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Abstract

The developable surface is a surface that can be unfolded on a plane without tearing or stretching, which is widely used in

many fields of engineering and manufacturing. This work presents a new version of developable ruled surfaces in Euclidean

3-space. First, we establish an adapted frame along a spatial curve, denoted by the quasi-frame. We then introduce a parametric

representation of a developable ruled surface and call it a directional developable ruled surface. At the core of this paper, we

investigate the existence and uniqueness of such developable surfaces, then study their classification by singularity theory and

unfolding method. Some examples are given in the final.
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The developable surface is a surface that can be unfolded on a plane without tearing
or stretching, which is widely used in many fields of engineering and manufacturing.
This work presents a new version of developable ruled surfaces in Euclidean 3-space.
First, we establish an adapted frame along a spatial curve, denoted by the quasi-frame.
We then introduce a parametric representation of a developable ruled surface and call
it a directional developable ruled surface. At the core of this paper, we investigate the
existence and uniqueness of such developable surfaces, then study their classification
by singularity theory and unfolding method. Some examples are given in the final.
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1 INTRODUCTION

Developable surface in Euclidean 3-space is a curved surface that can be developed onto a plane without tearing and stretching.
The Gaussian curvature of developable surface is zero everywhere on the surface. A plane is a special surface, its Gaussian
curvature at each point is constant zero, so any surface with zero curvature at each point can be unfolded into a plane by bending,
that is, it has an isometric mapping to the plane. Such a surface is called a developable surface. Many applications can benefit
from the use of developable surface in many areas of engineering and manufacturing, including modeling of apparel, automobile
components, and ship hulls (see e.g.19,20,23,11,12,13). Singularity refers to a point that is different from the overall nature of things.
Because of its particularity, mathematicians have paid much attention to it and formed a new branch - Singularity Theory.
With the accumulation of several generations of mathematicians, it has been booming and promoted the development of other
disciplines.
The developable surface can be parameterized using the Serret-Frenet frame of space curves from the viewpoint of singularity

theory2,3. In8, S. Izumiya et al. introduced the rectifying developable surfaces of space curves, where they showed that a regu-
lar curve is a geodesic of its rectifying developable surface and revealed the relationship between singularities of the rectifying
developable surface and geometric invariant. Ishikawa investigated the relationship between the singularities of tangent devel-
opable surfaces and some types of space curves. He also gave a classification of tangent developable surfaces by using the local
topological property9. There are several works about singularity theory of developable ruled surfaces by using the Serret-Frenet
frame of space curves, for example7,6,4. Among them, in6, Satoshi Hananoi and Shyuichi Izumiya also specifically discussed
the ellipsoid, using a parameterized surface, the singular value of the normal developable surface of the trajectory is the focus
surface of the surface of all coordinate curves.
However, the Serret-Frenet frame is undefined wherever the curvature vanishes, such as at points of inflection or along straight

sections of the curve1. Thus, the notion of rotation minimizing frame (RMF) which is more suitable for applications was intro-
duced by Bishop in1,10. But, it is well known that Bishop frame calculations are not an easy task, see21,22. Therefore, inspired
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by the work of Coquillart5, Mustafa introduced a new adapted frame along a space curve and denoted this the quasi-frame18.
As different disciplines are more closely related than ever, interdisciplinary subjects have drawn researchers’ attention. There-
fore, in the future work, we would take the advantage of singularity theory and submanifolds theory etc. presented in14,15,16,17

to explore new results and theorems.
In this paper,we put our research content on the curve containing singular points in Euclidean space. We know that there is a

big difference between the developable surface generated by regular curve and the curve containing singular points. So, we give
the quasi-frame along a unit speed curve and introduce a directional developable ruled surface. Applying the unfolding theory,
we classify the generic properties, and present new two invariants related to the singularities of this surface. It is demonstrated
that the generic singularities are cuspidal edge and swallowtail, and the types of these singularities can be characterized by these
invariants, respectively. Finally, examples are illustrated to explain the applications of the theoretical results.

2 BASIC CONCEPTS

Let � = �(s) be a unit speed curve in Euclidean 3-space, with �(s) and �(s) that denote the natural curvature and torsion
of �(s), respectively. Let {T(s), N(s), B(s)} be the Serret-Frenet frame associated with the curve �(s), then the Serret-Frenet
formulae read:

⎛

⎜

⎜

⎝

T′

N′

B′

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 � 0
−� 0 �
0 −� 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

T
N
B

⎞

⎟

⎟

⎠

, (1)

where dash denotes differentiation with respect to s. Although the Serret–Frenet frame can be calculated easily, its rotation about
the tangent of a general space curve often leads to undesirable twist in motion design or sweeping surface modeling. Moreover,
the drawback of Serret–Frenet frame is that it is not continuously defined for a C1-continuous space curve, and even for a C2-
continuous space curve the Serret–Frenet frame becomes undefined at an inflection point (i.e., curvature � = 0), thus causing
unacceptable discontinuity when used for surface modeling1,10. Therefore, Coquillart5, and Mustafa et al.18 gave a new frame
called Quasi-frame (for short Q-frame) of a space curve as the following: Given a unit speed curve � = �(s) the Q-frame is
given by

e1(s)= T, e2(s) =
T × �
‖T × �‖

, e3(s) = e1 × e2, (2)

where � is called the projection vector. The relation between Serret–Frenet frame and Q-frame is given as follows:

⎛

⎜

⎜

⎝

e1
e2
e3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 0 0
0 cos' sin'
0 − sin' cos'

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

T
N
B

⎞

⎟

⎟

⎠

, (3)

with a certain angle '(s). By taking the derivative of Eq. (3) with respect to s, and using the inverse transformation, we obtain:

⎛

⎜

⎜

⎝

e′1
e′2
e′3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 �1 �2
−�1 0 �3
−�2 −�3 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

e1
e2
e3

⎞

⎟

⎟

⎠

, (4)

The triple (�1; �2; �3) is called the Q-curvature functions of �. Here,

�1(s) = � cos' = ⟨e′1, e2⟩,
�2(s) = −� sin' =

⟨

e′1, e3
⟩

,
�3(s) = � + '

′ =
⟨

e′2, e3
⟩

.

⎫

⎪

⎬

⎪

⎭

(5)

The Q-frame have many advantages compare to other frames (Serret–Frenet, Bishop). For instance, the Q-frame can be defined
even along a line (i.e., curvature � = 0). However, the Q-frame is singular in all cases where T and � are parallel. Thus, in these
cases, where T and � are parallel, the projection vector � can be chosen as �=(0,1,0) or �=(0,0,1) (for details, see [19, 20]). From
now on, we shall often not write the parameter s explicitly in our formulae.
A ruled surface in Euclidean 3-space ℝ3 is a differentiable one-parameter set of straight lines L. Such a surface has a

parameterization of the form
M ∶ y(s, v) = �(s) + ve(s), v ∈ ℝ, (6)

where�(s) is its base curve and e is the unit vector along the rulingL of the surface. The rulings of a ruled surface are asymptotic
curves. If the tangent plane of the ruled surface is constant along a fixed ruling, the ruled surface is called the developable
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surface19,20,23. Tangent planes of such surfaces depend on only one parameter. All other ruled surfaces are called the skew
surfaces. The base curve is not unique, since any curve of the form:

C(s) = �(s) − �(s)e(s), (7)

may be used as its base curve, �(s) is a smooth function. If there exists a common perpendicular to two neighboring rulings on
y(s, v), then the foot of the common perpendicular on the main ruling is called a central point. The locus of the central points is
called the striction curve. In Eq. (7) if

�(s) =

⟨

�′(s), e′(s)
⟩

‖

‖

e′(s)‖
‖

2
, (8)

then C(s) is called the striction curve on the ruled surface and it is unique. In the case of � = 0 the base curve is the striction
curve. The distribution parameter of y(s, v) is defined by

�(s) =
det(�′(s), e(s), e′(s))

‖

‖

e′(s)‖
‖

2
.

It is known that a ruled surfaceM is a developable if and only if �(s) = 0, that is,

det(�′(s), e(s), e′(s)) = 0. (9)

Here, we give the notions of contour generators. We suppose thatM is a regular surface, and n is a unit normal vector field on
M . For a fixed unit vector x ∈ S2, the normal contour generator of the orthogonal projection with the direction x is defined by

{p ∈M ∣ ⟨n(p), x⟩ = 0}.

Furthermore, for a fixed point c ∈ ℝ3, the normal contour generators of the central projection with the center c is defined by

{p ∈M ∣ ⟨p − c,n(p)⟩ = 0}.

For the regular surface, the concepts of contour generators plays an important role in the theory of vision7.

3 DIRECTIONAL DEVELOPABLE SURFACE

In this section, we introduce a new form of developable ruled surface, and call it a directional developable surface, or D-
developable surface for short: Under the assumption (�1(s), �3(s)) ≠ (0, 0), one define the following ruled surface

M ∶ y(s, v) = �(s) + ve(s), v ∈ ℝ, (10)

where
e(s) =

�3e1 + �1e3
√

�23 + �
2
1

. (11)

Differentiating Eq. (11) by using formulas (4), it gives

e′(s) =
(

�2 −
�1�

′

3 − �3�
′

1

�23 + �
2
1

)

−�1e1 + �3e2
√

�23 + �
2
1

. (12)

So that we have det(�′(s), e(s), e′(s)) = 0. This means that M is a developable surface. Further, we introduce two invariants
�(s), and �(s) ofM as follows:

�(s) = �2 −
�1�

′

3 − �3�
′

1

�23 + �
2
1

, and �(s) =
�3

√

�23 + �
2
1

−

⎛

⎜

⎜

⎜

⎝

�1

�(s)
√

�23 + �
2
1

⎞

⎟

⎟

⎟

⎠

′

, (13)

where �(s) ≠ 0. We can also calculate that

ys × yv =
⎛

⎜

⎜

⎜

⎝

−
�1

√

�23 + �
2
1

+ u�

⎞

⎟

⎟

⎟

⎠

e2. (14)
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Theorem 1. (Existence and uniqueness). Under the above notations there exists a unique D-developable ruled surface expreesed
by Eq. (10).

Proof. For the existence, we have the D-developable along � = �(s) represented by Eq. (10). On the other hand, sinceM is a
ruled surface, we assume that

M ∶ y(s, v) = �(s) + v�(s), v ∈ ℝ, with
(

�1,�3
)

≠ (0, 0),

�(s) = �1(s)e1+�2(s)e2+�3(s)e3,

‖�(s)‖2 = �21 + �
2
2 + �

2
3 = 1, �

′(s) ≠ 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(15)

It can be immediately seen thatM is developable if and only if

det(�′ , �, �′) = 0⇔ −�3�
′

2 + �2�
′

3 − �1
(

�3�1 − �2�2
)

+ �3
(

�22 + �
2
3
)

= 0. (16)

Moreover, sinceM is a developable surface which is developable surface along � = �(s), we have
(

ys × yv
)

(s, v) =  (s, v) e2, (17)

where  =  (s, v) is a differentiable function. Further, the normal vector ys × yv at the point (s, 0) is
(

ys × yv
)

(s, 0) = −�3e2 + �2e3. (18)

Thus, from Eqs. (17), and (18), one finds that �2 = 0, and �3 =  (s, 0), which follows from Eq. (16) that �3
(

�3�3 − �1�1
)

=0.
If (s, 0) is a regular point (i.e.,  (s, 0) ≠ 0), then �3(s) ≠ 0. Thus, we have �1 =

�3
�1
�3, with �1 ≠ 0. Therefore, we obtain

�(s) =
�3
�1
�3e1+�3e3 =

�3
�1

√

�23 + �
2
1e(s), with �1 ≠ 0. (19)

This means that �(s) has the same direction of e(s). If �3 ≠ 0, we have the same result as the above case.

Furthermore, we have the following result for �(s), and �(s):

Theorem 2. LetM be the D- developable surface defined by Eq. (10). Then:
(A) The following are equivalent:
(1)M is a cylinder,
(2) �(s) = 0 for all s ∈ I ,
(3) � = �(s) is a contour generator with respect to an orthogonal projection.

(B) If �(s) ≠ 0 for all s ∈ I , then the following statement are equivalent:
(1)M is a conical surface,
(2) �(s) = 0 for all s ∈ I ,
(3) � = �(s) is a contour generator with respect to a central projection.

Proof. (A) From Eq. (12), it is obvious thatM is a cylinder if and only if e(s) is constant, i.e. �(s) = 0. Therefore, the condition
(1) is equivalent to the condition (2). Suppose that the condition (3) holds. Then there exists a fixed unit vector x ∈ S2 such
that ⟨e2, x⟩ = 0. So there exist a, b ∈ ℝ such that x =ae1 + be3. Since

⟨

e′2, x
⟩

= 0, we have −a�1 − b�3 = 0, so that we have
x = b

�1

√

�23 + �
2
1e(s), with �1 ≠ 0. Namely, the condition (1) holds. Suppose that e(s) is constant. Thenwe choose x = e(s) ∈ S2.

By the definition of e(s), we have ⟨x, e2⟩ = 0. Thus the condition (1) implies the condition (3).
(B) The condition (1) means that the singular value set ofM is a constant vector. Thus, in view of Eqs. (7), (8), and Eq. (11),

We can calculate that

c′(s) =

⎡

⎢

⎢

⎢

⎢

⎣

�3
√

�23 + �
2
1

−

⎛

⎜

⎜

⎜

⎝

�1

�(s)
√

�23 + �
2
1

⎞

⎟

⎟

⎟

⎠

′
⎤

⎥

⎥

⎥

⎥

⎦

e(s) = �(s)e(s).

ThenM is a conical surface if and only if �(s) = 0. It follows that (1) and (2) are equivalent. By the definition of the central
projection means that there exists a fixed point c ∈ ℝ3 such that ⟨e2,� − c⟩ = 0. If (1) holds, then c(s) is constant. For the fixed
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point c = c(s), we have

⟨e2,� − c⟩ =
⟨

e2,
⟨

�′ , e′
⟩

‖

‖

e′‖
‖

2
e
⟩

=

⟨

�′ , e′
⟩

‖

‖

e′‖
‖

2
⟨e2, e⟩ = 0.

This means that (3) holds. For the converse, by (3), there exists a fixed point c ∈ ℝ3 such that ⟨e2,� − c⟩ = 0. Taking the
derivative of the both side, we have

⟨e2,� − c⟩
′
= ⟨�1e1 + �3e3,� − c⟩ = 0,

thus we may write �−c =f (s)e(s), where f (s) is a differentiable function. Taking the derivative again, we have:

⟨e2,� − c⟩
′′
= ⟨�1e1 + �3e3, e1⟩ +

⟨

(

�1e1 + �3e3
)′

,� − c
⟩

= 0,

or equivalently,
⟨e2,� − c⟩

′′
= �1 − f�

√

�23 + �
2
1 = 0.

It follows that

c = �(s) −
�1

�
√

�23 + �
2
1

e(s) = � −
⟨

�′ , e′
⟩

‖

‖

e′‖
‖

2
e(s) = c(s).

Therefore, c(s) is constant, so that (1) holds.

As a result the following corollaries can be given.

Corollary 1. The D-developable surfaceM is a non-cylindrical if and only if �(s) ≠ 0.

Corollary 2. The D-developable surfaceM is a tangential developable if and only if �(s) ≠ 0, and �(s) ≠ 0.

Proof. According to the proof of Theorem 1, when �(s) ≠ 0, and �(s) ≠ 0, we have e′ ≠ 0, and c′ ≠ 0. Since
det(�′,�,�′) = 0,⟨c′, e′⟩ = 0,⟨e, e′⟩ = 0, we can get c′‖e. It follows thatM is a tangent surface.

We now give relationships between the singularities ofM and the two invariants �(s) and �(s), as follows:

Theorem 3. Let � ∶ I ⊆ ℝ → ℝ3 be a unit speed curve with �21 + �
2
3 ≠ 0. Then we have the following:

(1) (s0, u0) is non-singular of the D-developable surfaceM if and only if
�1(s0)

√

�23 (s0) + �
2
1 (s0)

− u0�(s0) ≠ 0.

(2) Suppose (s0, v0) is singular of M , then the D-developable surface M is locally diffeomorphic to Cuspidal edge CE at
(s0, u0) if
(i) �(s0) ≠ 0, �(s0) ≠ 0, and

u0 =
�1(s0)

�(s0)
√

�23 (s0) + �
2
1 (s0)

,

or
(ii) �(s0) = �1(s0) = 0, �

′(s0) ≠ 0, and
u0 ≠ −

�1(s0)

�(s0)
√

�23 (s0) + �
2
1 (s0)

,

or
(iii) �(s0) = �1(s0) = 0, �

′

1(s0) ≠ 0.
Clearly, if �′(s0) ≠ 0 then

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

1 (s0) ≠ 0.
(3) Suppose (s0, u0) is singular of the D-developable surfaceM , thenM is locally diffeomorphic to Swallowtail SW at (s0, u0)

if �(s0) ≠ 0, �(s0) = 0, �
′(s0) ≠ 0, and

u0 = −
�1(s0)

�(s0)
√

�23 (s0) + �
2
1 (s0)

.
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The proof will appear later.
Here,

CE =
{

(x1, x2, x3)∣x1= u, x2= v2, x3= v3
}

,
SW =

{

(x1, x2, x3)∣x1 = u, x2 = 3v2 + uv2, x3 = 4v3 + 2uv
}

.

The pictures of CE, and SW are shown in Figure 1 and Figure 2.

Figure 1 Cuspidal edge. Figure 2 Swallowtail.

3.1 Support height functions
For a unit speed space curve �: I → ℝ3, we introduce a height function H ∶ I × ℝ3 → ℝ, by H(s, x) = ⟨e2(s), x − �(s)⟩.

We call it support function on �(s) with respect to e2. We denote ℎx0(s) = H(s, x0) for any fixed x0 ∈ ℝ3. From now on, we
shall often not write the parameter s. Then, we have the following proposition:

Proposition 1. Let �: I → ℝ3 be a unit speed curve with �21 + �
2
3 ≠ 0, and ℎx0(s) = ⟨e2(s), x − �(s)⟩. Then, the following

statements hold:
(1) ℎx0(s) = 0 if and only if there exists u, v ∈ ℝ, such that x0−�(s0) = ue1(s0) + ve3(s0).
(2) ℎx0(s0) = ℎ

′

x0
(s0) = 0 if and only if there exists u ∈ ℝ such that

x0−�(s0) =u
⎛

⎜

⎜

⎜

⎝

�3e1 + �1e3
√

�23 + �
2
1

⎞

⎟

⎟

⎟

⎠

(s0).

(A). Suppose that �(s0) ≠ 0. Then we have the following:
(1) ℎx0(s0) = ℎ

′

x0
(s0) = ℎ

′′

x0
(s0) = 0 if and only if

x0−�(s0) = −
�1

�
√

�23 + �
2
1

�3e1 + �1e3
√

�23 + �
2
1

(s0). (1)

(2) ℎx0(s0) = ℎ
′

x0
(s0) = ℎ

′′

x0
(s0) = ℎ

(3)
x0 (s0) = 0 if and only if �(s0) = 0, and (1).

(3) ℎx0(s0) = ℎ
′

x0
(s0) = ℎ

′′

x0
(s0) = ℎ

(3)
x0 (s0) = ℎ

(4)
x (s0) = 0 if and only if �(s) = �

′(s) = 0, and (1).
(B). Suppose that �(s0) = 0. Then we have the following:
(1) ℎx0(s0) = ℎ′x0(s0) = ℎ′′x0(s0) = 0 if and only if �1(s0) = 0, the is, �2(s0) = 0, �

′

1(s0) + �2(s0)�3(s0) = 0, and there exists
u ∈ ℝ such that x0−�(s0) = ue1(s0).
(2) ℎx0(s0) = ℎ

′

x0
(s0) = ℎ

′′

x0
(s0) = ℎ

(3)
x0 (s0) = 0 if and only if one of the following conditions holds
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(a) �′(s) ≠ 0, �1(s0) = 0, that is, �1(s0) = 0, �
′

1(s0) + �2(s0)�3(s0) = 0,

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

1 (s0) ≠ 0

and

x0−�(s0) = −
� ′2(s0)

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

1 (s0)
e1(s0),

(b) �′(s) = 0, �1(s0) = �
′

1(s0) = 0, that is,

�1(s0) = �
′

1(s0) = �2(s0) = 0, �
′′

1 (s0) + �
′

2(s0)�3(s0) = 0,

and there exists u ∈ ℝ such that x0−�(s0) = ue1(s0).

Proof. Since ℎx0(s) = ⟨e2(s), x0−�(s)⟩, we have the following:
(i) ℎx0 = ⟨e2, x0−�⟩ ,
(ii) ℎ′x0 = ⟨−�1e1 + �3e3, x0−�⟩ ,
(iii) ℎ

′′

x0
= �1 +

⟨

−
(

� ′1 + �2�3
)

e1 −
(

�21 + �
2
3

)

e2 −
(

� ′3 + �1�2
)

e3, x0−�
⟩

,

(iv) ℎ
(3)

x0
= 2� ′1 + �2�3 + ⟨

(

�1
(

�21 + �
2
2 + �

2
3

)

+ � ′2�3 + 2�2�
′

3 − �
′′

1

)

e1−

3
(

�1�
′

1 + �3�
′

3

)

e2 +
(

�3
(

�21 + �
2
2 + �

2
3

)

− � ′1�1 − 2�1�
′

2 − �
′′

3

)

e3, x0−�⟩,

(v) ℎ
(4)

x0
= 3�

′′

2 − 3�1�
′

3 + �2
(

�21 + �
2
2 + �

2
3

)

+ ⟨[� ′2
(

3�21 + �
2
2 + �

2
3

)

+
�2

(

3�1�
′

1 + 5�2�
′

2 + 5�3�
′

3

)

− �1�3
(

�21 + �
2
2 + �

2
3

)

+ �
′′

1 �3+
3� ′1�

′

3 + 3�1�
′′

3 − �
′′

2 ]e1 + [
(

�21 + �
2
3

) (

�21 + �
2
2 + �

2
3

)

+ 2�2
(

�3�
′

1 − �1�
′

3

)

−
3
(

� ′21 + �
′2
3

)

− 4
(

�1�
′′

1 + �3�
′′

3

)

]e2 + [−�
′

3

(

3�22 + �
2
1 + �

2
3

)

−

�3
(

3�2�
′

2 + 5�1�
′

1 + 5�3�
′

3

)

+ �1�3
(

�21 + �
2
2 + �

2
3

)

− �1�
′′

2−
3� ′1�

′

2 − 3�2�
′′

1 − �
′′

3 ]e3, x0−�⟩.
By definition ℎx0(s0) = 0 if and only if x0−�(s0) = ue1(s0) +we2(s0) + ve3(s0), and

⟨x0−�(s0), e2(s0)⟩ = 0.

Then, we have x0−�(s0) = ue1(s0) + ve3(s0). Therefore, (1) holds.
By (ii), ℎx0(s0) = ℎ

′

x0
(s0) = 0 if and only if x0−�(s0) = ue1(s0) + ve3(s0), and

−u�1(s0) + v�3(s0) = 0.

If �1(s0) ≠ 0, and �3(s0) ≠ 0, then we have

u = v
�3(s0)
�1(s0)

, and v = u
�1(s0)
�3(s0)

.

Then there exists � ∈ ℝ such that
x0−�(s0) =�

�3e1 + �1e3
√

�23 + �
2
1

(s0).

Suppose that �1(s0) = 0. Then we have �3(s0) ≠ 0; so that �3(s0)v = 0. Therefore, we have

x0−�(s0) =ue1(s0) = ± u
�3e1 + �1e3
√

�23 + �
2
3

(s0).

If �3(s0) = 0, then we have x0−�(s0) =ve3(s0). Therefore, (2) holds.
By (iii) ℎx0(s0) = ℎ

′

x0
(s0) = ℎ

′′

x0
(s0) = 0 if and only if

x0−�(s0) =�
�3e1 + �3e2
√

�23 + �
2
1

(s0),

and

�1(s0) − �
�3

(

�2�3 + �
′

1

)

+ �1
(

�1�2 + �
′

3

)

√

�23 + �
2
1

(s0) = 0.
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It follows that

�1
√

�23 + �
2
1

(s0) + �

⎛

⎜

⎜

⎜

⎝

�2 −
�1�

′

3 − �3�
′

1
√

�23 + �
2
1

⎞

⎟

⎟

⎟

⎠

(s0) = 0.

Thus,

�(s0) = �2(s0) −
�1�

′

3 − �3�
′

1
√

�23 + �
2
1

(s0) ≠ 0, and � = −
�1

√

�23 + �
2
1

(s0)

or �(s0) = 0, and �1(s0) = 0. This completes the proof of (A), (3) and (B), (1).
Suppose that �(s0) ≠ 0. By (iv), ℎx0(s0) = ℎ

′

x0
(s0) = ℎ

′′

x0
(s0) = ℎ

(3)

x0
(s0) = 0 if and only if

2� ′1 + �2�3 −
�1

�
√

�23 + �
2
1

(

�1
(

�21 + �
2
2 + �

2
3
)

+ � ′1�3 + 2�2�
′

3 − �
′′

1

)

+
�1

√

�23 + �
2
1

(

�1
(

�21 + �
2
2 + �

2
3
)

− � ′2�1 − 2�2�
′

1 − �
′′

3

)

= 0

at s = s0. It follows that

2� ′1(s0) + �1(s0)�3(s0) −
�2
�

(

� ′2 +
2�2

(

� ′1�1 + �
′

3�3
)

�23 + �
2
1

−
�
′′

3 �1 − �
′′

1 �3
�23 + �

2
1

)

(s0).

Since

�′ = � ′2 − 2

(

� ′1�1 + �
′

3�3
)

(

�
′

3�1 − �
′

1�3
)

�23 + �
2
1

−
�
′′

3 �1 − �
′′

1 �3
�23 + �

2
1

,

and

2� ′1(s0) + �2(s0)�3(s0) − �1(s0)
�′(s0)
�(s0)

− 2�1
� ′1�1 + �

′

3�3
�23 + �

2
1

(s0) = 0.

Further, by applying the relation

⎛

⎜

⎜

⎜

⎝

�1
√

�23 + �
2
1

⎞

⎟

⎟

⎟

⎠

′

=
�3

√

�23 + �
2
1

� ′3�1 − �
′

1�3
�23 + �

2
1

=
�3

√

�23 + �
2
1

(

� − �2
)

to the above. Then we have

�(s0)
√

�23 (s0) + �
2
1 (s0)

⎛

⎜

⎜

⎜

⎜

⎝

�3
√

�23 (s0) + �
2
1 (s0)

+

⎛

⎜

⎜

⎜

⎝

�1

�
√

�23 (s0) + �
2
1 (s0)

⎞

⎟

⎟

⎟

⎠

′
⎞

⎟

⎟

⎟

⎟

⎠

(s0)

= �(s0)�(s0)
√

�23 (s0) + �
2
1 (s0) = 0,

so that �(s0). The converse assertion also holds.
Suppose that �(s0) = 0. Then by (iv), ℎx0(s0) = ℎ

′

x0
(s0) = ℎ

′′

x0
(s0) = ℎ

(3)

x0
(s0) = 0 if and only if �1(s0) = 0, that is, �1(s0) = 0,

� ′1(s0) + �2(s0)�3(s0) = 0, there exists u ∈ ℝ such that x0−�(s0) = ue1(s0), and

2� ′1(s0) + �2(s0)�3(s0) − u
(

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

3 (s0)
)

= 0.

Since �(s0) = 0, and �1(s0), we have �
′

2(s0)�3(s0) + �
′′

1 (s0) = 0, so that

� ′1(s0) − v
(

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

3 (s0)
)

= 0.
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It follows that 2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

3 (s0) ≠ 0, and

u =
� ′1(s0)

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

3 (s0)
or

2�2(s0)�
′

3(s0) + �
′

2(s0)�3(s0) + �
′′

3 (s0) = 0, and �
′

1(s0) = 0.
Therefore we have (B), (2), (a) or (b). By similar arguments to the above, we have (A), (5). This completes the proof.

3.2 Unfolding of functions by one-variable
In this subsection, we use some general results on the singularity theory for families of function germs8,21. Let

F :
(

ℝ ×ℝr, (s0, x0)
)

→ ℝ be a smooth function, and f (s) = Fx0(s, x0). Then F is called an r-parameter unfolding of f (s).
We say that f (s) has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) ≠ 0. We also say that f has A⩾k-
singularity (k ⩾ 1) at s0. Let the (k − 1)-jet of the partial derivative

)F
)xi

at s0 be j(k−1)
(

)F
)xi

(

s, x0
)

)

(

s0
)

= Σk−1j=0Lji
(

s − s0
)j

(without the constant term), for i = 1, ..., r. Then F (s) is called an p-versal unfolding if the k × r matrix of coefficients
(

Lji
)

has rank k (k ≤ r). So, we write important set about the unfolding relative to the above notations.
We now state important set about the unfolding relative to the above notations. The discriminant set of F is the set

DF =
{

x∈ℝr∣ there exists s with F (s, x) = )F
)s

(s, x) = 0 at (s, x)
}

. (20)

A well-known classification9,7,6 follows:

Theorem 4. Let F :
(

ℝ ×ℝr, (s0, x0)
)

→ ℝ be an r-parameter unfolding of f (s), which has the Ak singularity at s0. Suppose
that F is a p-versal unfolding.
(a). If k = 2, thenDF is locally diffeomorphic to C×ℝr−1;
(b) If k = 3, thenDF is locally diffeomorphic to SW ×ℝr−2.

Hence, for the proof of Theorem 3, we have the following proposition:

Proposition 2. Let�: I → ℝ3 be a unit speed curve with �22+�
2
3 ≠ 0, and ℎx0(s) = ⟨e2(s), x − �(s)⟩. If ℎx0 has anAk-singularity

(k = 2, 3) at s0 ∈ ℝ, thenH is a p−versal unfolding of ℎx0(s0).

Proof. Let x =
(

x1, x2, x3
)

, �=
(

�1,�2, �3
)

and e2=
(

l1, l2, l3
)

. Then, we have

H(s, x) =
(

x1 − �1(s)
)

l1(s) +
(

x2 − �2(s)
)

l2(s) +
(

x3 − �3(s)
)

l3(s) (21)

and
)H
)xi

(s, x) = li(s), (i=1, 2, 3) .

Therefore, the 2-jets of )H
)xi

at s0 is as follows:

j2 )H
)x0

(s0, x0) = li(s0) + l
′

i(s0)(s − s0) +
1
2
l
′′

i (s0)
(

s − s0
)2 .

We consider the following matrix:

A =
⎛

⎜

⎜

⎝

l1(s0) l2(s0) l3(s0)
l′1(s0) l

′

2(s0) l
′

3(s0)
l′′1 (s0) l

′′

2 (s0) l
′′

3 (s0)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

e2(s0)
e′2(s0)
e′′2(s0)

⎞

⎟

⎟

⎠

. (22)

By the formula in Eq. (4), we have

A(s0) =
⎛

⎜

⎜

⎝

e2
−�1e1 + �3e3

−
(

�2�3 + �
′

1

)

e1 −
(

�22 + �
2
3

)

e2 +
(

� ′3 − �1�2
)

e3

⎞

⎟

⎟

⎠

(s0). (23)

Since the orthonormal frame {e1(s), e2(s), e3(s)} is a basis of ℝ3, then the rank of A(s0) is equal to the rank of

⎛

⎜

⎜

⎝

0 1 0
−�1(s0) 0 −�3(s0)

−
(

�2�3 + �
′

1

)

(s0) −
(

�22 + �
2
3

)

(s0)
(

� ′3 − �1�2
)

(s0)

⎞

⎟

⎟

⎠

. (24)
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This means rank A = 3, if and only if

−�1
(

� ′3 − �1�2
)

+ �3
(

�2�3 + �
′

1
)

= �2
(

�21 + �
2
3
)

−
(

�1�
′

3 − �
′

1�3
)

≠ 0.

The last condition is equivalent to the condition �(s0) ≠ 0.
Also, the rank of

(

e2(s0)
e′2(s0)

)

=
(

e2(s0)
−� ′1(s0)e1(s0) + �

′

3(s0)e3(s0)

)

is always two. If ℎx0 has an Ak-singularity (k = 2, 3) at s0, thenH is p-versal unfolding of ℎx0 . This completes the proof.

3.3 Proof of Theorem 3
By direct calculation, we have

ys × yv =
⎛

⎜

⎜

⎜

⎝

�1
√

�23 + �
2
1

+ u�

⎞

⎟

⎟

⎟

⎠

e2.

Therefore, (s0, v0) is non-singular if and only if ys × yv ≠ 0. This condition is equivalent to
�1(s0)

√

�23 (s0) + �
2
1 (s0)

+ u0�(s0) ≠ 0.

This completes the proof of the assertion (1).
By Proposition 1-(2), DH is the image of the D-developable surface. Suppose �(s0) ≠ 0. By Proposition 1-(A)-(1), (2), and

(3), ℎx0(s0) has an A2-type singularity (respectively, an A3-type singularity) at s = s0 if and only if

u0 =
�1(s0)

�(s0)
√

�23 (s0) + �
2
1 (s0)

and �(s0) ≠ 0 (respectively, �(s0) = 0 and �′(s0) ≠ 0). By Theorem 4 and Proposition 1, we have (2)-(i) and (3). Suppose
�(s0) = 0. By Proposition 1-(B)-(1) and (2), ℎx0(s0) has an A2-type singularity if and only if �1(s0) = 0, and

� ′1(s0) ≠ 0 or �
′

1(s0) + v0
(

2�1(s0)�
′

3(s0) + �
′

1(s0)�3(s0) − �
′′

3 (s0)
)

≠ 0.

Following from Theorem 4 and Proposition 2, we obtain (2)-(iii). This completes the proof.

4 EXAMPLES

In this section, we give some examples.

Example 1. We consider a curve  ∶ I → ℝ3, I ⊂ ℝ, defined by

(t) = (t, 1
2
t2, 1
3
t3).

It is located in a surface which is globally diffeomorphic to standard cuspidal edge. We take (0,0,1) is the projection vector. Then
the Q-frames are given by

e1(t) =
1

√

1 + t2 + t4
(1, t, t2);

e2(t) =
1

√

1 + t2
(t,−1, 0);

e3(t) =
1

√

1 + t2 + t4
√

1 + t2
(t2, t3,−1 − t2).
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We obtained that

e′1(t) =

(

−t − 2t3

(1 + t2 + t4)
3
2

, 1 − t4

(1 + t2 + t4)
3
2

, 2t + t3

(1 + t2 + t4)
3
2

)

;

e′2(t) =

(

1

(1 + s2)
3
2

, s

(1 + s2)
3
2

, 0

)

.

The Q-curvature functions of  are given by

�1(t) =
⟨

e′1, e2
⟩

= − 1
√

1 + t2 + t4
√

1 + t2
;

�3(t) =
⟨

e′2, e3
⟩

= t2
√

1 + t2 + t4(1 + t2)
.

The directional developable surface is

�(t, v) = (t) + ve(t)

= (t, 1
2
t2, 1
3
t3 + v), v ∈ ℝ,

where

e(t) =
�3e1 + �1e3
√

�23 + �
2
1

= (0, 0, 1).

The pictures of the curve  and the D-developable surface see Figure 3 and Figure 4.

Figure 3 The curve  . Figure 4 D-developable surface of  .

We consider an other example.

Example 2. Let  ∶ I → ℝ3, I ⊂ ℝ be a curve on the standard swallowtail defined by

(t) = (3t4, 4t3, 0),
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Similarly, we take (a,b,1) is the projection vector (one will see that �21+�
2
3 = 0 if the third component is zero). Then the Q-frames

are given by

e1(t) =
1

√

1 + t2
(t, 1, 0) ;

e2(t) =
1

√

1 + t2 + (bt − a)2
(1,−t, bt − a);

e3(t) =
1

√

1 + t2
1

√

1 + t2 + (bt − a)2
(bt − a,−bt2 + at,−t2 − 1).

We obtained that

e′1(t) =
1

(1 + t2)
3
2

(1,−t, 0) ;

e′2(t) =
1

(1 + t2 + (bt − a)2)
3
2

(

−b2t − t + ab, abt − a2 − 1, at + b
)

.

The Q-curvature functions of  are given by

�1(t) =
⟨

e′1, e2
⟩

= 1 + t2

(1 + t2)
3
2 (1 + t2 + (bt − a)2)

1
2

;

�3(t) =
⟨

e′2, e3
⟩

=
−a(b2 + 1)t3 + b(2a2 − b2 − 1)t2 + a(−a2 + 2b2 − 1)t − b(a2 + 1)

(1 + t2)
1
2 (1 + t2 + (bt − a)2)2

.

It can be directly calculate that the ruling vector e(t) is paralleled with the projection vector, which is

e(t) =
�3e1 + �1e3
√

�23 + �
2
1

‖(a, b, 1).

Then The directional developable surface is

�(t, v) = (t) + ve(t) = (3t4, 4t3, 0) + v(a, b, 1), v ∈ ℝ.

It shows the intrinsic beauty of geometry that the D-developable surface of  is exactly the projection surface of  alongside
the projection vector. The pictures of the curve  and the D-developable surface see Figure 5 and Figure 6.

Figure 5 The red curve  located in a standard swallowtail. Figure 6 D-developable surface of  .
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5 CONCLUSION

In this paper, we shown a new version of developable ruled surfaces in Euclidean 3-space. We establish the quasi-frame
along a unit speed curve and introduce a directional developable ruled surface. Applying the unfolding theory, we classify the
generic properties, and present new two invariants related to the singularities of this surface. It is demonstrated that the generic
singularities are cuspidal edge and swallowtail, and the types of these singularities can be characterized by these invariants,
respectively. Finally, examples are illustrated to explain the applications of the theoretical results.
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