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Abstract

Turbine wake and local blockage effects are known to alter wind farm power production in two different ways: (1) by changing

the wind speed locally in front of each turbine; and (2) by changing the overall flow resistance in the farm and thus the so-

called farm blockage effect. To better predict these effects with low computational costs, we develop data-driven emulators

of the ‘local’ or ‘internal’ turbine thrust coefficient CT
* as a function of turbine layout. We train the model using a multi-

fidelity Gaussian Process (GP) regression with a combination of low (engineering wake model) and high-fidelity (Large-Eddy

Simulations) simulations of farms with different layouts and wind directions. A large set of low-fidelity data speeds up the

learning process and the high-fidelity data ensures a high accuracy. The trained multi-fidelity GP model is shown to give more

accurate predictions of CT
* compared to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity

data. We also use the multi-fidelity GP model of CT
* with the two-scale momentum theory (Nishino & Dunstan 2020, J. Fluid

Mech. 894, A2) to demonstrate that the model can be used to give fast and accurate predictions of large wind farm performance

under various mesoscale atmospheric conditions. This new approach could be beneficial for improving annual energy production

(AEP) calculations and farm optimisation in the future.
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Abstract

Turbine wake and local blockage effects are known to alter wind farm power production in

two different ways: (1) by changing the wind speed locally in front of each turbine; and (2)

by changing the overall flow resistance in the farm and thus the so-called farm blockage

effect. To better predict these effects with low computational costs, we develop data-driven

emulators of the ‘local’ or ‘internal’ turbine thrust coefficient C∗
T as a function of turbine

layout. We train the model using a multi-fidelity Gaussian Process (GP) regression with a

combination of low (engineering wake model) and high-fidelity (Large-Eddy Simulations)

simulations of farms with different layouts and wind directions. A large set of low-fidelity

data speeds up the learning process and the high-fidelity data ensures a high accuracy. The

trained multi-fidelity GP model is shown to give more accurate predictions of C∗
T compared

to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity

data. We also use the multi-fidelity GP model of C∗
T with the two-scale momentum theory

(Nishino & Dunstan 2020, J. Fluid Mech. 894, A2) to demonstrate that the model can be

used to give fast and accurate predictions of large wind farm performance under various

mesoscale atmospheric conditions. This new approach could be beneficial for improving

annual energy production (AEP) calculations and farm optimisation in the future.
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1 INTRODUCTION

The installed capacity of wind energy is projected to increase rapidly in the next decades. A major challenge in the optimisation

of wind farm design is the accurate prediction of wind farm performance 1. Existing wind farm models struggle to make accurate

predictions of wind farm power production. This is partly because the ‘global blockage effect’ reduces the velocity upstream of large

farms and hence the energy yield 2. It remains unclear how global blockage should be modelled and this is the subject of a large-scale

field campaign 3.

Wind farms are typically modelled using engineering ‘wake’ models. These models predict the velocity deficit in the wakes behind

turbines 4 5. To account for interactions betweenmultiple turbines, the wake velocity deficits are superposed 6,7. Simple wake models

can give predictions of wind farm performance with very low computational cost ( 10−3 CPU hours per simulation 1). However, wake
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models do not account for the response of the atmospheric boundary layer (ABL) to the wind farm which is likely to be important

for large wind farms 8. It has been found that wake models compare poorly to Large-Eddy Simulations (LES) of large wind farms 9.

Wind farms are also modelled in numerical weather prediction (NWP) models using farm parameterisation schemes. In these pa-

rameterisations, farms are oftenmodelled as a momentum sink and a source of turbulent kinetic energy 10. Turbine-wake interactions

cannot be adequately predicted using these schemes. A new schemewas proposed 11 which uses a correction factor tomodel turbine

interactions. More recently, data-driven approaches have been proposed 12 to model these effects in wind farm parameterisations.

Data-driven modelling of wind farm flows is a promising new approach 13. Data from high-fidelity simulations with complex flow

physics can be used to make predictions with low computational cost. Recent studies have applied machine learning techniques

to data from a single turbine or from an existing wind farm. The data for these studies are from measurements 14,15,16,17, LES 18 or

Reynolds-Averaged Navier-Stokes (RANS) simulations 19,20,21. A limitation of these approaches is that they are not generalisable to

different turbine layouts unless they rely on wake superposition techniques to model farm flows. Another approach is modelling

the effect of turbine layout using geometric parameters 17 or using the layout as a graph input to a neural network 22,23. However,

these alternative approaches may struggle to fully capture the complex two-way interaction with the ABL as it seems impractical to

prepare a data set that covers the entire range of scales involved in wind farm flows 1.

The problem of modelling wind farm flows can be split into ‘internal’ turbine-scale and ‘external’ farm-scale problems 24. The

‘internal’ problem is to determine a ‘local’ or ‘internal’ turbine thrust coefficient, C∗
T , which represents the flow resistance inside a

wind farm, i.e., how the turbine thrust changes with wind speedwithin the farm. Nishino 25 proposed an analytical model for an upper

limit of C∗
T by using an analogy to the classic Betz analysis. This analytical model is a function of turbine-scale induction factor but

is independent of turbine layout and wind direction. Previous studies 24 25 8 showed that C∗
T is usually lower than the limit predicted

by Nishino’s model and can vary significantly with turbine layout due to wake and turbine blockage effects.

The aim of this study is to develop statistical emulators of C∗
T as a function of turbine layout and wind direction. The novelty of

this approach is that we are modelling the effect of turbine-wake interactions on C∗
T rather than turbine power. Both turbine-scale

flows (e.g., wake effects) and farm-scale flows (e.g. farm blockage and mesoscale atmospheric response) affect turbine power within

a farm. Therefore to create an emulator of turbine power, either (1) a very large set of expensive data such as finite-size wind farm

LES is needed which covers a range of large-scale atmospheric conditions or (2) the model would not be generalisable to different

mesoscale atmospheric responses. An emulator ofC∗
T is however applicable to different atmospheric responsesmodelled separately,

following the concept of the two-scale momentum theory 24 8.

In section 2 we give the definitions of key wind farm parameters in the two-scale momentum theory 24. Section 3 summarises

the methodology of the LES and wake model simulations, followed by the machine learning approaches to develop the emulators

in section 4. In section 5 we present the results from the trained emulators. These results are discussed in section 6 and concluding

remarks are given in section 7.

2 TWO-SCALE MOMENTUM THEORY

By considering the conservation of momentum for a control volume with and without a large wind farm over the land or sea surface,

the following non-dimensional farm momentum (NDFM) equation can be derived 24,

C∗
T

λ

Cf0
β2 + βγ = M (1)

where β is the farmwind-speed reduction factor defined as β ≡ UF /UF0 (withUF defined as the averagewind speed in the nominal

wind farm-layer of height HF , and UF0 is the farm-layer-averaged speed without the wind farm present); λ is the array density

defined as λ ≡ nA/SF (where n is the number of turbines in the farm, A is the rotor swept area and SF is the farm footprint area);
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C∗
T is the internal turbine thrust coefficient defined as C∗

T ≡
∑n

i=1 Ti/
1
2
ρU2

FnA (where Ti is thrust of turbine i in the farm and ρ

is the air density); Cf0 is the natural friction coefficient of the surface defined as Cf0 ≡ ⟨τw0⟩/ 1
2
ρU2

F0 (where τw0 is the bottom

shear stress without the farm present); γ is the bottom friction exponent defined as γ ≡ logβ(⟨τw⟩/τw0) (where ⟨τw⟩ is the bottom

shear stress averaged across the farm);M is the momentum availability factor defined as,

M =
Momentum supplied by the atmosphere to the farm site with turbines

Momentum supplied by the atmosphere to the farm site without turbines
. (2)

noting that this includes pressure gradient forcing, Coriolis force, net injection of streamwise momentum through top and side

boundaries and time-dependent changes in streamwise velocity 24. The height of the farm-layer,HF , is used to define the reference

velocitiesUF andUF0. Equation 1 is valid so long as the same ofHF is used for both the internal and external problem.HF is typically

between 2Hhub and 3Hhub
8 (whereHhub is the turbine hub-height) and in this study we use a fixed definition ofHF = 2.5Hhub.

Patel 26 used an NWP model to demonstrate that, for most cases, M varied almost linearly with β (for a realistic range of β

between 0.8 and 1). Therefore,M can be approximated by

M = 1 + ζ(1− β) (3)

where ζ is the ‘momentum response’ factor or ‘wind extractability’ factor. Patel 26 found ζ to be time-dependent and vary between

5 and 25 for a typical offshore site (note that ζ = 0 corresponds to the case where momentum available to the farm site is assumed

to be fixed, i.e.,M = 1).

Nishino 25 proposed an analytical model for C∗
T given by,

C∗
T = 4α(1− α) =

16C′
T

(4 + C′
T )2

(4)

where α is the turbine-scale wind speed reduction factor defined as α ≡ UT /UF (UT is the streamwise velocity averaged over the

rotor swept area) and C′
T ≡ T/ 1

2
ρU2

TA is a turbine resistance coefficient describing the turbine operating conditions.

For a given farm configuration at a farm site (i.e., for given set of C∗
T , λ, Cf0, γ and ζ) the farm wind-speed reduction factor β

can be calculated using equation 1. The (farm-averaged) power coefficient Cp is defined as Cp ≡
∑n

i=1 Pi/
1
2
ρU3

F0nA (Pi is power

of turbine i in the farm). Using the calculated value of β, Cp can be calculated by using the expression,

Cp = β3C∗
p (5)

where C∗
p is the (farm-averaged) ‘local’ or ‘internal’ turbine power coefficient defined as C∗

p ≡
∑n

i=1 Pi/
1
2
ρU3

FnA.

3 WIND FARM SIMULATIONS

In this study we model wind farms as arrays of actuator discs (or aerodynamically ideal turbines operating below the rated wind

speed). This is because, in real wind farms, the effects of turbine wake interactions on the farm performance are most significant

when they operate below the rated wind speed. The ‘internal’ thrust coefficient C∗
T is an important wind farm parameter which

includes the effect of turbine interactions (including both wake and local blockage effects). In this study we will be modelling the

effect of turbine layout on C∗
T for aligned turbine layouts with various wind directions and a fixed turbine resistance of C′

T = 1.33.

We chose C′
T = 1.33 because it leads to a turbine induction factor of 1/4 which is close to a typical value for modern large wind

turbines. As such we will be considering

C∗
T = f(Sx, Sy , θ) (6)
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Figure 1 Design of numerical experiments: a) input parameters, b) maximin design of LES.

where Sx is the turbine spacing in the x direction, Sy is the turbine spacing in the y direction and θ is the wind direction relative

to the x direction (see figure 1a). However the true function C∗
T cannot be easily evaluated so we will instead investigate C∗

T using

computer codes. One computer code we will use is LES (see section 3.1) to estimate C∗
T

C∗
T,LES = fLES(Sx, Sy , θ). (7)

We assume that the function fLES is close to the true function f because of the accuracy of LES to model wind farm flows. We will

also use a wake model (see section 3.2) to provide cheap approximations of C∗
T according to

C∗
T,wake = fwake(Sx, Sy , θ). (8)

Engineering problems are often investigated using complex computer models. Evaluating the output of such computer models

for a given input can be very computationally expensive. Therefore a common objective is to create a cheap statistical model of

the expensive computer model; this is commonly known as emulation of computer models 27 28. In this study we aim to develop a

statistical emulator which can cheaply emulate fLES .

The emulators will only be valid for aligned layouts of wind turbines and for a given turbine resistance (here we use C′
T = 1.33).

We consider the input parameters for a realistic range of turbine spacings 1: Sx ∈ [5D, 10D], Sy ∈ [5D, 10D] and θ ∈ [0o, 45o]

whereD is the diameter of the turbine rotor swept area. In this studyD is set as 100m and the turbine hub height is also 100m. We

only need to consider wind directions of θ ∈ [0o, 45o] because of symmetry in the aligned turbine layouts. If θ is negative than the

turbine layout given by (Sx, Sy , θ) is exactly the same as (Sx, Sy ,−θ). When θ > 45o, then (Sx, Sy , θ) and (Sy , Sx, 90o − θ) give

identical layouts.

In this study we build several emulators to predict fLES . The models are trained using data from low-fidelity (wake model)

and high fidelity (LES) wind farm simulations. One evaluation of C∗
T,wake takes approximately 130 seconds on a single CPU and

C∗
T,LES requires around 400 CPU hours on a supercomputer. We use a space filling maximin design 29 30 to select training points

in the parameter space. The maximin algorithm selects points which maximises the minimum distance to other points and to the

boundaries. This provides a good coverage of the domain which ensures that the emulators can give good predictions across the

whole of the domain 31. Figure 1b shows the LES training points in the parameter space.



KIRBY et al 5

Figure 2 LES a) instantaneous and b) time-averaged flow fields over a periodic turbine array (Sx/D = 7.59, Sy/D = 5.47 and
θ = 37.6o).

3.1 Large-Eddy Simulations

This study uses the data from 50 high-fidelity (LES) simulations of wind farms published in a previous study 8. Here we give a brief

summary of the LESmethodology. The LESmodels a neutrally stratified atmospheric boundary layer over a periodic array of actuator

discs, which face the wind direction θ and exert uniform thrust. The resolution is 24.5m in the horizontal directions (4 points across

the rotor diameter) and 7.87m in the vertical. This is a coarse horizontal resolution; however using a correction factor for the turbine

thrust 32 makes the C∗
T,LES values insensitive to horizontal resolution 8. For all simulations the vertical domain size was fixed at

1km and the horizontal extent varied with turbine layout but was at least 3.14km. The horizontal boundary conditions were periodic

(essentially an infinitely-large wind farm). The bottom boundary used a no-slip condition with the value of eddy viscosity specified

following the Monin-Obukhov similarity theory for a surface roughness length of z0 = 1 × 10−4m. The top boundary had a slip

condition with zero vertical velocity. The flow was driven by a pressure gradient forcing which was constant and in the direction θ

throughout the domain. Figure 2 shows the instantaneous and time-averaged hub height velocities from one wind farm LES. See the

original paper 8 for further details of the LES.

3.2 Wake model simulations

Wake models are a cheap low-fidelity approach to modelling wind farm aerodynamics compared to expensive high-fidelity LES

simulations 1. We use the wake model proposed by Niayafar and Porté-Agel 33 to evaluateC∗
T,wake as a cheap approximation ofC∗

T .

We use the Python package PyWake 34 to implement the wake model. The turbine thrust coefficient CT is needed as an input for

the wake model. We use the value of C∗
T predicted by equation 4 as the value of CT . For the turbine operating conditions used in

this study (C′
T = 1.33) the wake model has CT equal to 0.75 for all turbines. To model actuator discs, we consider a hypothetical

turbine which has a constantCT for all wind speeds. We calculateC∗
T,wake for a single turbine at the back of a large farm (markedX

in figure 3). The farm simulated using the wake model is 10km long in the streamwise direction and 4km long in the cross-streamwise

direction. The farm size was chosen so that C∗
T no longer varied with increasing farm size. The wake growth parameter is calculated

using k∗ = 0.38I+0.004where I is the local streamwise turbulence velocity. The local streamwise turbulence intensity is estimated

using the model proposed by Crespo and Hernández 35. The background turbulence intensity (TI) is set as a typical value of 10%.

The velocity incident to the turbine is calculated by averaging the velocity across the disc area. We use a 4×3 cartesian grid with

Gaussian quadrature coordinates and weights on the disc to average the velocity. The disc-averaged velocity, UT is then calculated

by multiplying the averaged incident velocity by (1 − a) where a is the turbine induction factor set by the value of C′
T (using the

expression a = C′
T /(4 + C′

T )). To calculate the farm-average velocity, UF , we average the velocity across a volume around the
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Figure 3 Example of wind farm layout for wake model simulations.

single turbine. The volume has dimensions of Sy in the y direction, Sx in the x direction and 250m in the z direction (the height of

the nominal farm layer used in the previous LES study 8). To calculate the average velocity, we discretise the volume into 200 points

in the horizontal directions and 20 points in the vertical. This was sufficient for the calculation of C∗
T,wake to not vary with further

discretisation. Figure 3 shows an example of the farm layout for the wake model simulations.

4 MACHINE LEARNING METHODOLOGY

4.1 Gaussian Process regression

We will use Gaussian process (GP) regression 36 to build statistical emulators of fLES . A Gaussian process is a stochastic process

g ∼ GP(m, k) described by a mean functionm(v) = E[g(v)] and a covariance function k(v, v′) = E[(g(v)−m(v))(g(v′)−m(v′)].

In our case v = (Sx, Sy , θ). We will use such a stochastic process as a model of fLES , the true mapping from v to C∗
T,LES . Each

realisation from this process will therefore be a function which could plausibly represent this mapping. The mean function represents

the expected output value at an input v = (Sx, Sy , θ). The covariance function gives the covariance between output values at v and

v′. Examples of covariance functions include squared exponential, rational quadratic and periodic functions 36. Different covariance

functions will give differently shaped GPs. For example the squared exponential covariance function will give very smooth GPs

whereas the periodic function will give GPs with a periodic structure. Other types of structure, for example symmetry, can also be

encoded in the covariance function. Therefore the expected shape (for example smoothness) of the expected relationship and any

properties (for example discontinuities or symmetries) need to be consideredwhen choosing a covariance function for GP regression.

Let V = (v1, ..., vn)T be a collection of design points thenmV = (m(v1), ...,m(vn))T is the mean vector and kV V = (k(vi, vj))

is the covariance matrix. We will start by positing a GP model with mean m and covariance k (called the ‘prior GP’), then condition

this GP on LES observations; the outcome is a newGP (called the ‘posterior GP’). This gives the posterior distribution g|V,C∗
T,LES ∼

GP(mσ2 , kσ2 ). mσ2 is the posterior mean function given by mσ2 (v) = m(v) + kvV (kV V + σ2In×n)−1(C∗
T,LES − mV ) where

kvV = (k(v, v1), ..., k(v, vn)) and In×n is the identity matrix of size n. The posterior mean functionmσ2 is used tomake predictions

at v = (Sx, Sy , θ). The posterior covariance function kσ2 quantifies the uncertainty in our prediction at v = (Sx, Sy , θ). The

posterior covariance function is given by kσ2 (v, v′) = k(v, v′)− kvV (kV V + σ2In×n)−1kV v′ .

Often in GP regression a zero prior mean is used. However, using an informative prior mean can improve the accuracy of the

trained model. By using a prior mean, many of the trends in fLES can be incorporated into our model prior to making expensive
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Figure 4 Demonstration of basic GP regression: a) shows the prior mean and covariance function prior to fitting with 3 GPs drawn
from the distribution shown in colour; b) shows the effect of decreasing the lengthscale hyperparameter; c) the effect of variance
hyperparameter; and d) the posterior mean and covariance functions.

evaluations of C∗
T,LES . Therefore, after training our model will likely better describe the true relationship between Sx, Sy , θ and

fLES . In this study, we will use both C∗
T,wake and the analytical model of C∗

T as the prior mean for the standard GP regression. For

the wake model prior mean we also vary the specified ambient TI input parameter.

We expect fLES to be a smooth function of input variables Sx, Sy and θ, and to vary more rapidly with θ than Sx or Sy . Therefore

we will use an anisotropic squared-exponential covariance function,

k(v, v′) = σ2
f exp

(
−
(Sx − S′

x)
2

2l21

)
exp

(
−
(Sy − S′

y)
2

2l22

)
exp

(
−
(θ − θ′)2

2l23

)
(9)

where σ2
f > 0 is the signal variance hyperparameter and li > 0 is the lengthscale hyperparameter for each dimension. This is also

called an ARD (automatic relevance detection) kernel. If we consider v = v′ then we can see that σ2
f determines the variance of g(v).

Therefore σ2
f determines the prior uncertainty the model has about the value of g(v). As the lengthscale hyperparameter li gets

smaller then k(v, v′) decreases (for v ̸= v′). Equally if li increases then k(v, v′) will also increase. A GP with a small li will therefore

vary more rapidly across the parameter space in the ith dimension.

Due to numerical issues associated with the matrix inversion/linear system solve operations in the formulae for the posterior GP,

it is common to add a nugget σ2 > 0 to the kernel matrix. The hyperparameters σ2
f and li are selected automatically during the

fitting process by maximising the log marginal likelihood 36. This approach selects the model which maximises the fit to the data.

Figure 4 shows the impact of the hyperparameters in an example GP regression setting (using the squared exponential covariance

function). The mean function and 95% credible interval (+/-1.96 times the standard deviation) prior to fitting are shown in figure

4a with 3 GPs drawn from the distribution (coloured lines). The effect of decreasing the lengthscale hyperparameter li is shown in

figure 4b. The prior mean and 95% credible interval are unchanged however the example GPs drawn vary more rapidly because of

the shorter lengthscale. Figure 4c shows the same setup as figure 4a but with a smaller value of σ2
f . The example GPs still vary slowly

but the magnitude of the variations is now smaller. Figure 4d shows the GPs conditioned on observations with hyperparameters

selected by maximising the log marginal likelihood.
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Figure 5 Demonstration of a) basic GP regression and b) multi-fidelity GP regression. In this example f(x) = 1 + sin(6x) for the
high-fidelity data and f(x) = −0.5 + 0.5sin(6x) for the low-fidelity data.

4.2 Non-linear multi-fidelity Gaussian Process regression

In many applications there are several computational models available. These models can have varying accuracies and computational

costs. The models which are more computationally expensive typically give more accurate predictions. The GP regression frame-

work can be extended to combine information from low and high-fidelity models 37. This type of modelling uses the low-fidelity

observations to speed up the learning process and the high-fidelity observations to ensure accuracy. In our scenario we will com-

bine evaluations of from a low-fidelity (C∗
T,wake) and a high-fidelity (C∗

T,LES ) model. Note that for the multi-fidelity models in this

study we set the ambient TI to 10% for the wake model and use a zero prior mean. We will keep the number of high-fidelity training

points fixed at 50 and we will vary the number of low-fidelity training points used.

We combine information from our high and low-fidelity models using a nonlinear information fusion algorithm 38. The framework

is based on the autoregressive multi-fidelity scheme given by:

ghigh(v) = ρ(glow(v)) + δ(v) (10)

where glow(v) is a model with a GP denoted fwake and ghigh(v) is a model with a GP denoted fLES . ρ is a model with a GP

which maps the low-fidelity output to the high-fidelity output and δ(v) is a model with a GP which is a bias term. The non-linear

multi-fidelity framework can learn non-linear space-dependent correlations between models of different accuracies. To reduce the

computational cost and complexity of implementation the autoregressive scheme given by equation 10 is simplified. Firstly, the GP

prior glow(v) is replaced by the GP posterior glow,∗(v) and secondly the GPs ρ and δ are assumed to be independent. Equation 10

can then be summarised as

ghigh(v) = hhigh(v, glow,∗(v)) (11)

where hhigh is a model with a GP which has both v and glow,∗(v) as inputs. More details of hhigh and the implementation of the

multi-fidelity framework are given in Perdikaris et. al. 38.

Figure 5 shows an example of how a multi-fidelity GP can outperform a standard GP regression. We implement the non-linear

multi-fidelity framework using the ‘emukit’ package 39. We first maximise the log marginal likelihood whilst keeping the Gaussian

noise variance fixed at a low value of 1× 10−6. The fitting process is then repeated whilst allowing the Gaussian noise variance to

be optimised too. This is to prevent a high noise local optima from being selected.
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5 RESULTS

In this study, we build various statistical emulators of fLES using different techniques and compare the performance. A summary

of the techniques is shown in the list below:

1 Standard Gaussian Process regression (see section 4.1)

a GP-analytical-prior: Gaussian Process using analytical model (equation 4) prior mean

b GP-wake-TI10-prior: Gaussian Process using wake model (section 3.2) with ambient TI=10% prior mean

c GP-wake-TI1-prior: Gaussian Process using wake model with ambient TI=1% prior mean

d GP-wake-TI5-prior: Gaussian Process using wake model with ambient TI=5% prior mean

e GP-wake-TI15-prior: Gaussian Process using wake model with ambient TI=15% prior mean

2 Non-linear multi-fidelity Gaussian Process regression (see section 4.2)

a MF-GP-nlow500: multi-fidelity Gaussian Process using 500 low-fidelity training points

b MF-GP-nlow250: multi-fidelity Gaussian Process using 250 low-fidelity training points

c MF-GP-nlow1000: multi-fidelity Gaussian Process using 1000 low-fidelity training points

The code used to produce the results in this section is available open-access at the following GitHub repository: https://github.

com/AndrewKirby2/ctstar_statistical_model.

5.1 Performance of standard GP regression

We first assessed the accuracy of the standard GP models (section 4.1) by performing leave-one-out cross-validation (LOOCV). This

is a method of estimating the accuracy of a statistical model whenmaking predictions on data not used to train themodel.We trained

our model on 49 of the 50 training points and then calculated the prediction accuracy for the single high-fidelity data point which is

excluded from the training set. This is then repeated for all data points in turn, and we took the average accuracy as an estimate of

the model test accuracy. The standard GP models were implemented using the ‘GPy’ package 40.

The standard GP gave accurate predictions of fLES with average errors of less than 2%. Table 1 shows the accuracy of the stan-

dard GPmodels compared to the analytical andwakemodels.We calculated the errors by using the expression |mσ2−C∗
T,LES |/0.75

wheremσ2 is the posterior mean function of the emulator. The reference value for C∗
T of 0.75 was chosen because this is the pre-

diction from the analytical model. Both GPmodels give similar maximum errors of approximately 6%. Using the wakemodel as a prior

mean gave a lower mean absolute error of 1.26%. The GP models reduced the average prediction error and significantly reduced

the maximum error compared to the wake model and analytical model of C∗
T .

Table 1 Accuracy of models for C∗
T prediction.

Model MAE (%) Maximum error (%)

GP-analytical-prior 1.87 6.09
GP-wake-TI10-prior 1.26 6.11
Analytical model 5.26 22.0

Wake model (TI=10%) 4.60 9.28

https://github.com/AndrewKirby2/ctstar_statistical_model
https://github.com/AndrewKirby2/ctstar_statistical_model
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Figure 6 Posterior variance function of GP-wake-TI10-prior model.

Figure 7 Sensitivity of fitted GP models to the ambient TI chosen for wake model prior means.

The model GP-wake-TI10-prior has a high degree of confidence when making predictions in regions of the parameter space.

Figure 6 shows the square root of the posterior covariance function kσ2 , which quantities the uncertainty of the emulator. The

uncertainty is uniform throughout the parameter space with regions of slightly higher uncertainty at θ = 0o and 45o.

We also assessed the sensitivity of the model accuracy to the ambient TI used in the wake model prior mean. Figure 7 shows

the impact of ambient TI on the wake model prior mean and the fitted GP model. Increasing the ambient TI increased the value of

C∗
T,wake. This is because of the enhanced wake recovery behind wind turbines. Increasing the ambient TI in the wake model results

in C∗
T,wake overpredicting C∗

T,LES . The MAE from the LOOCV procedure for each fitted GP is shown in the bottom right corner.
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The fitted GPs became more accurate when the wake model ambient TI was increased. Increasing the ambient TI for the wake

model causes thewakes to recover faster. Thewakes become shorter in the streamwise direction andwider in the spanwise direction.

As such, C∗
T,wake becomes less sensitive to the turbine layout. When an ambient TI of 1% and 5% is used for the wake model,

C∗
T,wake is more sensitive to turbine layout than C∗

T,LES (figures 7a and 7b). When the ambient TI is increased to 10% and above,

the relationship between C∗
T,wake and C∗

T,LES becomes simpler (figures 7c and 7d). This seems to explain why the fitted GPs

become more accurate.

5.2 Performance of non-linear multi-fidelity GP regression

We then assessed the accuracy of the multi-fidelity GP models (section 4.2). All models used the 50 high-fidelity (C∗
T,LES ) training

points and a varying number of low-fidelity (C∗
T,wake) training points (using an ambient TI of 10% for C∗

T,wake). The results from

LOOCV are shown in table 2. For the LOOCV we train our model on 49 out of the 50 high-fidelity data points and all low-fidelity

data points. Then we average the error in predicting the high-fidelity data point left of the training set and repeat this in turn for

data points. Increasing the number of low-fidelity training points from 250 to 500 reduced the mean and maximum error. However,

increasing this to 1000 low-fidelity training points did not increase accuracy and increased the fitting and prediction time. This is

because the number of high-fidelity training points is fixed. There is a threshold where the model of the relationship between fLES

and fwake, denoted ρ, limits the final accuracy of the emulator of fLES .

The posterior meanmσ2 of glow(v) is an emulator of fwake and ghigh(v) is an emulator of fLES . Figure 8 gives the predictions

from the posterior mean of ghigh(v) (for MF-GP-nlow500). The lowest mσ2 values were for a wind direction of θ = 0o. mσ2

Table 2 Performance of the multi-fidelity Gaussian Process models.

Model MAE (%) Maximum error (%) Training time (s) Prediction time (s)

MF-GP-nlow250 1.46 7.12 6.15 0.00157
MF-GP-nlow500 0.828 3.75 9.73 0.00167
MF-GP-nlow1000 0.866 3.55 26.8 0.00236

Figure 8 Posterior mean function for ghigh(v) ofMF-GP-nlow500.



12 KIRBY et al

Figure 9 Posterior variance function for ghigh(v) ofMF-GP-nlow500.

increased rapidly with θ reaching a maximum of slightly over 0.75 at θ = 10o. For large values of θ (above θ = 25o) there were

local minima in mσ2 which appear in figure 8 as diagonal strips of low mσ2 values. The main diagonal strip occurs along the line

of Sy = Sx tan(θ). There are two smaller strips either side of with positions given by Sy = 2 tan(θ) and Sy = 0.5 tan(θ) (this is

discussed further in section 6).

The uncertainty the model MF-GP-nlow500 has in predicting fLES is shown in figure 9. The model uncertainty is uni-

form throughout the parameter space with slightly higher values at θ = 0o and 45o. Compared to the posterior variance of

GP-wake-TI10-prior (shown in figure 6) the uncertainty is lower. By incorporating information from C∗
T,wake, the multi-fidelity GP

model has more confidence about predicting fLES .

The prediction errors from the LOOCV (for MF-GP-nlow500) are shown in figure 10. The box plot of prediction errors in figure

10a shows that this model had no significant bias whereas both the wake and analytical models systemically overestimatedC∗
T,LES .

Figures 10b-d show that for the statistical model there appears to be no part of the parameter space which had larger errors.

The multi-fidelity approach used in this study builds a statistical model of both the low-fidelity (fwake) and high-fidelity (fLES )

model. We can use the posterior means of glow(v) and ghigh(v) to see the differences between the wake model and LES. The

posterior mean for both models are shown in figure 11. For the wake model the change in mσ2 with θ is greater than for the LES

(especially between θ = 0o and 10o). For larger values of θ, there is a larger difference inmσ2 between waked and unwaked layouts

for the low-fidelity model compared to the high-fidelity one. This suggests than the wake model is more sensitive to changes in wind

directions than the LES.
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Figure 10 Comparison of LOOCV prediction errors (%) for different models a) and LOOCV prediction error (%) ofMF-GP-nlow500
against input parameters b) Sx/D, c) Sy/D and d) θ(o). Note that for the box plot in a) the orange line is the median LOOCV error
and the box is the interquartile range of LOOCV error.

Figure 11 Posterior mean function ofMF-GP-nlow500 for different values of θ for a) to e) ghigh(v) and f) to j) glow(v).

5.3 Prediction of wind farm performance

We use the predicted values of C∗
T,LES from the emulators to predict the power output of wind farms under various mesoscale

atmospheric conditions, following the concept of the two-scale momentum theory. We predict the (farm-averaged) turbine power

coefficient Cp using C∗
T,LES predictions from MF-GP-nlow500. We call this prediction of farm performance Cp,model. Firstly, we

use the C∗
T,LES prediction from the LOOCV procedure as C∗

T in equation 1 to calculate β for a given value of wind extractability ζ.

We substitute this value of β into the expression Cp = β3C∗
T

3
2 C′

T
− 1

2 (which is only valid for actuator discs) to calculate Cp,model.

We compare the value of Cp,model with the turbine power coefficient recorded in the LES, Cp,LES . The effect of the coarse LES
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Figure 12 Comparison of Cp predictions with LES results for a realistic range of ζ values.

resolution on turbine thrust (and hence also ABL response and Cp) has already been corrected 8. The LES was performed with

periodic horizontal boundary conditions and a fixed momentum supply, i.e., ζ = 0. However, the Cp,LES has also been adjusted for

a given ζ by scaling the velocity fields assuming Reynolds number independence 8.

Similarly, the analytical model of C∗
T can be used to give a theoretical prediction of wind farm performance called Cp,Nishino

8,

which is given by

Cp,Nishino =
64C′

T

(4 + C′
T )3

−ζ +

√
ζ2 + 4

(
16C′

T
(4+C′

T )2
λ

Cf0
+ 1
)
(1 + ζ)

2
(

16C′
T

(4+C′
T )2

λ
Cf0

+ 1
)


3

. (12)

We will compare the accuracy of both Cp,model and Cp,Nishino in predicting Cp,LES .

Both Cp,model and Cp,LES are shown in figure 12 for a realistic range of wind extractability factors, along with the results from

Cp,Nishino (equation 12). Cp,Nishino provides an approximate upper limit of farm-averaged Cp as it predicts very well the effects

of array density and large-scale atmospheric response. The statistical model accurately predicts the effect of turbine layout on farm

performance which becomes more important with larger ζ values. As ζ increases, there is a larger difference between Cp,LES and

Cp,Nishino. Also, Cp,model becomes slightly less accurate when ζ increases.

Table 3 shows the average prediction errors of Cp,model and Cp,Nishino. We quantified the mean absolute error using two

different reference powers. Using Cp,LES as the reference power, Cp,Nishino had an error of around 5% and the error increases
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Table 3 Comparison of models for Cp prediction.

1
50

∑50
i=1 |Cp,i − Cp,LES |/Cp,LES

1
50

∑50
i=1 |Cp,i − Cp,LES |/Cp,Betz

ζ Cp,Nishino Cp,model ζ Cp,Nishino Cp,model

0 2.82% 2.15% 0 0.142% 0.108%
5 4.38% 1.48% 5 0.954% 0.338%
10 5.16% 1.35% 10 1.67% 0.459%
15 5.66% 1.30% 15 2.24% 0.542%
20 6.02% 1.26% 20 2.72% 0.601%
25 6.30% 1.24% 25 3.11% 0.648%

with ζ. The mean absolute error of Cp,model was typically less than 1.5% and this decreased slightly as ζ increases (due to the

reference power Cp,LES increasing). We also use the power of an isolated ideal turbine, Cp,Betz , as a reference power. Cp,Betz is

calculated using the actuator disc theory with the expression Cp,Betz = 64C′
T /(4 + C′

T )3 (note that in this study C′
T = 1.33 and

hence Cp,Betz = 0.563). In this case the mean absolute error increased with ζ for both Cp,model and Cp,Nishino. However, the

average prediction error of Cp,model remained below 0.65%.

6 DISCUSSION

Data-driven modelling of the internal turbine thrust coefficientC∗
T is a novel approach to modelling turbine-wake interactions. Data-

driven models of wind farm performance typically focus on predicting the power output, which, however, depends on flow physics

across a wide range of scales. Current data-driven approaches are either not generalisable to different atmospheric responses, or

would require a very large set of expensive training data, such as finite-size wind farm LES data. Data-driven models of C∗
T captures

the effects of turbine-wake interactions, whilst also being applicable to different atmospheric responses (following the concept of

the two-scale momentum theory).

The statistical emulator ofC∗
T developed in this study was able to predict the farm powerCp of Kirby et. al. 8 with an average error

of less than 0.65%. The high accuracy and very low computational cost of this approach shows the potential of this approach for

modelling turbine-wake interactions. It has several advantages over traditional approaches using the superposition of wake models.

Information from turbulence-resolving LES is included which ensures a high accuracy. It will also be more advantageous as wind

farms become larger because wake models struggle to capture the complex multi-scale flows physics which are important for large

farms. The statistical model of C∗
T may therefore allow fast and accurate predictions of wind farm performance.

All emulators developed in this study gave substantially better predictions of C∗
T,LES compared to the analytical and wake

models. Both the mean and maximum prediction errors were reduced by the emulators. The standard GP regression approach had

a mean prediction error of 1.26% and maximum error of approximately 6%. The accuracy depends on the size of the LES data set

and could be further decreased with a larger training set. The multi-fidelity GP approach gave more accurate predictions of C∗
T,LES

compared to the standard GP regression. This is because non-linear information fusion algorithm has incorporated information from

many low-fidelity data points to improve the emulator of the high-fidelity (LES) model. This approach has the advantage that, unlike

the standard GP regression approach, it is not necessary to evaluate the prior mean before making a prediction. Therefore, to predict

C∗
T it is only necessary to evaluate the posterior mean of the high-fidelity emulator for a specific turbine layout.

The shape of the posterior mean in figure 8 gives insights into the physics of turbine-wake interactions. This is because C∗
T,LES

is low when a layout has a high degree of turbine-wake interactions. For the turbine operating conditions used, C∗
T,LES is close to

0.75 when a layout has a small degree of wake interactions. Figure 8a shows C∗
T,LES when the wind direction is perfectly aligned
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Figure 13 Alignment of turbines for different combinations of Sx, Sy and θ.

with the rows of turbines (θ = 0). This gives wind farms with a high degree of wake interactions which results in lowC∗
T,LES values.

For θ = 0o, increasing Sx/D increases C∗
T because there is a larger streamwise distance between turbines for the wakes to recover.

When the cross-streamwise spacing (Sy/D) is increased the degree of wake interactions increases, i.e., C∗
T,LES decreases. This is

because there is a lower array density which results in a lower turbulence intensity within the farm and hence slower wake recovery.

Yang 41 found that increasing the cross-streamwise spacing in infinitely-large wind farms increased the power of individual turbines

and concluded that this was due to reduced wake interactions. However, the increase in turbine power found by Yang 41 may be also

explained by to a faster farm-averaged wind speed caused by a reduced array density rather than reduced wake interactions.

When the wind direction θ increases, C∗
T,LES increases to a maximum of just over 0.75 at θ = 10o (figure 8c). This result agrees

qualitatively with another study 42 in which it was found that the maximum farm power was produced by an intermediate wind

direction. When θ increases above 20o regions of low C∗
T,LES appear diagonally (see figures 8f-j). The regions of low C∗

T,LES are

centred on the surfaces given by Sy = 2Sx tan(θ), Sy = Sx tan(θ) and Sy = 0.5Sx tan(θ). These regions correspond to turbines

being aligned along different axes throughout the farm (see figure 13). There are longer streamwise distance between turbines for

these arrangements (compared to θ = 0o) and so the C∗
T,LES values are higher than for θ = 0o.

The accuracy of the statistical emulators could be further improved in future studies. Both the standard and multi-fidelity GP

models can be improved by adding more evaluations of C∗
T,LES . From table 2, the accuracy of the multi-fidelity GP models did not

improve once we used more than 500 C∗
T,wake evaluations. This shows that the error in predicting C∗

T,LES forMF-GP-nlow500 is

not due to the model of fwake. Instead the error arises from the learnt relationship between fwake and fLES .

The statistical emulators developed are not applicable to all wind farms because of the limited nature of our data set. A limitation

of the developed model is that it is only applicable to farms with perfectly aligned layouts. It should also be noted that our model

was trained on data from simulations of a neutrally stratified boundary layer. Therefore a larger LES data set with an extended

parameter space would be required to account for the effect of atmospheric stability on wake interactions and the resulting C∗
T .

Another limitation of our model is that it assumes all turbines have the same resistance coefficient C′
T . It is likely that this condition

can be strictly satisfied only in the fully developed region of a large farm where the wind speed does not change in the streamwise

or cross-streamwise directions.

Although we considered only actuator discs in this study for demonstration, the proposed approach using a data-driven model

of CT ∗ can be applied to power prediction of real turbines as well in future studies. In this study, we calculate Cp,model using the

expressionCp,model = β3C∗
T

3
2 C′

T
− 1

2 . This assumes that the relationship betweenC∗
p andC′

T is given byC∗
p = C∗

T

3
2 C′

T
− 1

2 , which

is only valid for actuator discs. For real turbines, the relationship betweenC∗
p andC′

T can be calculated using BEM theory 43 according

to the turbine design and operating conditions (noting that the turbine induction factor can still be estimated as a = C′
T /(4+C′

T )).

Cp,model can then be calculated using equation 5 with β found using equation 1. However, for a data-driven model of C∗
T to be

applicable to real turbines, it will be necessary to model the impact of a variable C′
T rather than assuming a fixed C′

T value as in this

study.
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7 CONCLUSIONS

In this study we proposed a new data-driven approach to modelling turbine wake interactions and resulting flow resistance in large

wind farms.We developed statistical emulators of the farm-internal turbine thrust coefficientC∗
T,LES as a function of turbine layout

and wind direction. C∗
T represents the flow resistance within a wind farm and reflects the characteristics of the turbine-scale flows

including wake and turbine blockage effects. We developed several emulators using both standard GP regression and multi-fidelity

GP regression. The standard GP was trained using data from 50 infinitely-large wind farm LES (and using a low-fidelity wake model

as a prior mean). The multi-fidelity GP was trained using data from both LES and wake model simulations. We estimated the test

accuracy of the model by performing leave-one-out cross-validation and assessed the error in predictingC∗
T,LES . All emulators had

a mean test error of less than 2% for predicting C∗
T,LES . The multi-fidelity GP gave the best performance with a mean prediction

error of 0.849% and maximum prediction error of 3.78%with no bias for under or over-prediction. This is low compared to the mean

error of the wake model (4.60%) and analytical C∗
T model (5.26%) which both had a bias for overpredicting C∗

T,LES .

We used an emulator ofC∗
T,LES to make predictions of wind farm performance under various mesoscale atmospheric conditions

(characterised by the wind extractability factor ζ) using the two-scale momentum theory 24. Our predictions of farm power produc-

tion had an average error of less than 1.5% under realistic wind extractability scenarios compared to the LES. When the error in

power prediction is expressed relative to the power of an isolated ideal turbine the average prediction error is less than 0.7%. We

also used a previously proposed analytical model ofC∗
T

25 to predict farm power output with an average error of less than 3.5% (with

the power of an isolated turbine as the reference power). The analytical model correctly predicts the trends in farm performance

with array density under different scenarios of large-scale atmospheric response, although it tends to overpredict the power where

turbine-wake interactions are important. Using statistical emulators ofC∗
T is a new approach to modelling turbine-wake interactions

and flow resistance within large wind farms. The approach can be extended in future studies by increasing the size of the training

data set, for example, to account for the effects of C′
T and atmospheric stability conditions on C∗

T . The very low computational cost

and high accuracy of the model could be beneficial for future wind farm optimisation.
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