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Abstract

In this paper, an adaptive anti-disturbance switching (AADS) control strategy is proposed for switched Takagi-Sugeno fuzzy

systems (ST-SFSs) subject to multi-source disturbances. The disturbances consist of two parts: the available unmodeled

disturbance and the disturbance modeled by dynamic neural network. Firstly, a novel adaptive disturbance observer is designed

to approximate the dynamic neural network modeled disturbance. Secondly, the attenuation performance from the output to

the available disturbance is analyzed by the L 2 gain index. Thirdly, a controller based on the adaptive disturbance observer

is constructed for the ST-SFS under the average dwell time switching signal limitation. Further, under the designed adaptive

disturbance observer, and the controller, a sufficient condition is established for the ST-SFS to realize multi-source disturbance

suppression (DS). Finally, a mass-spring-damping simulation example is given to verify the rationality of the established AADS

control scheme.
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Summary

In this paper, an adaptive anti-disturbance switching (AADS) control strategy is pro-
posed for switched Takagi-Sugeno fuzzy systems (ST-SFSs) subject to multi-source
disturbances. The disturbances consist of two parts: the available unmodeled dis-
turbance and the disturbance modeled by dynamic neural network. Firstly, a novel
adaptive disturbance observer is designed to approximate the dynamic neural net-
work modeled disturbance. Secondly, the attenuation performance from the output
to the available disturbance is analyzed by the 𝐿2 gain index. Thirdly, a controller
based on the adaptive disturbance observer is constructed for the ST-SFS under the
average dwell time switching signal limitation. Further, under the designed adaptive
disturbance observer, and the controller, a sufficient condition is established for the
ST-SFS to realize multi-source disturbance suppression (DS). Finally, a mass-spring-
damping simulation example is given to verify the rationality of the established
AADS control scheme.
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1 INTRODUCTION

As a kind of typical hybrid systems, switched systems are very favorable because they can describe a large number of actual
complex processes and provide relatively simple nonlinear control construction methods. Also, switched systems, described as
a set of interconnected subsystems that are activated and deactivated by control signals from external sources1, have become a
research hotspot in the field of automatic control2,3,4,5,6,7. Due to the important role in switched systems, switching rules have
attracted the attention of many scholars8,9,10,11. So far, numerous research results have been reported on various switched systems
including variable order fractional switched systems12, networked switched systems11,13, nonlinear switched systems14 and so
on.

In engineering practice, T-SFSs have been widely concerned because of their simple structure, powerful function and wide
application scenarios15. Since the fact that T-SFSs can describe complex nonlinear systems by simply weighting linear systems,
many mature theories of linear systems can be used to investigate complicated nonlinear systems16. Usually, by the virtue of the
T-SF method, one can divide a nonlinear dynamic system into a series of linear subsystems by using IF-THEN rules. Up to now, a
large number of scholars have studied T-SFSs and made some achievements. Also, numerous interesting control approaches have
been developed, such as the dynamic event-triggered security control17, the networked fault detection control18, the robust static

0Abbreviations: AADS, adaptive anti-disturbance switching; ST-SFSs, switched Takagi-Sugeno fuzzy systems; DS, disturbance suppression
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output feedback 𝐻∞ control19, the stability and stabilization control20. It is necessary to point out that in18–20, the interaction
between linear subsystems divided by IF-THEN rules is not considered. It also does not consider the case that no feasible common
matrix can be found when T-SFSs have a large number of IF-THEN rules21. Therefore, ST-SFSs which have the advantages of
both switched systems and T-SFSs have been widely concerned. To mention several, the asynchronous filtering control22, the
dissipative filtering control23, the event-triggered control issue24 and the non-fragile quantized 𝐻∞ filtering control25.

In practical industrial process and control engineering, a control system is usually encountered by many kinds of disturbances
which may seriously degrade system performance and even induce system instability. Limited by the production level and cost,
it is very difficult to change the equipment structure of the system to reduce the impact of disturbances. Fortunately, some
disturbance attenuation technologies have been developed, such as the𝐻∞ control strategy26, model-based AD control scheme27

and sliding mode technique28,29. The disturbance model-based AD control method is an attractive control strategy which has been
widely utilized in control systems including the switched systems30, LPV systems31, the T-SFSs32, etc. Compared with other
AD control methods, disturbance model-based AD control technique has been widely used in control engineering because of
its advantages in simple structure, high control precision and easy combination with other control strategies33,34. Unfortunately,
most disturbance model-based AD method can only deal with harmonic or constant disturbances, like35. Therefore, how to
describe and eliminate or reduce the influence of irregular nonlinear disturbances, especially those pre-unknown ones (e.g.,
attenuated harmonic disturbances, sawtooth wave disturbances) is a meaningful research topic.

The neural networks are powerful tools for identifying complexly high nonlinear systems due to their immediate applicability,
inherent approximation ability and parallelism36,37,38,39. In practice, dynamic neural networks also have been successfully applied
to control systems, which can capture system dynamics through the measured data40,41 in view of their ability of strong memory
and approximation. Thus, these excellent properties of dynamic neural networks have inspired researchers to approximate the
unknown external disturbance with a dynamic neural network42. Besides, compared with the conventional linearized external
disturbance models, such approximate approach is not only more accurate but also can described more kinds of disturbances
(e.g., the irregular nonlinear disturbances).

Based on the above discussions, we propose an AADS control method for ST-SFSs with multi-source disturbances. The
specific contributions are given below.

i) The introduced dynamic neural network model can approximate the irregular nonlinear disturbances which can not be
described by linearized external disturbance models used in the existing results11,30,31,32. This expands the types of disturbances
estimated by the disturbance observers.

ii) Unlike the exist ST-SFSs affected by a single disturbance in9,23,43,44, this paper studies the ST-SFSs affected by multi-
source disturbances ( the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance).
In fact, the coexistence of these two disturbances is more common for practice.

iii) An AADS control scheme is proposed for the ST-SFSs. Under the average dwell time switching strategies, an adaptive
disturbance observer and a controller are dual-designed. Accordingly, sufficient conditions are developed to drive the multi-
source DS.

Structure. This paper contains five sections. Section 2 described the system and control target . Section 3 gives the de-
sign process of the AADS control method. Examples of simulations are given in Section 4. In Section 5, the conclusions are
constructed.

The symbols discussed in this paper are provided in Table 1 and are summarized accordingly.

2 PROBLEM DESCRIPTION

2.1 System description
Consider the following ST-SFS:
IF 𝐴1

𝑖 (𝑡) is 𝐵𝑎1
𝑖 (𝑡) and ⋯ and 𝐴𝑏

𝑖 (𝑡) is 𝐵𝑎𝑏
𝑖 (𝑡), THEN

𝑥̇(𝑡) = 𝑀𝑎
𝜎(𝑡)𝑥(𝑡) +𝑁𝑎

𝜎(𝑡)[𝑢(𝑡) + c(𝑡)] + 𝑂𝜎(𝑡)c1(𝑡),

𝑧(𝑡) = 𝑃 𝑎
𝜎(𝑡)𝑥(𝑡) +𝐻𝜎(𝑡)c1(𝑡),

(1)

where 𝜎(𝑡) specifies the switching rule, 𝑖 ∈ 𝑍+ = {1, 2, 3,… , 𝑠}, 𝑠 stands for the number of subsystems, 𝐴1
𝑖 (𝑡), 𝐴

2
𝑖 (𝑡), . . . ,

𝐴𝑏
𝑖 (𝑡) denote the prerequisite variable, 𝐵1

𝑖 (𝑡), 𝐵
2
𝑖 (𝑡), . . . , 𝐵𝑏

𝑖 (𝑡) represent the fuzzy sets. 𝑏 denotes the quantity of 𝐈𝐅 − 𝐓𝐇𝐄𝐍
rule, 𝑎 ∈ {1, 2, 3,… , 𝐿}, 𝑥(𝑡) ∈ R𝐚 denotes system state, 𝑢(𝑡) ∈ R𝐛 stands for the system control input, 𝑧(𝑡) ∈ R𝐜 represents
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Table 1

Notation Meaning

R𝑛 A collection of real numbers
𝑁(𝑁+) A collection of all non-negative (positive) integers
𝐴 > 0 Positive symmetric definite matrix
𝐿2[0,∞) The space of squared integrable functions on [0,∞)
𝐼 Identity matrix
𝜈𝑚𝑎𝑥(𝐴)(𝜈𝑚𝑖𝑛(𝐴)) The maximum (minimum) eigenvalue of A
|| ∗ ||(|| ∗ ||2)(|| ∗ ||𝐹 ) Euclidean (2) (F) norm of ∗
𝑑𝑖𝑎𝑔{𝐴} A is a diagonal matrix

control output, respectively, c(𝑡) ∈ R𝐛 and c1(𝑡) ∈ R𝐝 stand for the disturbance and c(𝑡) is generated by the following neural
network system mode

𝜒̇(𝑡) = 𝐸𝜎(𝑡)𝜒(𝑡) −X∗𝛼(𝜒(𝑡)),
c(𝑡) = 𝐹𝜎(𝑡)𝜒(𝑡),

(2)

where 𝜒(𝑡) ∈ R𝐞 represents the neural network system state, 𝛼(𝑡) ∈ R𝐟 stands for the activation function of the neural network
and X∗ is the optimal weight matrix.

By the 𝐈𝐅 − 𝐓𝐇𝐄𝐍 rules, we can get the global model of the ST-SFS

𝑥̇(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡){𝑀

𝑎
𝜎(𝑡)𝑥(𝑡) +𝑁𝑎

𝜎(𝑡)[𝑢(𝑡) + c(𝑡)]} + 𝑂𝜎(𝑡)c1(𝑡),

𝑧(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)𝑃

𝑎
𝜎(𝑡)𝑥(𝑡) +𝐻𝜎(𝑡)c1(𝑡),

(3)

where

𝜌𝑎𝑖 (𝑡) = 𝜇𝑎
𝑖 (ℎ𝑖(𝑡))

/ 𝐿
∑

𝑎=1
𝜇𝑎
𝑖 (ℎ𝑖(𝑡)),

ℎ𝑖(𝑡) = [ ℎ1
𝑖 (𝑡) ℎ

2
𝑖 (𝑡) ⋯ ℎ𝑏

𝑖 (𝑡) ],
𝜇𝑎
𝑖 (ℎ𝑖(𝑡)) = Π𝑏

𝑙=1𝐵
𝑎𝑙
𝑖 (ℎ

𝑙
𝑖(𝑡)),

𝐵𝑎𝑙
𝑖 (ℎ

𝑙
𝑖(𝑡)) represents the membership function of ℎ𝑙

𝑖(𝑡) in 𝐵𝑎𝑙
𝑖 .

Therefore

𝜌𝑎𝑖 (𝑡) ≥ 0,
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡) = 1.

2.2 Observer design
To eliminate the effect of the unavailable disturbance c(𝑡), we design the following adaptive disturbance observer

ĉ(𝑡) = 𝐹𝜎(𝑡)𝜒̂(𝑡),
𝜒̂(𝑡) = 𝛽(𝑡) −𝐾0𝑥(𝑡),

𝛽̇(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡){(𝐸𝜎(𝑡) +𝐾0𝑁

𝑎
𝜎(𝑡)𝐹𝜎(𝑡))[𝛽(𝑡) −𝐾0𝑥(𝑡)] − X̂(𝑡)𝛼(𝜒̂(𝑡)) +𝐾0[𝑀𝑎

𝜎(𝑡)𝑥(𝑡) +𝑁𝑎
𝜎(𝑡)𝑢(𝑡)]}

(4)

where ĉ(𝑡) represents the estimation of c(𝑡), 𝜒̂(𝑡) stands for the observed value of the external neural network model, 𝛽(𝑡)
indicates the observer state, 𝐾0 represents the gain of the observer to be solved and X̂(𝑡) stands for the dynamically adjustable
weight.
Define the estimation error

𝑒(𝑡) = 𝜒(𝑡) − 𝜒̂(𝑡). (5)
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From (2), (4) and (5), one can infer
𝑒̇(𝑡) = 𝜒̇(𝑡) − ̇̂𝜒(𝑡)

= 𝐸𝜎(𝑡)𝜒(𝑡) −X∗𝛼(𝜒(𝑡)) − 𝛽̇(𝑡) +𝐾0𝑥̇(𝑡)

=
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)[𝐸𝜎(𝑡)𝜒(𝑡) +𝐾0𝑁

𝑎
𝜎(𝑡)c(𝑡) +𝐾0𝑂𝜎(𝑡)c1(𝑡) − (𝐸𝜎(𝑡) +𝐾0𝑁

𝑎
𝜎(𝑡)𝐹𝜎(𝑡))𝜒̂(𝑡) + X̂(𝑡)𝛼(𝜒(𝑡)) −X∗𝛼(𝜒(𝑡))].

Thus, we can get the estimation error dynamics

𝑒̇(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)(𝐸𝜎(𝑡) +𝐾0𝑁

𝑎
𝜎(𝑡)𝐹𝜎(𝑡))𝑒(𝑡) +𝐾0𝑂𝜎(𝑡)c1(𝑡) + X̂(𝑡)𝛼(𝜒̂(𝑡)) −X∗𝛼(𝜒(𝑡)). (6)

2.3 Controller design
Under the same fuzzy rule of the ST-SFS (1), we design the controller as follows

𝑢(𝑡) = 𝐾𝑎
𝜎(𝑡)𝑥(𝑡) − ĉ(𝑡)

where 𝐾𝑎
𝑖 , 𝑖 ∈ 𝑍+ represents the controller gain to be designed.

Accordingly, it is not difficult to conclude that the global model of the controller as

𝑢(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)𝐾

𝑎
𝜎(𝑡)𝑥(𝑡) − ĉ(𝑡). (7)

From (3) and (7), one has

𝑥̇(𝑡) =
𝐿
∑

𝑎=1

𝐿
∑

𝑙=1
𝜌𝑎𝑖 (𝑡)𝜌

𝑙
𝜎(𝑡)(𝑡)[(𝑀

𝑎
𝜎(𝑡) +𝑁𝑎

𝜎(𝑡)𝐾
𝑙
𝜎(𝑡))𝑥(𝑡) +𝑁𝑎

𝜎(𝑡)𝐹𝜎(𝑡)𝑒(𝑡)] + 𝑂𝜎(𝑡)c1(𝑡),

𝑧(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)𝑃

𝑎
𝜎(𝑡)𝑥(𝑡).

(8)

Combining (6) and (8), one can derive the following augmented system

𝜉̇(𝑡) =
𝐿
∑

𝑎=1

𝐿
∑

𝑙=1
𝜌𝑎𝜎(𝑡)(𝑡)𝜌

𝑙
𝜎(𝑡)(𝑡)𝑀̃

𝑎𝑙
𝜎(𝑡)𝜉(𝑡) + 𝑂̃𝜎(𝑡)c1(𝑡) + 𝑁̃[X̂(𝑡)𝛼(𝜒(𝑡)) −X∗𝛼(𝜒(𝑡))],

𝑧(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)𝑃

𝑎
𝜎(𝑡)𝜉(𝑡) + 𝐻̃𝜎(𝑡)c1(𝑡),

(9)

where
𝜉(𝑡) =

[

𝑥(𝑡)
𝑒(𝑡)

]

, 𝑂̃𝑖 =
[

𝑂𝑖
0

]

,

𝑀̃𝑎𝑙
𝑖 =

[

𝑀𝑎
𝑖 +𝑁𝑎

𝑖 𝐾
𝑙
𝑖 𝑁𝑎

𝑖 𝐹𝑖
0 𝐸𝑖 +𝐾0𝑁𝑎

𝑖 𝐹𝑖

]

,

𝑁̃ =
[

0
𝐼

]

, 𝑃 𝑎
𝑖 =

[

𝑃 𝑎
𝑖 0

]

.

2.4 Control objective
The control objective is twofold.
For the system (1) with the neural network disturbance model (2), suppose that there exist the AADS control method ensuring
the following relations:

i) When c1(𝑡) ≡ 0, the system state 𝜉(𝑡) of the augmented system (9) satisfies practically stable.
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ii) When c1(𝑡) ≠ 0, the system output 𝑧(𝑡) suggests
∞

∫
0

𝑒−𝛿p𝑧𝑇 (p)𝑧(p)𝑑p ≤ 𝛾2
∞

∫
0

c1
𝑇 (p)c1(p)𝑑p +𝜛, (10)

where 𝛾 denotes a designated positive constant as the 𝐿2-gain index, the constant 𝜛 > 0.
Then, the problem of the AADS control for the system (3) is solvable. Also, the controller (7) can solve the AADS control

strategy of the system (1). Now, the configuration of the AADS control strategy is exhibited in Fig. 1.

+

—

   +

)(td )(th

)( tx

)( tu

)(ts

)(ˆ td

Switched  T-S  fuzzy system

Adaptive disturbance observerAdaptive disturbance observer

Average dwell time switching signal

Neural network exo-systemNeural network exo-system

Actuator

)(ts

)( tx
Controller

Figure 1 Configuration of the AADS control.

A definition and an assumption are provided before forming the main result.
Definition 1. 45 For the switching signal 𝜎(𝑡) and any time 𝑡 > p > 0, 𝐻𝜎(p, 𝑡) denotes the amount of switching in the time
range (p, 𝑡), if

𝐻𝜎(p, 𝑡) ≤ 𝐻0 +
𝑡 −p

p𝑑
(11)

and p𝑑 > 0 hold, then 𝐻0 and p𝑑 are known as the chattering bound of 𝜎(𝑡) and average dwell-time, respectively.

Assumption 1. The neural network activation function 𝛼(𝜒(𝑡)) meets the following Lipschitz condition

[𝛼(𝜒(𝑡)) − 𝛼(𝜒̂(𝑡))]𝑇 [𝛼(𝜒(𝑡)) − 𝛼(𝜒̂(𝑡))] ≤ 𝑒𝑇 (𝑡)𝑈𝑇
𝑒 𝑈𝑒𝑒(𝑡)

where 𝑈𝑒 stands for a given matrix.

3 MAIN RESULTS

In this section, we first focus on how to obtain the stability and multi-source DS performance of system (1) by designing the
AADS control strategy. Then, the sufficient conditions are given to ensure the adaptive disturbance observer, switching rule,
adaptive law and controller can solve the AADS control issue of the system (1).

First, the following theorem will discuss the bound of X̂(𝑡) and give the corresponding adaptive adjustment dynamics.

Theorem 1. Consider the adaptive disturbance observer (4). For the pre-arranged constant 𝑛 > 0, if there exists the matrix
𝑌2 > 0 forcing

̇̂
X(𝑡) = 𝑛𝑌2𝜒̂(𝑡)𝛼𝑇 (𝜒̂(𝑡)) − ‖𝜒̂(𝑡)‖ X̂(𝑡), (12)
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then X̂(𝑡) ∈ ΣX̂ and X̂(𝑡) ∈ 𝐿∞, where X̂(0) ∈ ΣX̂ = {X̂ ∶ ‖

‖

‖

X̂(𝑡)‖‖
‖𝐹

≤ 𝑛
√

𝑛𝜁 ‖‖𝑌2‖‖}.

Proof. Choose the following Lyapunov function

𝑉1(𝑡) =
1
2
𝑡𝑟{X̂𝑇 (𝑡)𝑛−1X̂(𝑡)}. (13)

Taking the derivative of (13), one can get

𝑉̇1(𝑡) = 𝑡𝑟{𝛼𝑇 (𝜒̂(𝑡))𝜒̂𝑇 (𝑡)𝑌2X̂(𝑡)} − 𝑛−1 ‖𝜒̂(𝑡)‖ ‖‖
‖

X̂(𝑡)‖‖
‖

2

𝐹

= ‖

‖

‖

𝜒̂𝑇 (𝑡)𝑌2X̂(𝑡)𝛼𝑇 (𝜒̂(𝑡))‖‖
‖

− 𝑛−1 ‖𝜒̂(𝑡)‖ ‖‖
‖

X̂(𝑡)‖‖
‖

2

𝐹
.

Inspired by36 and46, we choose the neural network activation function

𝛼(𝜒(𝑡)) = [ 1
1+𝑒−𝑛1𝜒1

, ⋯ , 1
1+𝑒

−𝑛1𝜒𝑛𝜒−1 , 1 ]𝑇 , (14)
where 𝑛1 > 0 is a constant. The middle term of the activation function is

1
1 + 𝑒−𝑛1𝜒𝑘

,

𝑘 ∈ {1, 2, 3,… , 𝑛𝜒 − 1}.
Thus, it is easy to verify that

1
1 + 𝑒−𝑛1𝜒𝑘

≤ 1.

Then, we can deduce that ‖𝛼(𝜒(𝑡))‖ ≤ √

𝑛𝜒 and rewrite equation (14) to get

𝑉̇1(𝑡) ≤
√

𝑛𝜒
‖

‖

‖

𝜒̂𝑇 (𝑡)‖‖
‖

‖

‖

𝑌2‖‖
‖

‖

‖

X̂(𝑡)‖‖
‖𝐹

− 𝑛−1 ‖𝜒̂(𝑡)‖ ‖‖
‖

X̂(𝑡)‖‖
‖

2

𝐹

= ‖𝜒̂(𝑡)‖ ‖‖
‖

X̂(𝑡)‖‖
‖𝐹

(
√

𝑛𝜒 ‖‖𝑌2‖‖ − 𝑛−1‖‖
‖

X̂(𝑡)‖‖
‖𝐹

).
(15)

This means that if
‖

‖

‖

X̂(𝑡)‖‖
‖𝐹

> 𝑛
√

𝑛𝜒 ‖‖𝑌2‖‖ ,

then 𝑉̇1(𝑡) ≤ 0.
Thus, if X(0) ∈ 𝛼X̂, then one have X(𝑡) ∈ 𝛼X̂ and X̂(𝑡) ∈ 𝐿∞.

Remark 1. Theorem 1 offers the adaptive law of the dynamic adjustable weight matrix X̂(𝑡) in the adaptive disturbance observe
(4).

Next, the stability and 𝐿2 performance of the augmented system (9) will be analyzed.

Theorem 2. Recall the system (9). If we have the matrices 𝑌1𝑖 > 0, 𝑌2 > 0, 𝐾 𝑙
𝑖 , 𝐾0, X̄, 𝑈𝑒, and the positive scalars

𝛿0, 𝛿, 𝑛, 𝑛𝜒 , 𝜇2, 𝜇3, scalars 𝜇̄ ≥ 1 and 𝜒𝑖𝑗 ≤ 0 satisfy the following constraints

⎡

⎢

⎢

⎣

Ω𝑖𝑎𝑙
11 Ω𝑖

12 Ω𝑖𝑎
13

∗ Ω𝑖𝑎
22 0

∗ ∗ Ω𝑖
33

⎤

⎥

⎥

⎦

< 0, (16)

𝑌1𝑖 ≤ 𝜇̄𝑌1𝑗 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑍+, (17)
where

Ω𝑖𝑎𝑙
11 = 𝑠𝑦𝑚(𝑌1𝑖𝑀𝑎

𝑖 + 𝑌1𝑖𝑁
𝑎
𝑖 𝐾

𝑙
𝑖 ) + 2𝛿0𝑌1𝑖 + 𝑃 𝑎

𝑖
𝑇𝑃 𝑎

𝑖 ,
Ω𝑖

12 = 𝑌1𝑖𝑁
𝑎
𝑖 𝐹𝑖,

Ω𝑖𝑎
13 = 𝑌1𝑖𝑂𝑖 + 𝑃 𝑎

𝑖
𝑇𝐻𝑖,

Ω𝑖𝑎
22 = 𝑠𝑦𝑚(𝑌2𝐸𝑖 + 𝑌2𝐾0𝑁

𝑎
𝑖 𝐹𝑖) + 𝜇−2

2 𝑌2𝐾0𝑂𝑖𝑂
𝑇
𝑖 𝐾

𝑇
0 𝑌2 + 𝑌2X̄𝑌2

+ 𝑈𝑇
𝑒 𝑈𝑒 + 𝜇−2

3 𝐼 + 2𝛿0𝑌2 + (𝑛−1 + 1)𝐼,
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Ω𝑖
33 = 𝜇2

2𝐼 +𝐻𝑇
𝑖 𝐻𝑖 − 𝛿𝐼,

Ξ𝑖
11 = −𝜆2𝑖 𝐼 +

𝑍+
∑

𝑗=1,𝑗≠𝑖
𝜒𝑖𝑗(𝑌1𝑖 − 𝑌1𝑗),

Ξ𝑖𝑎
12 = (𝐾𝑎

𝑖 −𝐾𝑎∗)𝑇 ,
Ξ𝑖𝑙
13 = (𝐾 𝑙

𝑖 −𝐾 𝑙∗)𝑇 ,
then, under the average dell-time switching regulation

p𝑑 > p∗
𝑑 =

ln 𝜇̄
𝛿

, 𝛿 ∈ (0, 𝛿0), (18)

the state 𝑥(𝑡) of the system (3) and the observer estimation 𝑒(𝑡) of the observer (6) are ensured to converge into a compact set
𝐩(𝜉) defined by

𝐩(𝜉) = {𝜉(𝑡) ∶ ‖𝜉(𝑡)‖ ≤ max
𝑖∈𝑍+

{
√

𝑝
2𝛿0𝜈min(𝑌𝑖)

}}.

Proof. For the 𝑖-th subsystem, the following Lyapunov function is selected

Ψ𝑖(𝑡) = Ψ1𝑖(𝑡) + Ψ2(𝑡)

with
Ψ1𝑖(𝑡) = 𝑥𝑇 (𝑡)𝑌1𝑖𝑥(𝑡),
Ψ2(𝑡) = 𝑒𝑇 (𝑡)𝑌2𝑒(𝑡) + 𝑡𝑟{X̃𝑇 (𝑡)𝑛−1X̃(𝑡)}.

(19)

From (19), one can deduce

Ψ̇1𝑖(𝑡) =
𝐿
∑

𝑎=1

𝐿
∑

𝑙=1
𝜌𝑎𝑖 (𝑡)𝜌

𝑙
𝑖(𝑡)[𝑥

𝑇 (𝑡)𝑠𝑦𝑚(𝑌1𝑖𝑀𝑎
𝑖 + 𝑌1𝑖𝑁

𝑎
𝑖 𝐾

𝑙
𝑖 )𝑥(𝑡) + 2𝑥𝑇 (𝑡)𝑌1𝑖𝑁𝑎

𝑖 𝐹𝑖𝑒(𝑡)]

+ 2𝑥𝑇 (𝑡)𝑌1𝑖𝑂𝑖c1(𝑡)

≤
𝐿
∑

𝑎=1

𝐿
∑

𝑙=1
𝜌𝑎𝑖 (𝑡)𝜌

𝑙
𝑖(𝑡)[𝑥

𝑇 (𝑡)𝑠𝑦𝑚(𝑌1𝑖𝑀𝑎
𝑖 + 𝑌1𝑖𝑁

𝑎
𝑖 𝐾

𝑙
𝑖 )𝑥(𝑡) + 2𝑥𝑇 (𝑡)𝑌1𝑖𝑁𝑎

𝑖 𝐹𝑖𝑒(𝑡)]

+ 𝜇2
1c1

𝑇 (𝑡)c1(𝑡) + 𝜇−2
1 𝑥𝑇 (𝑡)𝑌1𝑖𝑂𝑖𝑂

𝑇
𝑖 𝑌1𝑖𝑥(𝑡).

(20)

If the adaptive rule is taken in the way of (12), one can get

Ψ̇2(𝑡) =
𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)[𝑒

𝑇 (𝑡)𝑠𝑦𝑚(𝑌2𝐸𝑖 + 𝑌2𝐾0𝑁
𝑎
𝑖 𝐹 )𝑒(𝑡)] + 2𝑒𝑇 (𝑡)𝑌2𝐾0𝑂𝑖c1(𝑡) + 2𝑒𝑇 (𝑡)𝑌2X̃(𝑡)𝛼(𝜒̂(𝑡))

+ 2𝑒𝑇 (𝑡)𝑌2X∗[𝛼(𝜒̂(𝑡)) − 𝛼(𝜒(𝑡))] + 2𝑡𝑟{ ̇̃X(𝑡)𝑛−1X̃(𝑡)}

≤
𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)[𝑒

𝑇 (𝑡)𝑠𝑦𝑚(𝑌2𝐸𝑖 + 𝑌2𝐾0𝑁
𝑎
𝑖 𝐹 )𝑒(𝑡)] + 𝜇2

2c1
𝑇 (𝑡)c1(𝑡) + 𝜇−2

2 𝑒𝑇 (𝑡)𝑌2𝐾0𝑂𝑖𝑂
𝑇
𝑖 𝐾

𝑇
0 𝑌 𝑒(𝑡)

+ 𝑒𝑇 (𝑡)𝑈𝑇
𝑒 𝑈𝑒𝑒(𝑡) + 2𝜒𝑇 (𝑡)𝑌2X̃(𝑡)𝛼(𝜒̂(𝑡)) − 2𝜒̂𝑇 (𝑡)𝑌2X̃(𝑡)𝛼(𝜒̂(𝑡)) + 2𝑡𝑟{ ̇̃X(𝑡)𝑛−1X̃(𝑡)}

≤
𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)[𝑒

𝑇 (𝑡)𝑠𝑦𝑚(𝑌2𝐸𝑖 + 𝑌2𝐾0𝑁
𝑎
𝑖 𝐹 )𝑒(𝑡)] + 𝜇2

2c1
𝑇 (𝑡)c1(𝑡) + 𝜇−2

2 𝑒𝑇 (𝑡)𝑌2𝐾0𝑂𝑖𝑂
𝑇
𝑖 𝐾

𝑇
0 𝑌 𝑒(𝑡)

+ 𝑒𝑇 (𝑡)𝑈𝑇
𝑒 𝑈𝑒𝑒(𝑡) + 2𝜒𝑇 (𝑡)𝑌2X̃(𝑡)𝛼(𝜒̂(𝑡)) + 2‖𝜒̂(𝑡)‖𝑡𝑟{X̃(𝑡)𝑛−1X̂(𝑡)}.

It follows from Theorem 1 that
2‖𝜒̂(𝑡)‖𝑡𝑟{X̃(𝑡)𝑛−1X̂(𝑡) ≥ ‖X̃(𝑡)‖2𝐹 − ‖X∗

‖

2
𝐹 , (21)

2𝜒𝑇 (𝑡)𝑌2X̃(𝑡)𝛼(𝜒̂(𝑡))

≤
√

2𝑛𝜒 ‖𝜒(𝑡)‖ ‖‖𝑌2‖‖ ‖‖X̃(𝑡)‖
‖

2
𝐹 ‖X∗

‖

2
𝐹

≤

√

2𝑛𝜂𝑛𝜒
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
‖

‖

𝑌2‖‖ (𝑛
√

𝑛𝜒 +
√

𝑡𝑟{X̄}),

(22)
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and
2 ‖𝜒̂(𝑡)‖ ‖X∗

‖

2
𝐹 ≤ 2 ‖𝜒(𝑡)‖ ‖X∗

‖

2
𝐹 + 2 ‖𝑒(𝑡)‖ ‖X∗

‖

2
𝐹

≤ 𝜇−2
3 𝑒𝑇 (𝑡)𝑒(𝑡) +

√

4𝑛𝜂
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
𝑡𝑟{X̄} + 𝜇2

3(𝑡𝑟{X̄})2,
(23)

where X̄ ≥ X∗𝑇X∗ is the positive upper bound of X∗.
Combing (21), (22) and (23) yields

Ψ̇2(𝑡) ≤
𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)[𝑒

𝑇 (𝑡)𝑠𝑦𝑚(𝑌2𝐸𝑖 + 𝑌2𝐾0𝑁
𝑎
𝑖 𝐹 )𝑒(𝑡)] + 𝜇−2

3 𝑒𝑇 (𝑡)𝑒(𝑡)

+ 𝜇2
2c1

𝑇 (𝑡)c1(𝑡) + 𝜇−2
2 𝑒𝑇 (𝑡)𝑌2𝐾0𝑂𝑖𝑂

𝑇
𝑖 𝐾

𝑇
0 𝑌 𝑒(𝑡) + 𝑒𝑇 (𝑡)𝑈𝑇

𝑒 𝑈𝑒𝑒(𝑡) + 𝑒𝑇 (𝑡)𝑌2X̄𝑌2𝑒(𝑡)

+

√

4𝑛𝜂
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
𝑡𝑟{X̄} + 𝜇2

3(𝑡𝑟{X̄})2 +

√

2𝑛𝜂𝑛𝜒
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
‖

‖

𝑌2‖‖ (𝑛
√

𝑛𝜒 +
√

𝑡𝑟{X̄}).

(24)

By means of (20), (24), we can get
Ψ̇1𝑖(𝑡) + Ψ̇2(𝑡) + 2𝛿0(Ψ1𝑖(𝑡) + Ψ2(𝑡)) + 𝑧𝑇 (𝑡)𝑧(𝑡) − 𝛿c1

𝑇 (𝑡)c1(𝑡)

≤
𝐿
∑

𝑎=1

𝐿
∑

𝑙=1
𝜌𝑎𝑖 (𝑡)𝜌

𝑙
𝑖(𝑡)[𝑥

𝑇 (𝑡)𝑠𝑦𝑚(𝑌1𝑖𝑀𝑎
𝑖 + 𝑌1𝑖𝑁

𝑎
𝑖 𝐾

𝑙
𝑖 )𝑥(𝑡) + 2𝑥𝑇 (𝑡)𝑌1𝑖𝑁𝑎

𝑖 𝐹𝑖𝑒(𝑡)]

+ 𝜇2
1c1

𝑇 (𝑡)c1(𝑡) + 𝜇−2
1 𝑥𝑇 (𝑡)𝑌1𝑖𝑂𝑖𝑂

𝑇
𝑖 𝑌1𝑖𝑥(𝑡) +

𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)[𝑒

𝑇 (𝑡)𝑠𝑦𝑚(𝑌2𝐸𝑖 + 𝑌2𝐾0𝑁
𝑎
𝑖 𝐹 )𝑒(𝑡)]

+ 𝜇2
2c1

𝑇 (𝑡)c1(𝑡) + 𝜇−2
2 𝑒𝑇 (𝑡)𝑌2𝐾0𝑂𝑖𝑂

𝑇
𝑖 𝐾

𝑇
0 𝑌 𝑒(𝑡) + 𝑒𝑇 (𝑡)𝑈𝑇

𝑒 𝑈𝑒𝑒(𝑡) + 𝑒𝑇 (𝑡)𝑌2X̄𝑌2𝑒(𝑡)

+ 𝜇−2
3 𝑒𝑇 (𝑡)𝑒(𝑡) + 2𝛿0𝑡𝑟{X̃(𝑡)𝑛−1X̃(𝑡)} +

√

4𝑛𝜂
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
𝑡𝑟{X̄} + 𝜇2

3(𝑡𝑟{X̄})2

+

√

2𝑛𝜂𝑛𝜒
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
‖

‖

𝑌2‖‖ (𝑛
√

𝑛𝜒 +
√

𝑡𝑟{X̄}) + 2𝛿0𝑥𝑇 (𝑡)𝑌1𝑖𝑥(𝑡) + 2𝛿0𝑒𝑇 (𝑡)𝑌2𝑒(𝑡)

+ c1
𝑇 (𝑡)𝐻𝑇

𝑖 𝐻𝑖c1(𝑡) + 𝑥𝑇 (𝑡)
𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)𝑃

𝑎
𝑖
𝑇𝑃 𝑎

𝑖 𝑥(𝑡) + 2𝑥𝑇 (𝑡)
𝐿
∑

𝑎=1
𝜌𝑎𝑖 (𝑡)𝑃

𝑎
𝑖
𝑇𝐻𝑖c1(𝑡) − 𝛿c1

𝑇 (𝑡)c1(𝑡)

=
⎡

⎢

⎢

⎣

𝑥(𝑡)
𝑒(𝑡)
c1(𝑡)

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

Ω𝑖𝑎𝑙
11 Ω𝑖

12 Ω𝑖𝑎
13

∗ Ω𝑖𝑎
22 0

∗ ∗ Ω33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥(𝑡)
𝑒(𝑡)
c1(𝑡)

⎤

⎥

⎥

⎦

+ 𝑝,

where

𝑝 =

√

4𝑛𝜂
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
𝑡𝑟{X̄} + 𝜇2

3(𝑡𝑟{X̄})2 +

√

2𝑛𝜂𝑛𝜒
𝜐min(𝐹 𝑇

𝑖 𝐹𝑖)
‖

‖

𝑌2‖‖ (𝑛
√

𝑛𝜒 +
√

𝑡𝑟{X̄}) + 8𝛿0
√

𝑛𝜒‖𝑌2‖.

From (13), we can infer

Ψ̇1𝑖(𝑡) + Ψ̇2(𝑡) + 2𝛿0(Ψ1𝑖(𝑡) + Ψ2(𝑡)) + 𝑧𝑇 (𝑡)𝑧(𝑡) − 𝛿c1
𝑇 (𝑡)c1(𝑡) ≤ 𝑝. (25)

When c1(𝑡) = 0, it is straightforward to deduce that

Ψ̇1𝑖(𝑡) + Ψ̇2(𝑡) ≤ 2𝛿0(Ψ1𝑖(𝑡) + Ψ2(𝑡)) + 𝑝. (26)

According to (17), one can obtain
Ψ1𝑖(𝑡) ≤ 𝜇̄Ψ1𝑗(𝑡). (27)

Applying (26) and (27) generates that

Ψ1𝑖(𝑡) + Ψ2(𝑡) ≤ 𝜇̄𝐻𝜎 (0,𝑡)𝑒−2𝛿0𝑡[Ψ1𝑖(0) + Ψ2(0)] +
𝑝
2𝛿0

(1 − 𝑒−2𝛿0𝑡)

= 𝑒𝐻𝜎 (0,𝑡) ln 𝜇̄−2𝛿0𝑡[Ψ1𝑖(0) + Ψ2(0)] +
𝑝
2𝛿0

(1 − 𝑒−2𝛿0𝑡).
(28)
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Further, it follows from (11) and 𝐻𝜎(0, 𝑡) ≤ 𝑡
/

p∗
𝑑 that

𝐻𝜎(0,p) ln 𝜇̄ ≤ 𝛿𝑡. (29)

Thus, one can deduce
Ψ1𝑖(𝑡) + Ψ2(𝑡) ≤ 𝑒−(2𝛿0−𝛿)𝑡[Ψ1𝑖(0) + Ψ2(0)] +

𝑝
2𝛿0

(1 − 𝑒−2𝛿0𝑡). (30)

This means that the state 𝜉(𝑡) of the system (9) can be guaranteed to converge into the following region

𝐩(𝜉) = max
𝑖∈𝑍+

{𝜉(𝑡) ∈ R𝐦+c1 ∶ 𝜉𝑇 (𝑡)𝑌𝑖𝜉(𝑡) ≤
𝑝
2𝛿0

},

where 𝑌𝑖 = 𝑑𝑖𝑎𝑔{𝑌1𝑖, 𝑌2}.
When ℎ1(𝑡) ≠ 0, from (25) and (27), we deduce

Ψ1𝑖(𝑡) + Ψ2(𝑡)

≤ [Ψ1𝑖𝑥(𝑡𝐻𝜎 (0,𝑡)) + Ψ2(𝑡𝐻𝜎 (0,𝑡), 𝑡)]𝑒
−𝛿0(2𝑡−𝐻𝜎 (0,𝑡)) +

𝑡

∫
𝑡𝐻𝜎 (0,𝑡)

𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p

≤ 𝜇̄[Ψ1𝑖(𝑥(𝑡−𝐻𝜎 (0,𝑡)
) + Ψ2(𝑡−𝐻𝜎 (0,𝑡)

)]𝑒−𝛿0(2𝑡−𝑡𝐻𝜎 (0,𝑡)) +

𝑡

∫
𝑡𝐻𝜎 (0,𝑡)

𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p

≤ 𝜇̄{Ψ1𝑖(𝑥(𝑡𝐻𝜎 (0,𝑡)−1) + Ψ2(𝑡𝐻𝜕(0,𝑡)−1)]𝑒
−𝛿0(2𝑡𝐻𝜎 (0,𝑡)−𝑡𝐻𝜎 (0,𝑡)−1)

+

𝑡𝐻𝜎 (0,𝑡)

∫
𝑡𝐻𝜎 (0,𝑡)−1

𝑒−𝛿0(2𝑡𝐻𝜎 (0,𝑡)−p)Γ(p)𝑑p}𝑒−𝛿0(𝑡−2𝑡𝐻𝜎 (0,𝑡)) +

𝑡

∫
𝑡𝐻𝜎 (0,𝑡)

𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p

≤ ⋯⋯

≤ 𝜇̄𝐻𝜕(0,𝑡)𝑒−𝛿0(2𝑡−𝑡0)[Ψ1𝑖(0) + Ψ2(0)] + 𝜇̄𝐻𝜎 (0,𝑡)

𝑡1

∫
𝑡0

𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p

+ 𝜇̄𝐻𝜎 (0,𝑡)−1

𝑡2

∫
𝑡1

𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p +⋯ + 𝜇̄0

𝑡

∫
𝑡Hσ(0,t)

𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p

= 𝜇̄𝐻𝜎 (𝑡0,𝑡)𝑒−𝛿0(2𝑡−𝑡0)[Ψ1𝑖(0) + Ψ2(0)] +

𝑡

∫
𝑡0

𝜇̄𝐻𝜎 (p,𝑡)𝑒−𝛿0(2𝑡−p)Γ(p)𝑑p

= 𝑒−𝛿0(2𝑡−𝑡0)+𝐻𝜎 (𝑡0,𝑡) ln 𝜇̄[Ψ1𝑖(0) + Ψ2(0)] +

𝑡

∫
𝑡0

𝑒−𝛿0(2𝑡−p)+𝐻𝜎 (p,𝑡) ln 𝜇̄Γ(p)𝑑p,

(31)

where Γ(p) = −𝑧𝑇 (p)𝑧(p) + 𝛾2c1
𝑇 (p)c1(p) + 𝑝.

Multiplying two sides of (31) by 𝑒−𝐻𝜎 (0,𝑡) ln 𝜇̄, we can deduce
𝑡

∫
0

𝑒−𝛿0(𝑡−p)−𝐻𝜎 (0,p) ln 𝜇̄(−𝑝)𝑑p ≤ 𝑒−𝛿0(2𝑡−𝑡0)[Ψ1𝑖(0) + Ψ2(0)] + 𝛾2
𝑡

∫
0

𝑒−𝛿0(2𝑡−p)c1
𝑇 (p)c1(p)𝑑p. (32)

By means of (29), one can get
𝑡

∫
0

𝑒−𝛿0(2𝑡−p)−𝛿p(𝑧𝑇 (p)𝑧(p) − 𝑝)𝑑p ≤ 𝛾2
𝑡

∫
0

𝑒−𝛿0(2𝑡−p)[c1
𝑇 (p)c1(p)]𝑑p + 𝑒−2𝛿0𝑡[Ψ1𝑖(0) + Ψ2(0)]. (33)
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Integrating (33) from 𝑡 ∶ 0 → ∞ on both sides yields
∞

∫
0

𝑒−𝛿p𝑧𝑇 (p)𝑧(p)𝑑p ≤ 𝛾2
∞

∫
0

c1
𝑇 (p)c1(p)𝑑p +𝜛,

where 𝜛 ≥ 𝑝
𝛿0
+Ψ1𝑖(0) + Ψ2(0) is a positive constant. Therefore, we can easily deduce the 𝐿2-gain property (10) when 𝑡 → ∞.

Remark 2. Theorem 2 establishes the sufficient condition through which the issue of AADS control issue for the system (1) is
solvable. If the disturbance c1(𝑡) ≡ 0, we can obtain from Theorem 2 that the ST-SFS (1) is practical stable, while if c1(𝑡) ≠ 0,
the 𝐿2-gain property (10) can be easily deduced when 𝑡 → ∞.

Further, the construction process of the controller (7) and observer (4) will be provided.

Theorem 3. Consider the system (9). Assume that matrices 𝑌1𝑖 > 0, 𝑌2 > 0,Λ𝑙
𝑖,Λ, 𝐾0, X̄,𝑈𝑒 and the positive scalars 𝛿0, 𝛿, 𝜇2, 𝜇3

can be searched to satisfy the following constraints

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δ𝑖𝑎𝑙
11 Δ𝑖𝑎

12 Δ𝑖𝑎
13 0 0 𝑌1𝑖𝑃 𝑎

𝑖
𝑇

∗ Δ𝑖𝑎
22 0 𝑌2 Λ𝑂𝑖 0

∗ ∗ Δ𝑖
33 0 0 0

∗ ∗ ∗ −X̄−1𝐼 0 0
∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ −𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (34)

𝑌1𝑖 ≤ 𝜇̄𝑌1𝑗 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑍+, (35)
where

Δ𝑖𝑎𝑙
11 = 𝑠𝑦𝑚(𝑌1𝑖𝑀𝑎

𝑖
𝑇 +𝑁𝑎

𝑖 Λ
𝑙
𝑖) + 2𝛿0𝑌1𝑖,

Δ𝑖𝑎
12 = 𝑁𝑎

𝑖 𝐹𝑖,
Δ𝑖𝑎

13 = 𝑂𝑖 + 𝑌1𝑖𝑃
𝑎
𝑖
𝑇𝐻𝑖,

Δ𝑖𝑎
22 = 𝑠𝑦𝑚(𝐸𝑇

𝑖 𝑌2 + 𝐹 𝑇
𝑖 𝑁

𝑎
𝑖
𝑇Λ𝑇 ) + 𝑈𝑇

𝑒 𝑈𝑒 + 𝜇−2
3 𝐼 + 2𝛿0𝑌2 + (𝑛−1 + 1)𝐼,

Δ𝑖
33 = 𝜇2

3𝐼 +𝐻𝑇
𝑖 𝐻𝑖 − 𝛿𝐼,

then, we can claim that the observe (4) and the controller (7) can deal with AADS control problem for the system (1). Further,
the gains can be formulated by 𝐾 𝑙

𝑖 = Λ𝑙
𝑖𝑌

−1
1𝑖 and 𝐾0 = 𝑌 −1

2 Λ, 𝑖 ∈ 𝑍+.

Proof. Pre- and post-multiplying (16) by 𝑑𝑖𝑎𝑔{𝑌 −1
1𝑖 , 𝐼} generates

⎡

⎢

⎢

⎣

Ω̄𝑖𝑎𝑙
11 Ω̄𝑖

12 Ω̄𝑖𝑎
13

∗ Ω𝑖𝑎
22 0

∗ ∗ Ω𝑖
33

⎤

⎥

⎥

⎦

< 0, (36)

where
Ω̄𝑖𝑎𝑙

11 = 𝑠𝑦𝑚(𝑀𝑎
𝑖 𝑌

−1
1𝑖 +𝑁𝑎

𝑖 𝐾
𝑙
𝑖𝑌

−1
1𝑖 ) + 2𝛿0𝑌 −1

1𝑖 + 𝑌 −1
1𝑖 𝑃 𝑎

𝑖
𝑇𝑃 𝑎

𝑖 𝑌
−1
1𝑖 ,

Ω̄𝑖
12 = 𝑁𝑎

𝑖 𝐹𝑖,
Ω̄𝑖𝑎

13 = 𝑂𝑖 + 𝑌 −1
1𝑖 𝑃 𝑎

𝑖
𝑇𝐻𝑖.

Defining 𝑌1𝑖 = 𝑌 −1
1𝑖 ,Λ𝑙

𝑎 = 𝑌1𝑖𝐾 𝑙
𝑖
𝑇 ,Λ = 𝑌2𝐾0 and adopting Complement Lemma to (36), one can derive

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Δ𝑖𝑎𝑙
11 Δ𝑖𝑎

12 Δ𝑖𝑎
13 0 0

∗ Δ𝑖𝑎
22 0 𝑌2 Λ𝑂𝑖

∗ ∗ Δ𝑖
33 0 0

∗ ∗ ∗ −X̄−1𝐼 0
∗ ∗ ∗ ∗ −𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (37)

where
Δ̄𝑖𝑎𝑙

11 = 𝑠𝑦𝑚(𝑌1𝑖𝑀𝑎
𝑖
𝑇 + Λ𝑙

𝑖𝑁
𝑎
𝑖 ) + 2𝛿0𝑌1𝑖 + 𝑌1𝑖𝑃

𝑎
𝑖
𝑇𝑃 𝑎

𝑖 𝑌1𝑖,
Adopting Schur complement lemma again to (37) produces (34).
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4 VERIFICATION

To demonstrate the validity of the designed AADS control strategy, a mass-spring-damping case study depicted as in Fig. 2 is
given for simulation research.

( )d t

( )fd t

( )sd t
( )f t

Figure 2 Schematic diagram of the mass-spring-damper model.

Similar to47 and48, we give the following mass-spring-damping dynamics
𝑚𝑓 (𝑡) + 𝑑𝑓 (𝑡) + 𝑑𝑠(𝑡) = 𝑠(𝑡),

𝑑𝑓 (𝑡) = 𝑝1 ̇𝑓 (𝑡)3,
𝑑𝑠(𝑡) = 𝑝2𝑓 (𝑡) + 𝑝3𝑓 (𝑡)3,

(38)

where 𝑚 > 0, 𝑝𝑙 > 0 with 𝑙 ∈ {1, 2, 3}. The notations in the mass-spring-damping model (38) are listed as follows Given the

Notation Meaning

𝑚 Mass quality
𝑓 (𝑡) Mass displacement
𝑠(𝑡) Spring pushing force
𝑑𝑓 (𝑡) The friction of the damper
𝑑𝑠(𝑡) The restoring force of the spring

constants value
𝑚 = 1, 𝑝1 = 0.2, 𝑝2 = 0.03, 𝑝3 = 0.56.

Then, one can deduce that
𝑓 (𝑡) = −0.56𝑓 (𝑡)3 − 0.2 ̇𝑓 (𝑡)3 − 0.03𝑓 (𝑡) + 𝑠(𝑡).

Choose
[

Δ𝜋𝑇 (𝑡) Δ𝜛𝑇 (𝑡)
]𝑇 =

[

𝑓 𝑇 (𝑡) ̇𝑓 𝑇 (𝑡)
]𝑇 , 𝑢(𝑡) = 𝑠(𝑡),

thus, one can deduce
[

Δ𝜋̇(𝑡)
Δ𝜛̇(𝑡)

]

=
[

𝜛(𝑡)
−0.2𝜛3(𝑡) − 0.03𝜋(𝑡) − 0.56𝜋3(𝑡) + 𝑢(𝑡)

]

.

Notice that −0.2𝜛3(𝑡) and −0.56𝜋3(𝑡) are nonlinear terms which fulfill the requirements
[

Δ𝜋𝑇 (𝑡) Δ𝜛𝑇 (𝑡)
]𝑇 ∈ [−1.5, 1.5],

[

Δ𝜋̇𝑇 (𝑡) Δ𝜛̇𝑇 (𝑡)
]𝑇 ∈ [−1.5, 1.5].

Defining
𝜗 =

[

Δ𝜋𝑇 (𝑡) Δ𝜛𝑇 (𝑡)
]𝑇
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and using the upper and lower bounds to represent the nonlinear terms −0.2𝜛3(𝑡) and −0.56𝜋3(𝑡) yields
−0.56𝜗3(𝑡) = ℎ1

1(𝑡) ∗ 0 ∗ 𝜗(𝑡) − (1 − ℎ1
1(𝑡)) ∗ 1.5075𝜗(𝑡),

−0.2𝜗̇3(𝑡) = ℎ1
2(𝑡) ∗ 0 ∗ 𝜗̇(𝑡) − (1 − ℎ1

2(𝑡)) ∗ 0.224𝜗̇(𝑡).
Thus, we can deduce that

ℎ1
1(𝑡) = −𝜗2(𝑡)∕g + 1, ℎ1

2(𝑡) = −𝜗̇2(𝑡)∕g + 1,
𝑧21(𝑡) = 𝜗2(𝑡)∕g, ℎ2

2(𝑡) = 𝜗̇2(𝑡)∕g,g = 2.25.
When the nonlinear terms −0.2𝜛3(𝑡) and −0.56𝜋3(𝑡) reach the maximum or minimum value the switch occurs. Thus, the
membership function is chosen as follows

𝜌11(𝑡) = 𝜌12(𝑡) =
ℎ1(𝑡)[1 − ℎ1(𝑡)]

ℎ1(𝑡)[1 − ℎ1(𝑡)] + ℎ2(𝑡)[1 − ℎ2(𝑡)]
,

𝜌21(𝑡) = 𝜌22(𝑡) = 1 − 𝜌11(𝑡).
(39)

Under the membership function (39), mass-spring-damping system (38) is represented by
[

Δ𝜋̇(𝑡)
Δ𝜛̇(𝑡)

]

=
2
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡){𝑀

𝑎
𝜎(𝑡)

[

Δ𝜋(𝑡)
Δ𝜛(𝑡)

]

+𝑁𝑎
𝜎(𝑡) [𝑢(𝑡) + c(𝑡)]} + 𝑂𝜎(𝑡)c1(𝑡),

𝑧(𝑡) =
2
∑

𝑎=1
𝜌𝑎𝜎(𝑡)(𝑡)𝑃

𝑎
𝜎(𝑡)

[

Δ𝜋(𝑡)
Δ𝜛(𝑡)

]

+𝐻𝜎(𝑡)c1(𝑡).

(40)

The parameters in the mass-spring-damping model (40) are provided as

𝑀1
1 =

[

0 −0.5
−0.5 −1.5

]

,𝑀1
2 =

[

0 −0.61
−0.52 −1.5

]

,

𝑀2
1 =

[

0 −0.43
−0.44 −1.5

]

,𝑀2
2 =

[

0 −0.71
−0.53 −1.5

]

,

𝑁1
1 =

[

0 2.01
]

, 𝑁1
2 =

[

0 1.02
]

,
𝑁2

1 =
[

0 3.00
]

, 𝑁2
2 =

[

0 1.03
]

,

𝑂1 =
[

2.2
−2.3

]

, 𝑂2 =
[

2.4
−3.3

]

,

𝑃1 =
[

3.17 0
]

, 𝑃2 =
[

0.96 1.03
]

,
𝐻1 = 0.2,𝐻2 = 2.3,c1(𝑡) = 2.9𝑒−1.3𝑡𝑠𝑖𝑛(5𝑡).
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Figure 3 The displacement and speed of the mass.
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Figure 4 The disturbance c(𝑡) and its estimation ĉ(𝑡).
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Figure 5 The spring pushing force 𝑢(𝑡).

Let’s consider the case that the mass-spring-damping system (40) affected by the harmonic disturbance. The parameters of
the disturbance c(𝑡) established by the neural network model are

𝐸1 =
[

0 −4.1
4 −0.30

]

, 𝐸2 =
[

0 −4.0
4.1 −0.30

]

,

𝐹1 =
[

0.501 −0.10
]

, 𝐹2 =
[

0.502 −0.11
]

,

X∗ =
[

−0.30 −0.05
0.40 1.45

]

, 𝜎(𝑡) ∈ {1, 2}.

The constants are selected as
𝛿0 = 2, 𝛿 = 3.4, 𝜇1 = 2.1, 𝜇2 = 0.5,

𝜇3 = 2.3, 𝜇̄ = 2.6, 𝑛 = 0.5.
The control task is to regulate the thrust adjustment of the mass-spring-damping model (40) with the multi-source disturbance.
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Figure 6 The switching signal.

By solving the linear matrix inequalities (16) and (17), we can get the controller gains 𝐾 𝑙
𝑖 , observer gain 𝐾0

𝐾1
1 =

[

62.6659 −3.9291
]

,
𝐾2

1 =
[

117.0423 −5.9501
]

,
𝐾1

2 =
[

88.3698 −7.8824
]

,
𝐾2

2 =
[

35.6628 −1.2549
]

,

𝐾0 =
[

2.4798 −8.2909
−8.2909 47.8926

]

,

and the 𝐿2-gain performance level 𝛾 =3.21.
The simulation results are depicted by Figs. 3-6. The mass displacement Δ𝜋(𝑡) and speed Δ𝜛(𝑡) are exhibited in Fig. 3. The

harmonic attenuated disturbance c(𝑡) and its estimation ĉ(𝑡) are shown in Fig. 4. The control input 𝑢(𝑡) is depicted in Fig. 5. Fig.
6 exhibits the switching signal 𝜎(𝑡). Quickly, from Fig. 3, we can observe that the displacement and speed Δ𝜋(𝑡) and Δ𝜛(𝑡) are
bounded. We can obtain from Fig. 4 that the adaptive disturbance observer can track irregular disturbance c(𝑡). From Fig. 5, we
can see that the control input obtained by the AADS control approach is bounded. As a result, we can claim that the proposed
AADS control method has a specific application prospect.

5 CONCLUSIONS

The AADS control issue has been studied for the ST-SFSs encountered by the unavailable neural network modeled disturbance
and available unmodeled disturbance by the multiple Lyapunov functions technique. A new adaptive disturbance observer has
been introduced to observe neural network modeled disturbance. An AD feedback controller based on adaptive disturbance
observer has been established. Then, the AADS control method has been designed, which provides theoretical conditions for
solving the AADS control problem of the ST-SFSs. Further, the practical stability, multi-source DS performance with the 𝐿2
index have been acquired. Finally, a simulation of the mass-spring-damping system with nonlinear irregular disturbances.
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