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Abstract

The robustness of a linear system in the view of parametric variations requires a stability analysis of a family of polynomials. If

the parameters vary in a compact set A, then obtaining necessary and sufficient conditions to determine stability on the family

F A is one of the most important tasks in the field of robust control. Two interesting classes of families arise when A is a

diamond or a box of dimension n+1. These families will be denoted by F D n and F B n , respectively. In this paper a study is

presented to contribute to the understanding of Hurwitz stability of families of polynomials F A . As a result of this study and

the use of classical results found in the literature, it is shown the existence of an extremal polynomial f ( α * , x ) whose stability

determines the stability of the entire family F A . In this case f ( α * , x ) comes from minimizing determinants and sometimes

f ( α * , x ) coincides with a Kharitonov’s polynomial. Thus another extremal property of Kharitonov’s polynomials has been

found. To illustrate the versatility/generality of our approach, this is addressed to families such as F D n and F B n , when

n[?]5. Furthermore, the study is also used to obtain the maximum robustness of the parameters of a polynomial. To exemplify

the proposed results, first, a family F D n is taken from the literature to compare and corroborate the effectiveness and the

advantage of our perspective. Followed by two examples where the maximum robustness of the parameters of polynomials of

degree 3 and 4 are obtained. Lastly, a family F B 5 is proposed whose extreme polynomial is not necessarily a Kharitonov’s

polynomial.
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Summary

The robustness of a linear system in the view of parametric variations requires a sta-
bility analysis of a family of polynomials. If the parameters vary in a compact set 𝐴,
then obtaining necessary and sufficient conditions to determine stability on the fam-
ily𝔉𝐴 is one of the most important tasks in the field of robust control. Two interesting
classes of families arise when𝐴 is a diamond or a box of dimension 𝑛+1. These fam-
ilies will be denoted by 𝔉𝐷𝑛 and 𝔉𝐵𝑛 , respectively. In this paper a study is presented
to contribute to the understanding of Hurwitz stability of families of polynomials𝔉𝐴.
As a result of this study and the use of classical results found in the literature, it is
shown the existence of an extremal polynomial 𝑓 (𝛼∗, 𝑥) whose stability determines
the stability of the entire family 𝔉𝐴. In this case 𝑓 (𝛼∗, 𝑥) comes from minimizing de-
terminants and sometimes 𝑓 (𝛼∗, 𝑥) coincides with a Kharitonov’s polynomial. Thus
another extremal property of Kharitonov’s polynomials has been found. To illustrate
the versatility/generality of our approach, this is addressed to families such as 𝔉𝐷𝑛
and 𝔉𝐵𝑛 , when 𝑛 ≤ 5. Furthermore, the study is also used to obtain the maximum
robustness of the parameters of a polynomial. To exemplify the proposed results,
first, a family 𝔉𝐷𝑛 is taken from the literature to compare and corroborate the ef-
fectiveness and the advantage of our perspective. Followed by two examples where
the maximum robustness of the parameters of polynomials of degree 3 and 4 are ob-
tained. Lastly, a family 𝔉𝐵5

is proposed whose extreme polynomial is not necessarily
a Kharitonov’s polynomial.
KEYWORDS:
Polynomial family; Hurwitz stability; interval polynomials; diamond polynomials, robust stability; ex-
tremal property.

1 INTRODUCTION

In the control theory framework, the design and tuning of a controller that ensures the efficient handling of a system is
undoubtedly of great relevance. In this sense, three important aspects must be considered1: its fragility to the variation of its
own parameters, its performance to a load disturbance or set-point change, and its robustness to the changes in the controlled
process characteristics.

One of the most recurrent problems in physical (real-world) systems is that the proposed design and tuning of controllers
have poor performance or below expectations. This may be due to the fact that these systems present parametric variations. In
the framework of control theory, this problem is known as robustness of a controller under parametric uncertainty2. Among the
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main achievements proposed in this field is the obtaining of conditions to determine if a linear time invariant control system
remains stable as the parameters vary over a set.

In this context, one of the most relevant problems is to determine the stability of a whole family of polynomials through
the stability of a subfamily of it3. Currently, this continues to be a field of opportunity given the great variety of families of
polynomials that can be proposed and its possible subfamilies. Above all, if the conditions required to test stability are more
relaxed and less complicated to apply. In the literature there are many results about stability of families of polynomials, among
which are those that can be described as interval polynomials4, polytope of polynomials5, rays and cones of polynomials6,7,
segments of polynomials8 and diamond of polynomials9, to mention a few. All of them use fundamental results such as the Edge
Theorem5,10 and its generalization11, the Zero Exclusion Principle12,13, the concept of convex directions14, and the boundary
crossing theorem15, among others. In4, the stability analysis of systems with parametric uncertainty is through a study of their
corresponding family of interval polynomials. The result surprised the scientific community when it was shown that to prove
the stability of a family of interval polynomials it is only necessary to test the stability of four polynomials. Since then, much
research has been focused on this type of families with the intention of extending and improving this result. In16, given a Hurwitz
stable polynomial of the form 𝑃 (𝑠) = 𝑠𝑛 +

∑𝑛
𝑘=1 𝑡𝑘𝑠

𝑛−𝑘, the Kharitonov’s Theorem is used to obtain the maximum interval
centered at 𝑡 = [𝑡1, 𝑡2,… , 𝑡𝑛]. In other words, the maximum 𝜖𝑚𝑎𝑥 > 0 is determined such that the polynomial 𝑃 (𝑠) remains
stable on the interval (𝑡𝑖 − 𝑤𝑖𝜖𝑚𝑎𝑥, 𝑡𝑖 + 𝑤𝑖𝜖𝑚𝑎𝑥). Here, 𝑃 (𝑠) is stable for 𝑡𝑖 ∈ (𝑤𝑖, 𝑤𝑖) by Kharitonov’s Theorem. While, in17,
a method is proposed to obtain the largest hypersphere with center at 𝑡 = [𝑡1, 𝑡2,… , 𝑡𝑛] for which a polynomial preserves its
stability, depending on the case. However this method is purely geometric. In18, an elementary proof of Kharitonov’s Theorem
using simple complex plane geometry is given. In19, some results are obtained to determine the stability of a family of interval
polynomials of degree 𝑛. Here, the stability of the family for 𝑛 = 3, 4 and 5 is guaranteed by the stability of 1, 2 and 3 of
the Kharitonov’s polynomials, respectively. In20, a generalization of Kharitonov’s Theorem is presented. This generalization
provides necessary and sufficient conditions for the stability of a family of polynomials of the form 𝑃 (𝑠) =

∑𝑚
𝑖=1𝑄𝑖(𝑠)𝑃𝑖(𝑠),

where𝑄𝑖(𝑠) are fixed polynomials and 𝑃𝑖(𝑠) are interval polynomials. Here the problem is focused on solving the robust stability
of the corresponding transfer function of the closed-loop system of a plant with a controller, whose coefficients (some or all) are
subject to perturbations within prescribed ranges. The family of transfer functions corresponding to this box in the parameter
space is referred to as an interval plant. Subsequently, in21 the design of controllers type P, PI and PID for these interval plants is
proposed. While, in22 Kharitonov’s Theorem is used to tune a PID controller for uncertain plants. Unlike previous papers, using
Kharitonov’s Theorem, the controller coefficients are selected within a non-conservative stability region, called the Kharitonov
region, to stabilize uncertain plants and fulfill system specifications in terms of gain margins and phase margins. Finally, in23
using Newton and Marclaurin inequalities some general necessary conditions for the stability of 𝔉𝐵𝑛 are founded.

In this paper a study is presented to contribute to the understanding of Hurwitz stability of families of polynomials 𝔉𝐴
when 𝐴 is a compact set. It is shown that the stability of a family 𝔉𝐴 of polynomials of degree 𝑛 whose coefficients vary in
a compact parametric set 𝐴 is determined by the stability of an extremal polynomial. This extremal polynomial comes from
minimizing certain determinants and in some cases the extremal polynomial coincides with a Kharitonov’s polynomial. Thus,
another extremal property of Kharitonov’s polynomials is obtained. The previous results are oriented towards a family of diamond
polynomials 𝔉𝐷𝑛

and a family of interval polynomials 𝔉𝐵𝑛 . This study suggests that a fewer number of conditions is required to
test its stability compared with results found in the literature.

The rest of the paper is organized as follows. In Section 2, statement of the problem and specific contributions are given.
While in Section 3, some criteria and concepts necessary to obtain the proposed results are presented. In Section 4, the results
concerning the Hurwitz stability of families of polynomials are stated. Continuing with Section 5, where the proposed results
are applied to some polynomials. The document ends with some conclusions in Section 6.

2 PROBLEM STATEMENT AND CONTRIBUTION

We now formulate the problem to be studied, followed by a brief description of the contribution.

Problem statement
A function of the form

𝑓 (𝛼, 𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 +⋯ + 𝛼𝑛𝑥𝑛, (1)
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where 𝛼 = (𝛼0, 𝛼1,… , 𝛼𝑛) ∈ ℝ𝑛+1 and 𝛼𝑛 ≠ 0, is called a polynomial of degree 𝑛 with real coefficients. The polynomial (1) is
said to be stable (or Hurwitz stable) if and only if all its roots lie in the open left-half of the complex plane.
For a set 𝐴 ⊆ ℝ𝑛+1,

𝔉𝐴 = {𝑓 (𝛼, 𝑥) ∶ 𝛼 ∈ 𝐴}
is the family of all polynomials of the form (1) whose coefficients belong to𝐴. As mentioned above, the topology of𝐴 determines
the type of family of polynomials that is studied. In particular:

• If 𝐴 = 𝐷𝑛 is an (𝑛+ 1)-dimensional ball (diamond) with center 𝑐 = (𝑐0, 𝑐1,… , 𝑐𝑛) ∈ ℝ𝑛+1, and radius 𝑟 > 0 with respect
to the 1-norm24 of the form

𝐷𝑛 = {𝛼 ∈ ℝ𝑛+1 ∶ |𝛼0 − 𝑐0| + |𝛼1 − 𝑐1| +⋯ + |𝛼𝑛 − 𝑐𝑛| ≤ 𝑟}, (2)
the collection 𝔉𝐷𝑛

is known as a family of diamond polynomials. This diamond has 2(𝑛 + 1) vertices of the form
(𝑐0,… , 𝑐𝑗−1, 𝑐𝑗 ± 𝑟, 𝑐𝑗+1,… , 𝑐𝑛) for 𝑗 = 0, 1,… , 𝑛.

• If 𝐴 = 𝐵𝑛 is an (𝑛 + 1)-dimensional box of the form
𝐵𝑛 = [𝑙0, 𝑢0] × [𝑙1, 𝑢1] ×⋯ × [𝑙𝑛, 𝑢𝑛]

= {𝛼 = (𝛼0, 𝛼1,… , 𝛼𝑛) ∈ ℝ𝑛+1 ∶ 𝑙𝑗 ≤ 𝛼𝑗 ≤ 𝑢𝑗 for 𝑗 = 0, 1,… , 𝑛},
(3)

the collection 𝔉𝐵𝑛 is known as a family of interval polynomials. The sets [𝑙𝑗 , 𝑢𝑗] represent the interval uncertainty in the
coefficients of polynomial (1). This box has 2𝑛+1 vertices of the form (𝛼0, 𝛼1,… , 𝛼𝑛), where 𝛼𝑗 ∈ {𝑙𝑗 , 𝑢𝑗} for 𝑗 = 0, 1,… , 𝑛.

Definition 1. 15 A family 𝔉𝐴 is said to be stable (or Hurwitz stable) if and only if each of its elements is a stable polynomial.

A criterion to determine the stability of a diamond polynomials is the following.

Theorem 1. (Barmish9) Assume that |𝑐𝑗| > 𝑟 for 𝑗 = 0, 1,… , 𝑛. The family 𝔉𝐷𝑛
is stable if and only if the eight polynomials

𝑓 (𝑞1,2, 𝑥) = 𝑓 (𝑐, 𝑥) ± 𝑟
𝑓 (𝑞3,4, 𝑥) = 𝑓 (𝑐, 𝑥) ± 𝑟𝑥
𝑓 (𝑞5,6, 𝑥) = 𝑓 (𝑐, 𝑥) ± 𝑟𝑥𝑛−1

𝑓 (𝑞7,8, 𝑥) = 𝑓 (𝑐, 𝑥) ± 𝑟𝑥𝑛

(4)

are stable. Here 𝑞𝑗 , 𝑗 = 1,… , 8, are vertices of the diamond 𝐷𝑛.
The best-known criterion to determine the stability of a family of interval polynomials is the following.

Theorem 2. (Kharitonov4) The family 𝔉𝐵𝑛 is stable if and only if the four polynomials
𝑓 (𝑘1, 𝑥) = 𝑙0 + 𝑙1𝑥 + 𝑢2𝑥2 + 𝑢3𝑥3 + 𝑙4𝑥4 + 𝑙5𝑥5 +⋯

𝑓 (𝑘2, 𝑥) = 𝑢0 + 𝑢1𝑥 + 𝑙2𝑥2 + 𝑙3𝑥3 + 𝑢4𝑥4 + 𝑢5𝑥5 +⋯

𝑓 (𝑘3, 𝑥) = 𝑙0 + 𝑢1𝑥 + 𝑢2𝑥2 + 𝑙3𝑥3 + 𝑙4𝑥4 + 𝑢5𝑥5 +⋯

𝑓 (𝑘4, 𝑥) = 𝑢0 + 𝑙1𝑥 + 𝑙2𝑥2 + 𝑢3𝑥3 + 𝑢4𝑥4 + 𝑙5𝑥5 +⋯

(5)

are stable. Here 𝑘𝑗 , 𝑗 = 1,… , 4, are vertices of the box 𝐵𝑛.

From Theorems1 and 2 it follows that:
• There exist eight points (vertices) of the diamond 𝐷𝑛 such that determine the stability of the family 𝔉𝐷𝑛

𝑞1,2 = (𝑐0 ± 𝑟, 𝑐1, 𝑐2,… , 𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛)
𝑞3,4 = (𝑐0, 𝑐1 ± 𝑟, 𝑐2,… , 𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛)
𝑞5,6 = (𝑐0, 𝑐1, 𝑐2,… , 𝑐𝑛−2, 𝑐𝑛−1 ± 𝑟, 𝑐𝑛)
𝑞7,8 = (𝑐0, 𝑐1, 𝑐2,… , 𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛 ± 𝑟).

(6)
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• There exists four points (vertices) of the the box 𝐵𝑛 such that determine the stability of the family 𝔉𝐵𝑛

𝑘1 = (𝑙0, 𝑙1, 𝑢2, 𝑢3, 𝑙4, 𝑙5,…)
𝑘2 = (𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4, 𝑢5,…)
𝑘3 = (𝑙0, 𝑢1, 𝑢2, 𝑙3, 𝑙4, 𝑢5,…)
𝑘4 = (𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4, 𝑙5,…).

(7)

Undoubtedly, the following questions arise:
• For a set 𝐴, is it possible to determine necessary and sufficient conditions to ensure stability on the entire family 𝔉𝐴?
• Is it possible to reduce the number of polynomials (or points) needed to determine the stability of 𝔉𝐷𝑛

or 𝔉𝐵𝑛 ?
• For 𝔉𝐷𝑛

or 𝔉𝐵𝑛 , are necessarily vertices of a diamond or a box, respectively, the points (or polynomials) that determine
the stability of these families?

Remark 1. As far as we know, one of the best attempts to reduce the number of Kharitonov’s polynomials needed to test the
stability of a family 𝔉𝐵𝑛 is given in Anderson19. There, for 𝑛 = 3, 4, and 5, the number of Kharitonov’s polynomials required to
check stability of 𝔉𝐵𝑛 is one, two, and three, respectively, instead of four. That is, the stability of 𝔉𝐵3,4,5

, is determined by one,
two, and three, points of the form (7), respectively. Furthermore, the authors assure that the four Kharitonov’s polynomials (or
the four points (7)) are required for 𝑛 ≥ 6.

Contributions of this manuscript
• The evidence from this study suggests the existence of an extreme point 𝛼∗ ∈ 𝐴 ⊆ ℝ𝑛+1, with𝐴 compact set, such that the

stability of the polynomial 𝑓 (𝛼∗, 𝑥), which we will call extremal polynomial, determines the stability of the entire family
𝔉𝐴 of degree 𝑛.

• A result is proposed to show that the extreme point 𝛼∗ ∈ 𝐴 ⊆ ℝ𝑛+1 is on the boundary of 𝐴.
• Based on the previous item, the findings of this study points towards the idea that the stability of families such as 𝔉𝐷𝑛and 𝔉𝐵𝑛 can be guaranteed by the existence of at least one extremal polynomial 𝑓 (𝛼∗, 𝑥) and/or failing that, by fulfilling

simple inequalities.
• In this case 𝑓 (𝛼∗, 𝑥) comes from minimizing determinants and sometimes 𝑓 (𝛼∗, 𝑥) coincides with a Kharitonov’s

polynomial. Then, we get another extremal property of Kharitonov’s polynomials.
• To illustrate the results obtained, necessary and sufficient conditions to determine stability on 𝔉𝐷𝑛

and 𝔉𝐵𝑛 are given
for 𝑛 ≤ 5. This results suggest that our approach can contribute for the understanding and relaxation of conditions to
determine stability in families of polynomials.

3 PRELIMINARY RESULTS

In this section we state the background theorems needed to prove the main results.
Lemma 1. (Stodola25) If 𝑓 (𝛼, 𝑥) of the form (1) is a stable polynomial, then all its coefficients have the same sign.
Remark 2. In what follows, we should assume that 𝛼𝑗 > 0 for 𝑗 = 0, 1, 2,… , 𝑛.
The Hurwitz principal determinants Δ1,Δ2,… ,Δ𝑛 of the of the polynomial (1) are defined by

Δ𝑘(𝛼) =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝛼1 𝛼0 0 ⋯ 0
𝛼3 𝛼2 𝛼1 ⋯ 0
𝛼5 𝛼4 𝛼3 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝛼2𝑘−3 𝛼2𝑘−4 𝛼2𝑘−5 ⋯ 𝛼𝑘−2
𝛼2𝑘−1 𝛼2𝑘−2 𝛼2𝑘−3 ⋯ 𝛼𝑘

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (8)
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where 𝛼2𝑖−𝑗 = 0 for 2𝑖 − 𝑗 < 0 or 2𝑖 − 𝑗 > 𝑛, 𝑖, 𝑗 = 1, 2,… , 𝑘, and 𝑘 = 1, 2,… , 𝑛. Using Remark 2, one of the classical criteria
on the stability of polynomials can be formulated as follows.
Theorem 3. (Liénard-Chipart criterion26) The polynomial (1) is stable if and only if the determinants

Δ1(𝛼), Δ3(𝛼), Δ5(𝛼), …

or
Δ2(𝛼), Δ4(𝛼), Δ6(𝛼), …

are positive.
Next we will use the previous criterion to obtain a point 𝛼∗ ∈ 𝐴 such that its corresponding extremal polynomial 𝑓 (𝛼∗, 𝑥)

determines the stability of the entire family 𝔉𝐴.

4 MAIN RESULTS

In this section the above is used to obtain necessary and sufficient conditions of stability for a family 𝔉𝐴, when 𝐴 is a compact
set. This result is oriented to a family of diamond polynomials 𝔉𝐷𝑛

and a family of interval polynomials 𝔉𝐵𝑛 .

4.1 On the family 𝔉𝐴

We next say what is meant to be an extremal polynomial and its existence for a family of polynomials 𝔉𝐴, with 𝐴 compact set.
Definition 2. A polynomial 𝑓 (𝛼∗, 𝑥) of the form (1) is said to be a extremal polynomial for a family 𝔉𝐴 if the stability of 𝑓 (𝛼∗, 𝑥)
determines the stability of the entire family 𝔉𝐴.

Note that obtaining an extremal polynomial 𝑓 (𝛼∗, 𝑥) in 𝔉𝐴 is equivalent to obtaining an extreme point 𝛼∗ in 𝐴. To obtain
extremal polynomials or extreme points a criterion of stability is required. Next we use the Liénard-Chipart criterion.

Suppose that the coefficients of polynomial (1) belong to a compact set 𝐴 whose elements have positive components. Since
the determinants (8) are continuous functions of 𝛼, there exist points 𝑎1, 𝑎2,… , 𝑎𝑛 ∈ 𝐴 such that

Δ1(𝑎1) = min{Δ1(𝛼) ∶ 𝛼 ∈ 𝐴},
Δ2(𝑎2) = min{Δ2(𝛼) ∶ 𝛼 ∈ 𝐴},

⋮
Δ𝑛(𝑎𝑛) = min{Δ𝑛(𝛼) ∶ 𝛼 ∈ 𝐴}.

(9)

Now, it is shown that the points 𝑎1, 𝑎2,… , 𝑎𝑛 cannot be interior points of the set 𝐴. Then this points are on the boundary of
𝐴. A more precise but less general result can be found in Bialas27: for a stable family 𝔉𝐵𝑛 it is proved that 𝑎𝑛 corresponds to a
vertex of the box 𝐵𝑛 .
Theorem 4. Assume determinants (9) are positive. Then these minimum values cannot be attained at interior points of the set𝐴.

Proof. For 𝑘 = 1, 2,… , 𝑛, suppose that 𝑎𝑘 = (𝑎𝑘0 , 𝑎
𝑘
1 ,… , 𝑎𝑘𝑛) is an interior point of 𝐴. Then there exists an 𝜀 > 0 in the interval

(0, 2‖𝑎𝑘‖), such that 𝐵𝜀(𝑎𝑘) ⊂ 𝐴, where 𝐵𝜀(𝑎𝑘) denotes the ball with center 𝑎𝑘 and radius 𝜀 with respect to the Euclidean norm.
Let

𝛼 =
{

(𝑎𝑘0 , 𝜆𝑎
𝑘
1 , 𝑎

𝑘
2 , 𝜆𝑎

𝑘
3 ,… , 𝑎𝑘2𝑚−2, 𝜆𝑎

𝑘
2𝑚−1), 𝑛 = 2𝑚 − 1

(𝑎𝑘0 , 𝜆𝑎
𝑘
1 , 𝑎

𝑘
2 , 𝜆𝑎

𝑘
3 ,… , 𝜆𝑎𝑘2𝑚−1, 𝑎

𝑘
2𝑚), 𝑛 = 2𝑚

where 𝑚 ≥ 1, and 𝜆 = 1 − 𝜀
2‖𝑎𝑘‖

. By this choice, 0 < 𝜆 < 1, and
‖𝛼 − 𝑎𝑘‖ = (1 − 𝜆)

[

(𝑎𝑘1)
2 + (𝑎𝑘3)

2 +⋯ + (𝑎𝑘2𝑚−1)
2]1∕2 ≤ (1 − 𝜆)‖𝑎𝑘‖ = 𝜀

2
< 𝜀.

Thus 𝛼 ∈ 𝐵𝜀(𝑎𝑘), and by the multi-linearity of the determinant Δ𝑘, we have that
Δ𝑘(𝛼) = 𝜆𝑙Δ𝑘(𝑎𝑘) for 𝑘 = 2𝑙 − 1 or 𝑘 = 2𝑙,

where 𝑙 = 1, 2,… , 𝑚. Since 𝜆 < 1, we have that Δ𝑘(𝛼) < Δ𝑘(𝑎𝑘) for 𝑘 = 1, 2,… , 𝑛. This contradiction proves the result.
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On the other hand, using the Theorem 1 we define
Δ𝑜(𝛼) ∶= min{Δ1(𝛼),Δ3(𝛼),Δ5(𝛼),…} (10)

and
Δ𝑒(𝛼) ∶= min{Δ2(𝛼),Δ4(𝛼),Δ6(𝛼),…}. (11)

Since Δ𝑜 and Δ𝑒 are continuous functions, there exist points 𝛼∗𝑜 , 𝛼∗𝑒 ∈ 𝐴 such that
Δ𝑜(𝛼∗𝑜 ) = min{Δ𝑜(𝛼) ∶ 𝛼 ∈ 𝐴}

and
Δ𝑒(𝛼∗𝑒 ) = min{Δ𝑒(𝛼) ∶ 𝛼 ∈ 𝐴}.

Theorem 5. Let 𝐴 be a compact set. The family 𝔉𝐴 is stable if and only if there exists a stable extremal polynomial 𝑓 (𝛼∗, 𝑥),
where 𝛼∗ is 𝛼∗𝑒 or 𝛼∗𝑜 .
Proof. Note that

Δ𝑜(𝛼∗𝑜 ) = min{Δ1(𝑎1),Δ3(𝑎3),Δ5(𝑎5),…},
and

Δ𝑒(𝛼∗𝑒 ) = min{Δ2(𝑎2),Δ4(𝑎4),Δ6(𝑎6),…}.
Then the family 𝔉𝐴 is stable if and only if Δ𝑜(𝛼∗𝑜 ) > 0 or Δ𝑜(𝛼∗𝑒 ) > 0. The result follows from Definition 2.

Remark 3. Since an extremal polynomial can be obtained from the inequalities Δ𝑜(𝛼∗𝑜 ) > 0 or Δ𝑒(𝛼∗𝑒 ) > 0, or an equivalent
form, in what follows we will use the most convenient of these cases.

4.2 On the family 𝔉𝐷𝑛

In this section we consider a compact set 𝐴 which is a diamond or a ball in the 1-norm of the form (2).
Define the finite set

𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8} ⊂ 𝐷𝑛,
where 𝑞𝑖, 𝑖 = 1,… , 8, are defined in (6). These are eight vertices of the diamond 𝐷𝑛. By Remark 3, we choose the odd
determinants. Then there exist points 𝛼𝑜 ∈ 𝑄, and 𝛼∗𝑜 ∈ 𝐷𝑛 such that

Δ𝑜(𝛼𝑜) = min{Δ𝑜(𝛼) ∶ 𝛼 ∈ 𝑄}

and
Δ𝑜(𝛼∗𝑜 ) = min{Δ𝑜(𝛼) ∶ 𝛼 ∈ 𝐷𝑛}.

Note that the points 𝛼𝑜 and 𝛼∗𝑜 are not necessarily equal, whence the extremal polynomials 𝑓 (𝛼𝑜, 𝑥) and 𝑓 (𝛼∗𝑜 , 𝑥) are not
necessarily the same, but either one determines the stability of the family 𝔉𝐷𝑛

.
Theorem 6. The family 𝔉𝐷𝑛

is stable if only if the extremal polynomial 𝑓 (𝑞∗, 𝑥) is stable, where 𝑞∗ is 𝛼∗𝑜 or 𝛼𝑜.
Proof. We have that

Δ𝑜(𝛼∗𝑜 ) ≤ Δ𝑜(𝛼𝑜),
and by Theorems 1 and 5 the family 𝔉𝐷𝑛

is stable if and only if Δ𝑜(𝛼𝑜) > 0 or Δ𝑜(𝛼∗𝑜 ) > 0. Thus there always exists an extremal
polynomial that determines the stability of the entire family 𝔉𝐷𝑛

.
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4.3 On the family 𝔉𝐵𝑛

Since most of the scientific community has directed its attention on families of the form (3), below we will emphasize our
contribution with several results on this class of families.
Define the finite set

𝐾 = {𝑘1, 𝑘2, 𝑘3, 𝑘4} ⊂ 𝐵𝑛,
where 𝑘𝑗 for 𝑗 = 1,… , 4 is defined in (7). By Remark 3, we choose the odd determinants. Then there exist points 𝛼𝑜 ∈ 𝐾 , and
𝛼∗𝑜 ∈ 𝐵𝑛 such that

Δ𝑜(𝛼𝑜) = min{Δ𝑜(𝛼) ∶ 𝛼 ∈ 𝐾}
and

Δ𝑜(𝛼∗𝑜 ) = min{Δ𝑜(𝛼) ∶ 𝛼 ∈ 𝐵𝑛}.
Analogous to the previous section, the stability of the family 𝔉𝐵𝑛 is determined by any of the two extremal polynomials, which
are not necessarily equal.
Theorem 7. The family 𝔉𝐵𝑛 is stable if only if the extremal polynomial 𝑓 (𝑘∗, 𝑥) is stable, where 𝑘∗ is 𝛼∗𝑜 or 𝛼𝑜.
Proof. We have that

Δ𝑜(𝛼∗𝑜 ) ≤ Δ𝑜(𝛼𝑜),
and the family 𝔉𝐵𝑛 is stable if and only if Δ𝑜(𝛼𝑜) > 0 or Δ𝑜(𝛼∗𝑜 ) > 0. Thus there always exists an extremal Kharitonov’s
polynomial that determines the stability of the entire family 𝔉𝐵𝑛 . This complements the result obtained by Anderson19.

Remark 4. In some cases, 𝑘∗ = 𝛼∗𝑜 corresponds to coefficients of a Kharitonov’s polynomial, which is always true for 𝑘∗ = 𝛼𝑜.
Thus these polynomials have an other extremal property than the one obtained in28.

Next we obtain explicit necessary and sufficient conditions for the family 𝔉𝐵𝑛 to be stable when 𝑛 ≤ 5.

Proposition 1. The families 𝔉𝐵1
, 𝔉𝐵2

, and 𝔉𝐵3
are stable if and only if the extremal polynomials 𝑓 (𝛼∗, 𝑥) = 𝛼0+𝑙1𝑥, 𝑓 (𝛼∗, 𝑥) =

𝛼0 + 𝑙1𝑥 + 𝑙2𝑥2, and 𝑓 (𝛼∗, 𝑥) = 𝑢0 + 𝑙1𝑥 + 𝑙2𝑥2 + 𝑢3𝑥3 are stable, respectively.

Proof. If 𝑛 = 1, then 𝐵1 = [𝑙0, 𝑢0] × [𝑙1, 𝑢1], Δ𝑜 = Δ1, and
Δ𝑜(𝛼∗𝑜 ) = 𝑙1.

In this case 𝛼∗ = 𝛼∗𝑜 = (𝛼0, 𝑙1), and the extremal polynomial is 𝑓 (𝛼∗, 𝑥) = 𝛼0 + 𝑙1𝑥.
If 𝑛 = 2, then 𝐵2 = [𝑙0, 𝑢0] × [𝑙1, 𝑢1] × [𝑙2, 𝑢2], Δ𝑜 = Δ1, and Δ𝑒 = Δ2. By Remark 3 we choose Δ𝑒, thus

Δ𝑒(𝛼∗𝑒 ) = 𝑙1𝑙2.

In this case, 𝛼∗ = 𝛼∗𝑒 = (𝛼0, 𝑙1, 𝑙2), and the extremal polynomial is 𝑓 (𝛼∗, 𝑥) = 𝛼0 + 𝑙1𝑥 + 𝑙2𝑥2.
If 𝑛 = 3, then 𝐵3 = [𝑙0, 𝑢0] × [𝑙1, 𝑢1] × [𝑙2, 𝑢2] × [𝑙3, 𝑢3], Δ𝑜 = min{Δ1,Δ3}, and Δ𝑒 = Δ2. By Remark 3 we choose Δ𝑒, thus

Δ𝑒(𝛼∗𝑒 ) = 𝑙1𝑙2 − 𝑢0𝑢3.

In this case, 𝛼∗ = 𝛼∗𝑒 = (𝑢0, 𝑙1, 𝑙2, 𝑢3), and the extremal polynomial is 𝑓 (𝛼∗, 𝑥) = 𝑢0 + 𝑙1𝑥 + 𝑙2𝑥2 + 𝑢3𝑥3.

Remark 5. As an interesting fact, note that the components of the point 𝛼∗ corresponds to the coefficients of the Kharitonov’s
polynomial 𝑓 (𝑘4, 𝑥) = 𝑢0 + 𝑙1𝑥 + 𝑙2𝑥2 + 𝑢3𝑥3. An equivalent conclusion is presented in19, see Remark 1.

Proposition 2. For 𝑛 ≥ 3, a necessary condition for the family 𝔉𝐵𝑛 to be stable is
𝑙1𝑙2 − 𝑢0𝑢3 > 0. (12)
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Proof. For 𝑛 ≥ 3, the determinants
Δ2(𝛼) =

|

|

|

|

|

𝛼1 𝛼0
𝛼3 𝛼2

|

|

|

|

|

= 𝛼1𝛼2 − 𝛼0𝛼3

do not change. Since
min
𝛼∈𝐵𝑛

Δ2(𝛼) = 𝑙1𝑙2 − 𝑢0𝑢3, (13)
the family 𝔉𝐵𝑛 is stable if (13) is positive.

If 𝑙3 = 𝑢3 = 1, the conditions stated in Proposition 1 can be seen geometrically in Figure 1. Four of the eight vertices of
the box 𝐵3 (one red dot and three blue dots) correspond to the coefficients of Kharitonov’s polynomials. The red vertex is
𝛼∗ = (𝑢0, 11, 𝑙2, 𝑢3). It is observed that as long as the box 𝐵3 keeps between the surfaces of the hyperbolic paraboloid 𝛼0 = 𝛼1𝛼2
and the plane 𝛼0 = 0, the family 𝔉𝐵3

is stable.

Figure 1 Stability of the family 𝔉𝐵3
.

Theorem 8. Let 𝑑 = 𝑙22 − 4𝑢0𝑢4 > 0. The family of interval polynomials 𝔉𝐵4
is stable if and only if the extremal polynomial

𝑓 (𝛼∗, 𝑥), where 𝛼∗ = (𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4), (𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4) or (𝑢0, 𝑙1, 𝑙2, 𝑙3, 𝑢4), is stable or equivalently one of the inequalites
𝑙2 −

√

𝑑
2𝑢0

𝑢1 < 𝑙3 ≤ 𝑢3 <
𝑙2 +

√

𝑑
2𝑢0

𝑙1 (14)
or

min
{

Δ3(𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4),Δ3(𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4),Δ3(𝑢0, 𝑙1, 𝑙2, 𝑙3, 𝑢4)
}

> 0. (15)
is satisfied.

Proof. From (10) we have that
Δ𝑜(𝛼) = min

{

Δ1(𝛼),Δ3(𝛼)
}

.
As mentioned in Remark 3, to obtain an extremal polynomial, we discard Δ1 since it is always positive, and minimize a function
related to Δ3. By Theorem 4, the family 𝔉𝐵4

is stable if and only if
Δ3(𝛼) = 𝛼1𝛼2𝛼3 − 𝛼0𝛼23 − 𝛼

2
1𝛼4 > 0 for all 𝛼 ∈ 𝐵4.

Let 𝐹3(𝛼) = Δ3(𝑢0, 𝛼1, 𝑙2, 𝛼3, 𝑢4) = 𝑙2𝛼1𝛼3 − 𝑢0𝛼23 − 𝑢4𝛼
2
1 . Since

min
𝛼∈𝐵4

Δ3(𝛼) = min
𝛼∈𝐵4

𝐹3(𝛼),

we can minimize 𝐹3 instead of Δ3.
It is easily verified that

𝐹3(𝛼) =
(

𝑑
4𝑢0

)

𝛼21 − 𝑢0

(

𝛼3 −
𝑙2
2𝑢0

𝛼1

)2

. (16)
Thus

𝐹3(𝛼) > 0 ⇐⇒
𝑙2 −

√

𝑑
2𝑢0

𝛼1 < 𝛼3 <
𝑙2 +

√

𝑑
2𝑢0

𝛼1 for all 𝛼 ∈ 𝐵4,
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and we have that
Δ3(𝛼) > 0 for all 𝛼 ∈ 𝐵4 ⇐⇒

𝑙2 −
√

𝑑
2𝑢0

𝑢1 < 𝑙3 ≤ 𝑢3 <
𝑙2 +

√

𝑑
2𝑢0

𝑙1,

which is the stability condition (14).
Now since

𝜕𝐹3

𝜕𝛼1
(𝛼) = 𝑙2𝛼3 − 2𝑢4𝛼1 < (>) 0 ⇐⇒ 𝛼3 < (>)

2𝑢4
𝑙2
𝛼1,

𝜕𝐹3

𝜕𝛼3
(𝛼) = 𝑙2𝛼1 − 2𝑢0𝛼3 < (>) 0 ⇐⇒ 𝛼3 > (<)

𝑙2
2𝑢0

𝛼1,

and
𝑙2 −

√

𝑑
2𝑢0

<
2𝑢4
𝑙2

<
𝑙2
2𝑢0

<
𝑙2 +

√

𝑑
2𝑢0

,

we obtain equation (15).

Remark 6. The coefficients (𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4) and (𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4) correspond to the Kharitonov’s polynomials 𝑓 (𝑘2, 𝑥) and
𝑓 (𝑘4, 𝑥), respectively, while the coefficients (𝑢0, 𝑙1, 𝑙2, 𝑙3, 𝑢4) do not.

The polynomial that renders the stability of the family 𝔉𝐵4
is obtained from equation (15) evaluating the determinant Δ3

at three points. However, this result can be improved by reducing the number of evaluations to two. To accomplish this, the
following elementary lemma is needed.

Lemma 2. Let 𝜑,𝜓 ∶ 𝐵 ⊂ ℝ𝑛 → ℝ be continuous functions, where 𝐵 is a compact set. The assertion
𝜑(𝛼) > 0 ⇐⇒ 𝜓(𝛼) > 0 for all 𝛼 ∈ 𝐵,

is equivalent to
min
𝛼∈𝐵

𝜑(𝛼) > 0 ⇐⇒ min
𝛼∈𝐵

𝜓(𝛼) > 0.

Proof. It follows from the definition of minimum and the Weierstrass theorem.

We now use Lemma 2 to reduce the number of evaluations in Δ3.

Theorem 9. Let 𝑑 = 𝑙22 − 4𝑢0𝑢4 > 0. The family of interval polynomials 𝔉𝐵4
is stable if and only if the extremal polynomial

𝑓 (𝛼∗, 𝑥), where 𝛼∗ = (𝑢0, 𝑙1, 𝑙2, 𝑢3) or (𝑢0, 𝑢1, 𝑙2, 𝑙3), is stable or equivalently
min{𝐺3(𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4), 𝐺3(𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4)} > 0, (17)

where
𝐺3(𝛼) =

√

𝑑𝛼1 − 2𝑢0
|

|

|

|

𝛼3 −
𝑙2
2𝑢0

𝛼1
|

|

|

|

.

Proof. From (16), we obtain the equivalence
Δ3(𝛼) > 0 ⇐⇒ 𝐺3(𝛼) > 0 for all 𝛼 ∈ 𝐵4.

Since
𝜕𝐺3

𝜕𝛼1
(𝛼) =

⎧

⎪

⎨

⎪

⎩

√

𝑑 + 𝑙2, 𝛼3 >
𝑙2
2𝑢0
𝛼1

√

𝑑 − 𝑙2, 𝛼3 <
𝑙2
2𝑢0
𝛼1
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and
𝜕𝐺3

𝜕𝛼3
(𝛼) =

{

−2𝑢0, 𝛼3 >
𝑙2
2𝑢0
𝛼1

2𝑢0, 𝛼3 <
𝑙2
2𝑢0
𝛼1

we see that
min
𝛼∈𝐵4

𝐺3(𝛼) = min{𝐺3(𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4), 𝐺3(𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4)}.

By Lemma 2, we obtain equation (17).

Remark 7. We note that:
• The coefficients (𝑢0, 𝑢1, 𝑙2, 𝑙3, 𝑢4) and (𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝑢4) correspond to the Kharitonov’s polynomials 𝑓 (𝑘2, 𝑥) and 𝑓 (𝑘4, 𝑥),

respectively.
• As mentioned in Remark 1, in19 the stability of 𝔉𝐵4

is determined by two Kharitonov’s polynomials. However, according
to the Theorem 8, the stability of 𝔉𝐵4

is determined by inequality (14).

Corollary 1. The family of interval polynomials 𝔉𝐵5
is stable if and only if the extremal polynomial 𝑓 (𝛼∗𝑒 , 𝑥) is stable, where

𝛼∗𝑒 = 𝑎2 or 𝑎4.

Proof. We observe that Δ𝑒(𝛼∗𝑒 ) > 0 if and only if Δ2(𝑎2) > 0 and Δ4(𝑎4) > 0. By Theorem 5, we have that 𝛼∗𝑒 = 𝑎2 or 𝑎4.

Due to the complexity of the calculations, few researchers have addressed this problem for 𝑛 ≥ 5. Next, a necessary condition
for the stability of the family 𝔉𝐵5

is given, while in Example 3, 𝑓 (𝛼∗𝑒 , 𝑥) is obtained for a particular family 𝔉𝐵5
.

Proposition 3. A necessary condition for the family 𝔉𝐵5
to be stable is

𝑙23 − 4𝑢1𝑢5 > 0 and 𝑙22 − 4𝑢0𝑢4 > 0. (18)

Proof. Assume that Δ4(𝛼) > 0 for all 𝛼 ∈ 𝐵3. The determinant

Δ4(𝛼) =

|

|

|

|

|

|

|

|

|

𝛼1 𝛼0 0 0
𝛼3 𝛼2 𝛼1 𝛼0
𝛼5 𝛼4 𝛼3 𝛼2
0 0 𝛼5 𝛼4

|

|

|

|

|

|

|

|

|

= (𝛼3𝛼4 − 𝛼2𝛼5)(𝛼1𝛼2 − 𝛼0𝛼3) − (𝛼0𝛼5 − 𝛼1𝛼4)2

is an open downwards parabola in each variable 𝛼𝑗 for 𝑗 = 0, 1,… , 5. Using a computer algebra system, it can be seen that if
the maximun value of these parabolas is positive, then

𝛼23 − 4𝛼1𝛼5 > 0 and 𝛼22 − 4𝛼0𝛼4 > 0 for all 𝛼 ∈ 𝐵3. (19)
Thus we obtain the necessary condition (18).

5 ILLUSTRATION OF RESULTS

In this section some applications of the results given in the previous section are presented. First, a family 𝔉𝐷𝑛
is taken from

the literature to corroborate the effectiveness and advantage of our approach. Followed by two example which show that these
results can also be used to obtain maximum robustness boxes 𝐵3 and 𝐵4 of polynomials of degree 3 and 4. Finally, a family 𝔉𝐵5is proposed whose extreme polynomial is not necessarily a Kharitonov’s polynomial.
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5.1 𝔉𝐷𝑛
family example

Example 1. Let 𝐷4 be the diamond with center 𝑐 = (3.49, 7.98, 6.49, 3, 1), and radius 𝑟 = 0.5, see9. Then, the family 𝔉𝐷4
is

stable if and only if the extremal polynomial 𝑓 (𝑞∗, 𝑥) = 3.49 + 7.48𝑥 + 6.49𝑥2 + 3𝑥3 + 𝑥4 is stable.
In effect, for the polynomial

𝑓 (𝑐, 𝑥) = 3.49 + 7.98𝑥 + 6.49𝑥2 + 3𝑥3 + 𝑥4 (20)
we have that

𝑄 = {𝑞1,2 = (3.49 ± 𝑟, 7.98, 6.49, 3, 1), 𝑞3,4 = (3.49, 7.98 ± 𝑟, 6.49, 3, 1),
𝑞5,6 = (3.49, 7.98, 6.49, 3 ± 𝑟, 1), 𝑞7,8 = (3.49, 7.98, 6.49, 3, 1 ± 𝑟)}.

If 𝑟 = 0.5, then by using Theorem 6 and evaluating Δ𝑜(𝛼) = min{Δ1(𝛼),Δ3(𝛼)} or Δ𝑒(𝛼) = min{Δ2(𝛼),Δ4(𝛼)} at the eight
points of 𝑄 it is verified that the extreme point is 𝑞∗ = 𝛼𝑜 = 𝛼𝑒 = 𝑞4 = (3.49, 7.48, 6.49, 3, 1), and the result follows.
On the other hand, if 𝑟 = 0.7, then the extreme points (extremal polynomials) of the family 𝔉𝐷4

are:
𝑞∗ = 𝛼𝑜 = 𝑞4 = (3.49, 7.28, 6.49, 3, 1) ⇒ 𝑓 (𝑞∗, 𝑥) = 3.49 + 7.28𝑥 + 6.49𝑥2 + 3𝑥3 + 𝑥4, and
𝑞∗ = 𝛼𝑒 = 𝑞7 = (3.49, 7.98, 6.49, 3, 1.7) ⇒ 𝑓 (𝑞∗, 𝑥) = 3.49 + 7.98𝑥 + 6.49𝑥2 + 3𝑥3 + 1.7𝑥4,

which shows that an extremal polynomial is not either unique nor fixed.
Furthermore, note that once the center 𝑐 of a diamond is chosen, determinants Δ𝑜 and Δ𝑒 depend only on the radius 𝑟. This
parameter can be increased until the stability of one of the polynomials 𝑓 (𝛼, 𝑥) with 𝛼 ∈ 𝑄 is lost. Thus we obtain a robustness
measure, which can be call 𝑟∗, of the polynomial (20). Using a numerical method, one obtains the approximation 𝑟∗ = 0.9466052.
Figure 2 shows the beaviour of the functions Δ𝑜(𝑟) and Δ𝑒(𝑟) as 𝑟 increases.

r
*

0.2 0.4 0.6 0.8 1.0
r

10

20

30

40

�o(r), �e(r)

o(r)

e(r)

Figure 2 Robustness of polynomial (20)

5.2 𝔉𝐵𝑛 families example

Example 2. Consider a polynomial of the form
𝑓 (𝑥) = −4𝑟 − (4𝑠 + 30)𝑥 + 𝑥2 + 𝑥3, (21)

where 𝑟 and 𝑠 are two parameters. Then, the maximum variation of the two previous parameters without losing stability is
𝑟 ∈

[

−
𝑢0
4
,−
𝑙0
4

]

and 𝑠 ∈
[

−
𝑢1 + 30

4
,−
𝑙1 + 30

4

]

,

where 𝑙1 > 𝑢0. In effect, applying (12) of Proposition 2, we see that polynomial (21) is stable if and only if
0 < 𝑙0 ≤ −4𝑟 ≤ 𝑢0, 0 < 𝑙1 ≤ −(4𝑠 + 30) ≤ 𝑢1, and 𝑙1 > 𝑢0.
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Note that 𝛼2 = 𝑙2 = 𝑢2 = 1, and 𝛼3 = 𝑙3 = 𝑢3 = 1. Choosing 𝑙0 = 4, 𝑢0 = 8, 𝑙1 = 10 and 𝑢1 = 50, we have
−2 ≤ 𝑟 ≤ −1, and − 20 ≤ 𝑠 ≤ −10.

Example 3. Consider a polynomial of the form
𝑓 (𝑥) = −4𝑟 − (4𝑠 + 30)𝑥 + 5𝑥2 + 𝑡𝑥3 + 𝑥4, (22)

where 𝑟, 𝑠 and 𝑡 are parameters. Then, the maximum variation of the two previous parameters without losing stability is

𝑟 ∈
[

−
𝑢0
4
,−
𝑙0
4

]

, 𝑠 ∈
[

−
𝑢1 + 30

4
,−
𝑙1 + 30

4

]

, and 𝑡 ∈

(

𝑙2 −
√

𝑑
2𝑢0

𝑢1,
𝑙2 +

√

𝑑
2𝑢0

𝑙1

)

where 𝑑 = 𝑙22−4𝑢0𝑢4 > 0. In effect, applying the result (14) of Theorem 8, we see that the polynomial (22) is stable if and only if

𝑙0 ≤ −4𝑟 ≤ 𝑢0, 𝑙1 ≤ −(4𝑠 + 30) ≤ 𝑢1, and 𝑙2 −
√

𝑑
2𝑢0

𝑢1 < 𝑙3 ≤ 𝑢3 <
𝑙2 +

√

𝑑
2𝑢0

𝑙1, (23)
where 𝑑 = 𝑙22 − 4𝑢0𝑢4 > 0. Note that 𝛼2 = 𝑙2 = 𝑢2 = 5, and 𝛼4 = 𝑙4 = 𝑢4 = 1. Choosing 𝑙0 = 1, 𝑢0 = 4, 𝑙1 = 4 and 𝑢1 = 8, we
have

−1 ≤ 𝑟 ≤ −0.25, −9.5 ≤ 𝑠 ≤ −8.5, and 2 < 𝑡 ≤ 4.

α3=0.5+2α1

α3=1.25+1.25α1

α3=1.7+0.8α1

α3=2+0.5α1

�Δ4

�α1

,-

�Δ4

�α3

>0

-

�Δ4

�α1

,

�Δ4

�α3

>0

�Δ4

�α1

,-

�Δ4

�α3

>0

-

�Δ4

�α1

,

�Δ4

�α3

>0

�Δ4

�αj

>0

�Δ4

�αj

<0

f4

f1

f3

f4

f2

f3

0.0 0.5 1.0 1.5 2.0 2.5
α1

1

2

3

4

α3

Figure 3 Sign of the partial derivatives 𝜕Δ4

𝜕𝛼1
and 𝜕Δ4

𝜕𝛼3
.

Example 4. In this example, we propose a particular case of 𝔉𝐵5
where the extremal polynomial is not a Kharitonov’s

polynomial. Consider a polynomial of the form
𝑓 (𝛼, 𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝑥5. (24)

It is clear that
min
𝛼∈𝐵4

Δ2(𝛼) = Δ2(𝑎2),

where 𝑎2 = (𝑢0, 𝑙1, 𝑙2, 𝑢3, 𝛼4, 1), and we define the polynomial
𝑓0(𝑥) = 𝑢0 + 𝑙1𝑥 + 𝑙2𝑥2 + 𝑢3𝑥3 + 𝛼4𝑥4 + 𝑥5. (25)

Now, we are going to show that the point 𝑎4 at which the determinant Δ4 attains its minimum value does not necessarily
correspond to the coefficients of a Kharitonov’s polynomial.
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Writing
Δ4(𝛼) = −𝛼24𝛼

2
1 + 𝛼2𝛼4𝛼1𝛼3 − 𝛼0𝛼4𝛼

2
3 + (2𝛼0𝛼4 − 𝛼22)𝛼1 + 𝛼0𝛼2𝛼3 − 𝛼

2
0

and using the necessary condition (19), we see that Δ4 is a hyperbola in the variables 𝛼1, and 𝛼3. Assuming that 𝛼4 = 𝛼0 = 2,
and 𝛼2 = 5, we have that

Δ4(𝛼) =
1
2

(

𝛼3 + 𝛼1 −
7
2

)2
− 9

2

(

𝛼3 − 𝛼1 −
3
2

)2
. (26)

Figure 3 shows the sign of the partial derivatives 𝜕Δ4

𝜕𝛼1
(𝛼), and 𝜕Δ4

𝜕𝛼3
(𝛼). The red lines bound the region where Δ4(𝛼) > 0. If the box

[𝑙1, 𝑢1]×[𝑙3, 𝑢3] is inside one of the six triangular regions, the symbols 𝑓1, 𝑓2, 𝑓3 and 𝑓4 indicate that in that region the minimum
value of Δ4(𝛼) is attained at the coefficients of the polynomials

𝑓1(𝑥) = 2 + 𝑙1𝑥 + 5𝑥2 + 𝑙3𝑥3 + 2𝑥4 + 𝑥5

𝑓2(𝑥) = 2 + 𝑢1𝑥 + 5𝑥2 + 𝑢3𝑥3 + 2𝑥4 + 𝑥5

𝑓3(𝑥) = 𝑓 (𝑘3, 𝑥) = 2 + 𝑢1𝑥 + 5𝑥2 + 𝑙3𝑥3 + 2𝑥4 + 𝑥5

𝑓4(𝑥) = 𝑓 (𝑘4, 𝑥) = 2 + 𝑙1𝑥 + 5𝑥2 + 𝑢3𝑥3 + 2𝑥4 + 𝑥5,

(27)

respectively. Note that 𝑓1 and 𝑓2 are not Kharitonov’s polynomials, and since 𝛼4 is fixed, 𝑓0 = 𝑓4. Thus the extremal polynomial
is one of the polynomials given in (27). For the box 𝑙1 = 2, 𝑢1 = 2.5, 𝑙3 = 1.7 + 0.8𝑢1, and 𝑢3 = 1.25 + 1.25𝑙1 the extremal
polynomial is 𝑓1 because 2.5 = Δ2(2, 𝑙1, 5, 𝑢3, 2, 1) > Δ4(2, 𝑙1, 5, 𝑙3, 2, 1) = 2.24.

6 CONCLUSIONS

In this paper a robustness analysis is presented for a class of systems whose characteristic equation is a polynomial of degree 𝑛
with real coefficients varying in a compact set 𝐴 ⊂ ℝ𝑛+1. The evidence from this study indicates that the stability of the entire
family 𝔉𝐴 can be determined by the stability of an extremal polynomial 𝑓 (𝛼∗, 𝑥), whose coefficients correspond to the coor-
dinates of an extreme point 𝛼∗ = 𝛼∗𝑜 or 𝛼∗𝑒 . Also, it is shown that this point 𝛼∗ is a point on the boundary of 𝐴. In this case
𝑓 (𝛼∗, 𝑥) comes from minimizing determinants and sometimes 𝛼∗ coincides with the coefficients of a Kharitonov’s polynomial,
then the results support the idea of having found another extremal property of Kharitonov’s polynomials. The versatility/gen-
erality of the proposed approach allows it to be oriented and applied to a family of diamond polynomials 𝔉𝐷𝑛

and a family of
interval polynomials 𝔉𝐵𝑛 for 𝑛 ≤ 5. The results confirm that in some cases the necessary and sufficient conditions to determine
stability on families of polynomials found in the literature can be relaxed/reduced, either by obtaining an extreme polynomial
or by satisfying simple inequalities. Furthermore, the study can also be used to obtain maximum robustness of a polynomial, as
depicted in Examples 1-3. Finally, in contrast to what is expected, for a family 𝔉𝐵5

is possible to obtain an extremal polynomial
which is not a Kharitonov’s polynomial.

References

1. Alfaro VM. PID controllers’ fragility. ISA transactions 2007; 46(4): 555–559.
2. Bhattacharyya SP, Keel LH. Robust control: the parametric approach. In: Elsevier. 1995 (pp. 49–52).
3. Kharitonov VL, Zhabko AP. Robust stability of time-delay systems. IEEE Transactions on Automatic Control 1994; 39(12):

2388–2397.
4. Kharitonov VL. The asymptotic stability of the equilibrium state of a family of systems of linear differential equations.

Differentsial’nye Uravneniya 1978; 14(11): 2086–2088.
5. Bartlett AC, Hollot CV, Lin H. Root locations of an entire polytope of polynomials: It suffices to check the edges.

Mathematics of Control, Signals and Systems 1988; 1(1): 61–71.
6. Hinrichsen D, Kharitonov VL. Stability of polynomials with conic uncertainty. Mathematics of Control, Signals and Systems

1995; 8(2): 97–117.



14 Guillermo Oaxaca-Adams ET AL.

7. Aguirre B, Ibarra C, Suárez R. Sufficient algebraic conditions for stability of cones of polynomials. Systems & Control
Letters 2002; 46(4): 255–263.

8. Bollepalli B, Pujara L. On the stability of a segment of polynomials. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 1994; 41(12): 898–901.

9. Barmish BR, Tempo R, Hollot CV, Kang HI. An extreme point result for robust stability of a diamond of polynomials. In:
IEEE. ; 1990: 37–38.

10. Sideris A, Barmish BR. An edge theorem for polytopes of polynomials which can drop in degree. Systems & control letters
1989; 13(3): 233–238.

11. Soh Y, Foo Y. Generalized edge theorem. Systems & control letters 1989; 12(3): 219–224.
12. Rantzer A. A finite zero exclusion principle. In: Springer. 1990 (pp. 239–245).
13. Djaferis TE. Robust control design: a polynomial approach. Springer Science & Business Media . 1995.
14. Hinrichsen D, Kharitonov VL. On convex directions for stable polynomials. Citeseer . 1994.
15. Bhattacharyya SP, Chapellat H, Keel LH. Robust Control: The Parametric Approach. Prentice Hall Information and System

Sciences; Har/Dskt edición . 1995.
16. Barmish B. Invariance of the strict Hurwitz property for polynomials with perturbed coefficients. IEEE transactions on

automatic control 1984; 29(10): 935–936.
17. Soh C, Berger C, Dabke K. On the stability properties of polynomials with perturbed coefficients. IEEE Transactions on

Automatic Control 1985; 30(10): 1033–1036.
18. Minnichelli RJ, Anagnost JJ, Desoer CA. An elementary proof of Kharitonov’s stability theorem with extensions. IEEE

Transactions on Automatic Control 1989; 34(9): 995–998.
19. Anderson B, Jury E, Mansour M. On robust Hurwitz polynomials. IEEE Transactions on Automatic Control 1987; 32(10):

909–913.
20. Chapellat H, Bhattacharyya S. A generalization of Kharitonov’s theorem; Robust stability of interval plants. IEEE

transactions on automatic control 1989; 34(3): 306–311.
21. Ho MT, Datta A, Bhattackaryya S. Design of P, PI and PID controllers for interval plants. In: . 4. IEEE. ; 1998: 2496–2501.
22. Huang YJ, Wang YJ. Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem. ISA transactions

2000; 39(4): 419–431.
23. Yang X. Some necessary conditions for Hurwitz stability. Automatica 2004; 40(3): 527–529.
24. Horn RA, Johnson CR. Matrix analysis. Cambridge university press . 2012.
25. Rahman QI, Schmeisser G. Analytic theory of polynomials. No. 26 in London Mathematical Society Monographs,Oxford

University Press . 2002.
26. Gantmacher F. The theory of matrices. Vol. IIChelsea Publishing Company, New York . 1959.
27. Bialas S. On certain properties of Hurwitz determinants of interval polynomials. Computing 1983; 30: 149–155.
28. Chapellat H, Keel LH, Bhattacharyya SP. Extremal robustness properties of multilinear interval systems. Automatica 1994;

30(6): 1037–1042.


	On Hurwitz stability for families of polynomials
	Abstract
	Introduction
	Problem statement and contribution
	Preliminary results
	Main results
	On the family FA
	On the family FDn
	On the family FBn

	Illustration of results
	FDn family example
	FBn families example

	Conclusions
	References


