑯
(

𝒚e(𝑘 +𝑁|𝑘)
)

. (44)

Proof. To show the stability of the control system, the core is to prove the monotonic decreasing property of the objective
function. The optimization problem is solved at 𝑘𝑗 . Define the Lyapunov function as 𝑉 (𝑘𝑗) = 𝑱

(

𝒚∗e (𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗), 𝑁𝑘𝑗

)

, and
substitute the optimal solutions at 𝑘𝑗+1 and 𝑘𝑗 into the objective function, that is, the difference between 𝑉 (𝑘𝑗+1) and 𝑉 (𝑘𝑗) is:

Δ𝑉 = 𝑱
(

𝒚∗e (𝑘𝑗+1), 𝒖
∗
𝑛(𝑘𝑗+1), 𝑁𝑘𝑗+1

)

− 𝑱
(

𝒚∗e (𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗), 𝑁𝑘𝑗

)

=
𝑁𝑘𝑗+1

−1
∑

𝑖=0
𝑺
(

𝒚∗e (𝑘𝑗+1 + 𝑖|𝑘𝑗+1), 𝒖
∗
𝑛(𝑘𝑗+1 + 𝑖|𝑘𝑗+1)

)

+𝑯
(

𝒚∗e (𝑘𝑗+1 +𝑁𝑘𝑗+1 |𝑘𝑗+1)
)

−
𝑁𝑘𝑗−1
∑

𝑖=0
𝑺
(

𝒚∗e (𝑘𝑗 + 𝑖|𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗 + 𝑖|𝑘𝑗)

)

−𝑯
(

𝒚∗e (𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗)
)

.

(45)

According to the Lipschitz condition, the (45) can be written as:
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Δ𝑉 =
𝑁𝑘𝑗−1
∑

𝑖=0
𝑺
(

𝒚∗e (𝑘𝑗+1 + 𝑖|𝑘𝑗+1), 𝒖
∗
𝑛(𝑘𝑗+1 + 𝑖|𝑘𝑗+1)

)

− 𝑺
(

𝒚∗e (𝑘𝑗+1 + 𝑖|𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗+1 + 𝑖|𝑘𝑗)

)

+ 𝑺
(

𝒚∗e (𝑘𝑗+1 +𝑁𝑘𝑗+1 |𝑘𝑗+1), 𝜒
(

𝒚∗e (𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗+1)
))

− 𝑺
(

𝒚∗e (𝑘𝑗|𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗|𝑘𝑗)

)

+𝑯
(

𝒚∗e (𝑘𝑗+1 +𝑁𝑘𝑗+1 |𝑘𝑗+1)
)

−𝑯
(

𝒚∗e (𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗)
)

.

(46)

According to Assumption 4, we obtain:

𝑺
(

𝒚∗e (𝑘𝑗|𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗|𝑘𝑗)

)

≥ 𝑎‖‖
‖

𝒚∗e (𝑘𝑗|𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗|𝑘𝑗)

‖

‖

‖

𝑏
. (47)

According to Assumptions 4 and 5, we obtain:

Δ𝑉 ≤ 𝐿𝑠
‖

‖

‖

𝒚∗e (𝑘𝑗+1 + 𝑖|𝑘𝑗+1) − 𝒚
∗
e (𝑘𝑗+1 + 𝑖|𝑘𝑗)

‖

‖

‖

− 𝑎‖‖
‖

𝒚∗e (𝑘𝑗|𝑘𝑗)
‖

‖

‖

𝑏

+𝑯
(

𝒚∗e (𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗+1)
)

−𝑯
(

𝒚∗e (𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗)
)

≤ 𝐿𝑠
‖𝐴‖𝑁𝑘𝑗−1 − 1

‖𝐴‖ − 1
𝒚̃(𝑘𝑗+1|𝑘𝑗) − 𝑎

‖

‖

‖

𝒚∗e (𝑘𝑗|𝑘𝑗)
‖

‖

‖

𝑏
+ 𝐿𝐻‖𝐴‖

𝑁𝑘𝑗−1𝒚̃(𝑘𝑗+1|𝑘𝑗).

(48)

From Lemma 1 we obtain:
(

𝐿𝑠
‖𝐴‖𝑁𝑘𝑗−1 − 1

‖𝐴‖ − 1
+ 𝐿𝐻‖𝐴‖

𝑁𝑘𝑗−1

)

𝒚̃(𝑘𝑗+1|𝑘𝑗) < 𝑎
‖

‖

‖

𝒚∗e (𝑘𝑗|𝑘𝑗)
‖

‖

‖

𝑏
. (49)

Therefore Δ𝑉 < 0, the objective function substituted into the optimal solution must be smaller than the objective function
substituted into other feasible solutions. In summary, it can be obtained that the monotonic decreasing property of the objective
function holds, that is:

𝑱
(

𝒚∗e (𝑘𝑗+1), 𝒖
∗
𝑛(𝑘𝑗+1), 𝑁𝑘𝑗+1

)

< 𝑱
(

𝒚∗e (𝑘𝑗), 𝒖
∗
𝑛(𝑘𝑗), 𝑁𝑘𝑗

)

. (50)
Therefore the APET-MPC control system is stable.

5 SIMULATION EXPERIMENTS

In this paper, a joint Carsim/ Simulink simulation model is established to verify the modeling accuracy of Koopman and the
performance of the APET-MPC controller based on RBF neural network disturbance observer.

5.1 Validation of the Koopman model
Since Koopman is a purely data-driven modeling method, the first step is to collect the operational data of the emergency supplies
transportation robot. The Koopman linear model shown in (22) is established by using the input-output response characteristics
of the robot model provided by Carsim. In the simulation, the sampling period 𝑇𝑠 = 0.02s is set and 40 simulations are performed.
The initial state of each simulation is set to zero, and a trajectory is obtained every 10s of operation (i.e., each trajectory generates
500 data points), with a total of 20,000 data points. All the collected data are used as the training set to solve the Koopman high-
dimensional linear model of the robot. According to the randomly generated robot input-output data as the test set to verify the
approximation accuracy of the high-dimensional linear model to the real emergency supplies transportation robot model.

Under the condition of consistent initial state and control input, the simulation compares the accuracy of the model with
the traditional local linearization method, Koopman linear model and Carsim model, where the local linearization method is a
first-order Taylor expansion at 𝒙0. Figure 4 and Figure 5 are the simulation comparison under the robot control input and state
dimensions, respectively.

It can be seen from Figures 4 and 5 that the Koopman linear model fits better with the Carsim model, while the local lineariza-
tion method has some errors. To further demonstrate the superiority of the Koopman linear model, the prediction accuracy of the
Koopman model and the local linearization model are compared in different prediction horizons. To quantitatively represent the
prediction performance of the model, the normalized root mean square error (NRMSE) shown in (51) is used as a quantitative
indicator:
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Figure 5 Comparison of state accuracy.

Table 1 NRMSE of yaw angle in the different prediction horizons.

Prediction horizon Koopman model Local linearization model

2 3.15% 13.62%
5 13.47% 85.47%
10 27.52% 106.39%

RMSE =

√

√

√

√
1
𝑂

𝑂
∑

𝑘=1
(𝜑(𝑘) − 𝜑̂(𝑘))2. (51a)

NRMSE = RMSE
𝜑max(𝑘) − 𝜑min(𝑘)

× 100%. (51b)

where 𝜑 is the measured yaw angle, 𝜑̂ is the predicted yaw angle, and 𝑂 is the size of the test set. Table 1 shows the NRMSE
between the real yaw angle and the predicted yaw angle generated by the two robot models in different prediction horizons.
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From Table 1, it can be seen that the Koopman linear model has good prediction accuracy in different prediction horizons,
while the local linearization model has good prediction result in a short prediction horizon, but the model gradually fails as the
prediction horizon increases because it only linearizes at 𝒙0. The Koopman operator can capture the global nonlinearity of the
robot model, thus avoiding the additional modeling error caused by local linearization. Therefore, the Koopman linear model
has high modeling accuracy and can be applied to emergency supplies transportation robot control system.

5.2 Validation of APET-MPC controller based on RBF neural network disturbance observer
To verify the performance of the designed APET-MPC trajectory tracking controller based on RBF neural network disturbance
observer, its disturbance estimation ability and trajectory tracking ability are simulated and verified under different reference
trajectories.

The parameter values of the Gaussian basis function are set to 𝒄 =
[

−0.5 0 0.5
]T, 𝜽 =

[

0.2 0.2 0.2
]T. The initial position

of the robot is (0,0), the sampling time is 0.1s, the simulation time is 30s, the terminal region is Ω𝜆 =
{

𝒚e ∶ ‖

‖

𝒚e
‖

‖

2
𝑷 ≤ 0.052

}

,
the minimum prediction step is 𝜎 = 4, and the initial prediction horizon is 𝑁0 = 20. The weight coefficients of the objective
function are: 𝑄 = diag(1,1,0.5), 𝑅 = diag(0.4,0.4), and 𝑃 = diag(0.5,0.5, 0.5).

5.2.1 Linear reference trajectory
Given a linear reference trajectory as 𝑦 = 5, the error between the robot and the reference trajectory at the initial time is 5m. To
verify the effectiveness of the APET-MPC controller proposed in this paper, the trajectory tracking effect of APET-MPC and
the standard MPC is simulated and compared. The trajectory tracking effect under the two control methods is shown in Figure
6, and the state error under the two control methods is shown in Figure 7.
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Figure 6 Tracking trajectory of MPC and APET-MPC.

It can be seen from Figure 6 that both MPC and APET-MPC can control the robot to track the reference trajectory, but the
tracking curve of MPC is smoother and the tracking effect is better than that of APET-MPC. As can be seen from Figure 7, the
state error of the robot eventually converges to 0. Figure 8 shows the triggering time and prediction horizon of standard MPC
and APET-MPC. Figure 9 shows the accumulated triggering times for two control methods.

It can be observed from Figure 8 that when the system satisfies the triggering condition, the result is not 0, and the robot
triggers events in a finite time, thus avoiding Zeno behavior. The optimization problem (36) of the APET-MPC controller is
solved only occur at the triggering time, while the standard MPC is triggered periodically, so it will be triggered at each sampling
time. Since APET-MPC adopts the adaptive prediction horizon method when the error between the actual robot state and the
reference trajectory decreases, the prediction horizon of the controller also decreases, the dimension of solving the optimization
problem also decreases, and the computational complexity of the controller also decreases. In contrast, the prediction horizon
of standard MPC is fixed. Under the event-triggered mechanism, the optimization problem is solved when the error between the



14 Yaqi Zhang ET AL

0 5 10 15 20 25 30
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

j e
/(r

ad
)

Time/(s)

 MPC
 APET-MPC

7.5 8.0 8.5 9.0 9.5 10.0
-0.01

0.00

0.01

0 5 10 15 20 25 30
-5

-4

-3

-2

-1

0

1

5 10 15 20
-1.0

-0.5

0.0

0.5

y e
/(m

)

Time/(s)

 MPC
 APET-MPC

Figure 7 State error of MPC and APET-MPC.
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actual trajectory and the optimal trajectory reaches the threshold. According to the prediction horizon update strategy (35), the
prediction horizon ultimately decreases to the minimum value of 5. From Figure 9, it can be observed that the triggering times of
APET-MPC are significantly reduced compared with the standard MPC, with the accumulated triggering times of the standard
MPC being 301 and APET-MPC being 130. Due to the addition of the event-triggered mechanism, the total triggering times of
the control system can be reduced by 56.81%. Therefore APET-MPC can reduce the computational complexity compared with
standard MPC.

To verify the estimation accuracy of the disturbance by the RBF neural network disturbance observer designed in this paper,
a random external disturbance is applied to the robot system at 𝑡 = 0𝑠. The tracking trajectory of the system under the control of
MPC, APET-MPC and APET-MPC based on the RBF neural network disturbance observer is given in Figure 10. Figure 11 shows
the true value of the disturbance and the estimated value of the RBF neural network disturbance observer to the disturbance.

It can be seen from Figure 10 that the tracking accuracy of MPC and APET-MPC decreases due to disturbance, while the
RBF-APET-MPC controller can control the system to stabilize faster. It can be seen from Figure 11 that the RBF neural network
disturbance observer can estimate the disturbance to the system effectively. The estimated disturbance value is approximate to the
true value with an estimation accuracy is 94.73%, indicating that the designed observer has a good disturbance estimation effect
in the stable state. Due to the high accuracy estimation and compensation effect of the neural network disturbance observer, the
trajectory tracking effect of the RBF-APET-MPC controller is better than that of the APET-MPC and has better anti-disturbance
ability. Compared with MPC relying on its robustness against disturbance, the RBF-APET-MPC controller can achieve real-time
disturbance compensation by using the disturbance observer, so it has higher robustness.



Yaqi Zhang ET AL 15

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Ti
m
es

Time/(s)

 MPC
 APET-MPC

Figure 9 Accumulated triggering times of MPC and APET-MPC.
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Figure 10 Tracking trajectory under three control methods.

The absolute error integral (IAE) and the time multiplied absolute error integral (ITAE) shown in (52) are selected as
evaluation indexes to evaluate the performance of the three controllers.

IAE = ∫

𝑇

0

|

|

𝑒𝑥||𝑑𝑡. (52a)

ITAE = ∫

𝑇

0
𝑡 |
|

𝑒𝑥||𝑑𝑡. (52b)

where 𝑇 is the operating time of the system. The IAE and ITAE of the three control methods under the linear reference trajectory
are shown in Table 2.

Comprehensive analysis of Figure 9 and Table 2, it can be seen that the triggering times of APET-MPC are reduced, but the
IAE and ITAE values are still 1.62% and 12.99% higher than MPC, and the trajectory tracking performance is also reduced.
However, the APET-MPC based on RBF neural network disturbance observer has the smallest IAE and ITAE values, especially
the ITAE value increases by 82.75%. The results show that APET-MPC based on RBF neural network disturbance observer
is superior to the other two control methods in improving the trajectory tracking performance and reducing the computational
effort, which verifies the effectiveness and superiority of APET-MPC system based on RBF neural network disturbance observer.
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Figure 11 True and estimated values of disturbance.

Table 2 Comparison of trajectory tracking performance of MPC, APET-MPC and RBF-APET-MPC.

Control method IAE ITAE

MPC 20.9313 48.1824
APET-MPC 21.2709 54.4401
RBF-APET-MPC 15.0126 8.3118

5.2.2 Double shift reference trajectory
Describe the reference double shift trajectory47 by (53):

𝑌ref(𝑋) =
𝑑𝑦1
2

(

1 + tanh(𝑧1)
)

−
𝑑𝑦2
2

(

1 + tanh(𝑧2)
)

. (53a)

𝜑ref(𝑋) = arctan

(

𝑑𝑦1

(

1
cosh(𝑧1)

)2 ( 1.2
𝑑𝑥1

)

− 𝑑𝑦2

(

1
cosh(𝑧2)

)2 ( 1.2
𝑑𝑥2

)

)

. (53b)

where 𝑧1 = 2.4 ⋅ (𝑋 − 27.19)∕𝑑𝑥1 − 1.2, 𝑧2 = 2.4 ⋅ (𝑋 − 56.46)∕𝑑𝑥2 − 1.2, 𝑑𝑥1 = 25, 𝑑𝑥2 = 21.95, 𝑑𝑦1 = 4.05, 𝑑𝑦2 = 5.7. The
trajectory tracking effect under the standard MPC and APET-MPC control is shown in Figure 12, and the state and control input
under the two control methods are shown in Figure 13.

Figure 12 shows both MPC and APET-MPC can control the robot to track the reference trajectory, and the tracking effect
of both control methods is approximate. It can be seen from Figure 13 that the control input of the robot under APET-MPC
control fluctuates during turning, while the control input of MPC is smoother. Figure 14 shows the triggering time and prediction
horizon of standard MPC and APET-MPC.

It can be observed from Figure 14 that the robot does not turn during a period of around 0s to 3.9s, so APET-MPC does
not need to solve the optimization problem. There are two points with small turning radii around 4.8s and 13.4s where the
actual robot state deviates from the reference trajectory, and the robot needs the control input changes quickly and timely, so the
solution of the optimization problem is triggered continuously. This event-triggered mechanism can trigger the solution of the
optimization problem at the appropriate time, which reduces the triggering times to solve the optimization problem and saves
computational resources. APET-MPC significantly reduces the triggering times compared to standard MPC, with accumulated
triggering times of 301 for standard MPC and 138 for APET-MPC. The total triggering times of the control system can be
reduced by 54.15%. Therefore, APET-MPC can reduce the computational complexity compared with standard MPC.

To verify the estimation accuracy of the RBF neural network disturbance observer designed in this paper, a random external
disturbance is applied to the robot system at 𝑡 = 0𝑠. The tracking trajectory of the emergency supplies transportation robot
system under the control of MPC, APET-MPC and APET-MPC based on RBF neural network disturbance observer is given
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Figure 12 Trajectory tracking of MPC and APET-MPC.
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Figure 13 State and control input of MPC and APET-MPC.

in Figure 15. Figure 16 shows the disturbance’s true value and the disturbance’s estimated value by the RBF neural network
disturbance observer.

As can be seen from Figure 15, the tracking accuracy of MPC and ETMPC decreases due to disturbance, while the RBF-APET-
MPC controller can maintain good tracking accuracy. From Figure 16, it can be seen that the RBF neural network disturbance
observer can estimate the disturbance to the system effectively. The disturbance estimate value is approximate to the true value,
and the estimation accuracy is 92.78%, indicating that the designed observer has a good disturbance estimation effect in the
stable state. The APET-MPC controller with RBF neural network disturbance observer can use the disturbance observer to
achieve real-time control compensation, which has higher stability accuracy compared to MPC.

The IAE and ITAE of the three control methods under the double shift reference trajectory are shown in Table 3.

Based on the comprehensive analysis of Figure 14 and Table 3, it can be seen that APET-MPC has fewer triggering times,
but the IAE and ITAE values are still 10.12% and 19.68% higher than MPC, and the trajectory tracking performance has also
decreased. However, the APET-MPC based on RBF neural network disturbance observer has the smallest IAE and ITAE values,
especially the ITAE value increases by 85.59%. The results show that APET-MPC based on RBF neural network disturbance
observer is superior to other methods in improving trajectory tracking performance and reducing computational effort, which
verifies the effectiveness and superiority of APET-MPC system based on RBF neural network disturbance observer.
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Figure 15 Tracking trajectory under three control methods.

Table 3 Comparison of trajectory tracking performance of MPC, APET-MPC and RBF-APET-MPC.

Control method IAE ITAE

MPC 29.1750 47.5305
APET-MPC 32.1276 67.2070
RBF-APET-MPC 13.1459 7.0501

6 CONCLUSIONS

For the trajectory tracking control problem of emergency supplies transportation robot, Koopman operator theory, RBF neural
network disturbance observer and APET-MPC method are used to achieve accurate and fast robot tracking of the reference
trajectory. The main work includes the following four points:

(1) The data-driven Koopman operator theory is used in the establishment of the kinematics model. The original control object
is transformed from a nonlinear system to a linear system and a high-dimensional linear model of the robot is established,
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reducing the difficulty of control law design and computational complexity. At the same time, Koopman is realized by data-
driven and only needs to collect operating data from simulation or actual robot, which reduces the requirement for kinematics
modeling of emergency supplies transportation robot.

(2) Considering the complexity of the robot operating environment, the disturbance during operation will have a large impact
on the robot trajectory tracking control accuracy, the RBF neural network disturbance observer is designed to estimate the
disturbance and compensate it into the controller output, which improves the robustness of the system.

(3) The APET-MPC method is used to design the controller, which reduces the frequency of solving the optimization problem
through the event-triggered mechanism, reduces the dimensionality of the optimization problem by adjusting the prediction
horizon and reduces the computational load of the MPC through APET. This reduces the computational load of the controller
while ensuring the robot tracking accuracy.

(4) The joint Carsim/ Simulink simulation model is established to verify the accuracy of the high-dimensional linear model
established by the Koopman operator theory and the estimation accuracy of the disturbance by the RBF neural network
disturbance observer, and the effectiveness of the APET-MPC controller is simulated under different operating conditions.
The experimental results show that the Koopman model can capture the global nonlinearity of robot kinematics, and the
prediction error of the Koopman model is smaller than that of the local nonlinear model in different prediction horizons.
Compared with the standard MPC, the trajectory tracking error of the APET-MPC trajectory tracking controller is not much
different and has better tracking and stability. When there is a disturbance, the RBF neural network disturbance observer
can effectively estimate the disturbance with an estimation accuracy above 90%, which can make the robot system quickly
track the reference trajectory and reach a stable state, with good anti-disturbance ability.

This work could be extended in the following directions: (i) This paper adopts a purely data-driven method to establish the
emergency supplies transportation robot model, but it is difficult to obtain certain data in actual situations, and each collected
data is subject to different external disturbance. Future research work will consider how to extract effective data to establish the
Koopman model. (ii) The APET-MPC method mentioned in this paper solves the problem of high computational complexity
in MPC, which is currently applied to a single robot with relatively small computation complexity. Future research work will
consider applying the APET-MPC method to the cooperative control of multiple emergency supplies transportation robots.
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