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Abstract

This paper studies the practical fixed-time average consensus problem for general continuous linear multi-agent systems under

switching topologies. Firstly, a distributed fixed-time consensus control protocol based on dynamic event-triggered mechanism

is designed by using the local information exchange between individual agents. The protocol introduces auxiliary dynamic

variables, and the triggering condition changes in real time based on the dynamic variable obtained online, which can significantly

reduce the number of triggering events, effectively decrease the energy dissipation of the system and the update frequency of the

controller. Then, under the designed control protocol, the sufficient conditions for the multi-agent system to solve the practical

fixed-time average consensus problem are given, and it is proved that there is no Zeno behavior in the system. Finally, the

simulation results verify the effectiveness of the conclusions.
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Summary

This paper studies the practical fixed-time average consensus problem for general
continuous linear multi-agent systems under switching topologies. Firstly, a dis-
tributed fixed-time consensus control protocol based on dynamic event-triggered
mechanism is designed by using the local information exchange between individual
agents. The protocol introduces auxiliary dynamic variables, and the triggering con-
dition changes in real time based on the dynamic variable obtained online, which can
significantly reduce the number of triggering events, effectively decrease the energy
dissipation of the system and the update frequency of the controller. Then, under
the designed control protocol, the sufficient conditions for the multi-agent system to
solve the practical fixed-time average consensus problem are given, and it is proved
that there is no Zeno behavior in the system. Finally, the simulation results verify the
effectiveness of the conclusions.

KEYWORDS:
general linear multi-agent system, dynamic event-triggered control, fixed-time consensus, control proto-
col, switching topologies

1 INTRODUCTION

In recent years, the cooperative control of multi-agent systems has attracted great attention from many researchers. It provides
important theoretical guidance for the unmanned aerial vehicle(UAV) cluster control,1 multi-robot formation,2,3 satellite attitude
alignment,4 control of multiple autonomous underwater vehicles(AUVs),5 and power management in smart grids.6,7 It has been
widely used in practical systems in military, transportation, and industrial fields.8 As the basis of cooperative control of multi-
agent systems, the consensus problem has always been a research hotspot in the field of control theory. The key to achieving
consensus of multi-agent systems is to design appropriate control protocols for the agents by using their own and neighbor
information, so that all agents of the system eventually converge to the same state.

In the research of multi-agent systems consensus, fixed-time consensus is an emerging research direction, whose consensus
results can be achieved in a specific time and have good steady-state and dynamic characteristics. As an extension of finite-time
consensus, the convergence time of fixed-time consensus does not depend on the initial conditions of the system. Therefore, for
the actual system with unknown initial state, the control strategy can always ensure the stable convergence of the system in a fixed
time, which has more practical significance in engineering applications. The fixed-time consensus control strategy is introduced
for the first time in Reference 9, and it is found that the settling time to achieve consensus is independent of the initial state of
the system. In Reference 10, a nonlinear control protocol is proposed under the weighted undirected topology, which solves the
fixed-time consensus problem of multi-agent systems with nonlinear dynamics and uncertain disturbances. In Reference 11, the

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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leader-follower fixed-time consensus for first-order multi-agent systems with unknown inherent nonlinear dynamics is studied,
and a distributed control protocol based on local information is proposed to ensure the convergence of the tracking errors in fixed
time. In Reference 12, a new class of nonlinear fixed-time consensus protocol is proposed for networked multi-agent systems
with directed and intermittent communication, which is extended to solve the fixed-time consensus problem if a common positive
dwell time for all active links is strongly connected without the detailed balanced condition. In Reference 13, the fixed-time
consensus problem of multi-agent systems under detail-balanced directed graph is studied, and two consensus protocols with
linear and nonlinear state measurements are proposed. In Reference 14, a distributed control protocol is designed for the first-
order multi-agent systems with discontinuous nonlinear inherent dynamics by using non-smooth analysis and fixed-time stability
technology, and the fixed-time consensus of the system under fixed topology and switching topologies is realized. In Reference
15, the fixed-time leader-follower consensus problem for high-order integrator multi-agent systems subject to matched external
disturbances is studied, and a fixed-time distributed observer is designed to realize the fixed-time consensus tracking control of
the system. In Reference 16, a fully distributed nonsmooth protocol is proposed to achieve fixed-time consensus tracking for a
class of first-order multi-agent systems with directed communication topology and unknown disturbances.

It is worth noting that the control protocols proposed in the above References require continuous update of the controller, which
often requires the agent to have sufficient computing and energy resources. However, individual agent is usually equipped with
limited resources. Therefore, from the perspective of resource constraints, continuous control schemes are impractical, especially
for the large multi-agent systems. In order to save a lot of unnecessary communication, computing and energy resources, the
fixed-time consensus of multi-agent systems based on event-triggered control is developed. In Reference 17, two distributed
event-triggered fixed-time consensus protocols are proposed for leader-follower multi-agent systems with nonlinear dynamics
and uncertain disturbances, which greatly reduce the energy consumption and update frequency of the controller. In Reference
18, two event-triggered fixed-time consensus controllers are designed to solve the fixed-time consensus problem of uncertain
nonlinear multi-agent systems under continuous communication and intermittent communication. In Reference 19, a fixed-
time consensus protocol based on event-triggered control is proposed for multi-agent systems with input delay and uncertain
disturbances, which avoids continuous communication in controller update and triggering state monitoring. In Reference 20,
the fixed-time consensus problem of second-order multi-agent systems with uncertain bounded disturbances is studied, and an
event-triggered control protocol which is completely distributed and does not require continuous communication is designed.
In Reference 21, two fixed-time leader-follower consensus control protocols are proposed for nonlinear networked multi-agent
systems based on event/self-triggered mechanism, and the self-triggered control strategy avoids continuous triggering condition
monitoring of the system. In Reference 22, the fixed-time consensus problem of linear multi-agent systems with input delay is
studied, and two distributed event-triggered control protocols are designed to achieve fixed-time leaderless consensus and leader-
follower consensus. In Reference 23, an event-triggered control protocol is proposed for nonlinear multi-agent systems with
input delay, external disturbances and switching topologies to achieve fixed-time average consensus. In addition, an improved
control protocol without continuous communication is also given.

At present, some researchers have introduced the dynamic event-triggered mechanism into the fixed-time consensus control
of multi-agent systems. The dynamic event-triggered mechanism is not only related to the state of the system, but also considers
an additional auxiliary dynamic variable, which can be obtained online and adjusted by design parameters. Therefore, the trig-
gering condition of the system changes in real time, which effectively reduces the number of triggering events. In Reference 24,
a dynamic event-triggered control protocol based on internal dynamic variable is proposed to solve the practical fixed-time con-
sensus problem of first-order multi-agent systems with nonlinear dynamics. In Reference 25, the fixed-time cooperative tracking
problem under dynamic event-triggered control is studied for first-order multi-agent systems with input delay and unknown dis-
turbances. In Reference 26, a control protocol based on dynamic event-triggered mechanism is proposed for first-order nonlinear
multi-agent systems with disturbances, and the practical fixed-time average consensus of the system under switching topologies
is realized.

It should be pointed out that the event-triggered mechanism in the above References 17-23 does not introduce auxiliary
dynamic variable and belongs to static event-triggered control. Therefore, the number of triggering events is more than that
of dynamic event-triggered control, resulting in unnecessary waste of resources. In References 24-26, the dynamic event-
triggered mechanism is introduced into the fixed-time consensus control of multi-agent systems, but the research is carried out
for first-order multi-agent systems, which is not involved in general linear multi-agent systems. In References 17-22,24,25, the
communication topologies are all fixed, and the more realistic switching topologies are not considered. So the communication
conditions are not general.
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Inspired by these works of the above References, this paper innovatively designs a control protocol based on the dynamic
event-triggered mechanism, which solves the practical fixed-time average consensus problem for the general continuous linear
multi-agent system under switching topologies, and proves that the system does not have Zeno behavior. As far as we know,
the practical fixed-time average consensus problem of general linear multi-agent systems based on dynamic event-triggered
mechanism under switching topologies is still open. The main contributions of this paper involve three aspects.

1. Compared with the static event-triggered mechanism,17,18,19,20,21,22,23 this paper proposes a dynamic event-triggered control
scheme based on auxiliary dynamic variables, which can effectively reduce the number of triggering events and save system
resources.

2. Different from the analysis of fixed-time consensus problem for fixed topology,17,18,19,20,21,22,24,25 this paper solves the practical
fixed-time average consensus problem of general linear multi-agent systems under a more general switching topologies.

3. Compared with the research on first-order systems,24,25,26 this paper breaks the limitations of first-order systems and extends
the dynamic event-triggered mechanism to general linear multi-agent systems, which poses a greater challenge to the design
of fixed-time consensus control protocol.

The rest of this paper is organized as follows. In Section 2, preparatory knowledge and problem description are given. In
Section 3, the main results including the design of distributed dynamic event-triggered control protocol and the analysis of
fixed-time average consensus are given. In Section 4, an example simulation is provided to verify the theoretical results, and the
parameter analysis and comparative experiments are carried out. Finally, the conclusions are drawn in Section 5.

2 PREPARATORY KNOWLEDGE AND PROBLEM DESCRIPTION

2.1 Graph theory and notations
For a multi-agent system composed of 𝑁 agents, the communication network between agents can be represented by an undi-
rected topology graph, denoted by 𝜎(𝑡) = ( , 𝜎(𝑡),𝜎(𝑡)), and the 𝑁 agents can be regarded as 𝑁 nodes. Among them,
 = {𝑣1, 𝑣2,⋯ , 𝑣𝑁} is the node set, 𝜎(𝑡) ⊆  ×  is the edge set, 𝜎(𝑡) = [𝑎𝑖𝑗(𝑡)] ∈ 𝑅𝑁×𝑁 is the adjacency matrix, 𝜎(𝑡) is
the piecewise constant switching signal. Define the switching signal 𝜎(𝑡) ∶ [0,+∞) →  = {1,⋯ , 𝑝}, 𝑝 ∈ ℕ+,  denotes the
index set of all the switching topology graphs. Define the diagonal element 𝑎𝑖𝑖(𝑡) = 0 of the adjacency matrix 𝜎(𝑡), and when
(𝑣𝑖, 𝑣𝑗) ∈ 𝜎(𝑡), there is 𝑎𝑖𝑗(𝑡) = 1, otherwise 𝑎𝑖𝑗(𝑡) = 0. The edge (𝑣𝑖, 𝑣𝑗) here indicates that agent 𝑖 can obtain information
from agent 𝑗. If (𝑣𝑗 , 𝑣𝑖) ∈ 𝜎(𝑡) = (𝑣𝑖, 𝑣𝑗) ∈ 𝜎(𝑡), then 𝜎(𝑡) is an undirected graph. An undirected graph 𝜎(𝑡) is said to be con-
nected if there exists a path between every pair of distinct nodes. The Laplacian matrix 𝜎(𝑡) = [𝑙𝑖𝑗(𝑡)] ∈ 𝑅𝑁×𝑁 of 𝜎(𝑡), where
𝑙𝑖𝑖(𝑡) =

∑𝑁
𝑗=1 𝑎𝑖𝑗(𝑡) and 𝑙𝑖𝑗(𝑡) = −𝑎𝑖𝑗(𝑡). The neighbor set of agent 𝑖 is expressed as  𝜎(𝑡)

𝑖 = {𝑣𝑗 ∈ |(𝑣𝑖, 𝑣𝑗) ∈ 𝜎(𝑡)}.
In this paper, 𝑅𝑛×𝑚 denotes a set of 𝑛 × 𝑚-dimensional real matrices, 𝑅𝑛 denotes a set of 𝑛-dimensional real vectors, 𝐼𝑛

denotes the 𝑛-dimensional identity matrix, 1𝑛(0𝑛) denotes the 𝑛-dimensional column vector with all elements being 1(0), 𝑑𝑖𝑎𝑔{⋅}
represents the diagonal matrix, 𝑐𝑜𝑙(⋅) represents the column vector, ⊗ denotes the Kronecker product of matrices, ‖ ⋅ ‖ denotes
the Euclidean norm of a vector or the compatible matrix norm. For any vector 𝑥 = 𝑐𝑜𝑙(𝑥1, 𝑥2,⋯ , 𝑥𝑁 ) ∈ 𝑅𝑁 , define 𝑠𝑖𝑔𝑛(𝑥) =
𝑐𝑜𝑙(𝑠𝑖𝑔𝑛(𝑥1), 𝑠𝑖𝑔𝑛(𝑥2),⋯ , 𝑠𝑖𝑔𝑛(𝑥𝑁 )) and 𝑠𝑖𝑔𝜇(𝑥) = 𝑐𝑜𝑙(𝑠𝑖𝑔𝜇(𝑥1), 𝑠𝑖𝑔𝜇(𝑥2),⋯ , 𝑠𝑖𝑔𝜇(𝑥𝑁 )), where 𝑠𝑖𝑔𝜇(𝑥𝑖) = |𝑥𝑖|𝜇𝑠𝑖𝑔𝑛(𝑥𝑖), 𝑖 =
1, 2,⋯ , 𝑁, 𝜇 > 0.

2.2 Definitions and lemmas
Consider the following dynamic system

{

𝑥̇(𝑡) = 𝑓 (𝑡, 𝑥(𝑡))
𝑥(0) = 𝑥0

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 denotes the state vector, 𝑓 (𝑡, 𝑥(𝑡)) ∶ 𝑅+ × 𝑅𝑛 → 𝑅𝑛 is a smooth function. Suppose that the origin is the
equilibrium point of the system (1), namely 𝑓 (𝑡, 0) = 0.

Definition 1 (9,27). If the origin of the system (1) is asymptotically stable and there exists a settling time 𝑇 (𝑥0) > 0 such that
any solution 𝑥(𝑡, 𝑥0) of the system can converge to the equilibrium point at 𝑇 (𝑥0), then the origin of the system (1) is globally
finite-time stable. Furthermore, if there exists 𝑇max > 0 such that the stabilization time 𝑇 ≤ 𝑇max is satisfied for any initial state
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of the system, then the origin of the system (1) is fixed-time stable. In addition, if any solution of the system can only converge
to a sufficiently small neighborhood of the equilibrium point, the origin of the system (1) is practical fixed-time stable.

Lemma 1 (26,28). If there exists a Lyapunov function 𝑉 (𝑥(𝑡)) ∶ 𝑅𝑛 → 𝑅+ such that

𝑉̇ (𝑥(𝑡)) ≤ −𝑎𝑉 𝑝(𝑥(𝑡)) − 𝑏𝑉 𝑞(𝑥(𝑡)) + 𝜗 (2)

holds, where 𝑎, 𝑏, 𝜗 > 0, 𝑝 ∈ (0, 1), 𝑞 ∈ (1,+∞), then the origin of the system (1) is practical fixed-time stable, and the settling
time 𝑇 satisfies 𝑇 ≤ 𝑇max =

1
𝑎𝜅(1−𝑝)

+ 1
𝑏𝜅(𝑞−1)

, where 𝜅 is a scalar and 0 < 𝜅 < 1. In addition, the residual error set of the solution

of the system (1) is {lim
𝑡→𝑇

𝑥(𝑡)|𝑉 (𝑥(𝑡)) ≤ min{𝑎−
1
𝑝
( 𝜗
1−𝜅

)
1
𝑝 , 𝑏−

1
𝑞
( 𝜗
1−𝜅

)
1
𝑞 }}.

Lemma 2 (29,30). Let  be a connected undirected graph of order 𝑁 , and  is the corresponding Laplacian matrix. If the
eigenvalues of  are expressed as 𝜆1(), 𝜆2(),⋯ , 𝜆𝑁 (), then there exists 0 = 𝜆1() < 𝜆2() ≤ ⋯ ≤ 𝜆𝑁 ().

Lemma 3 (19,31). For 𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2,⋯ , 𝑁 , when 0 < 𝑝 ≤ 1, 1 < 𝑞 < ∞, there exist

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁1−𝑝
(

𝑁
∑

𝑖=1
|𝑥𝑖|

)𝑝
≥

𝑁
∑

𝑖=1
|𝑥𝑖|

𝑝 ≥
(

𝑁
∑

𝑖=1
|𝑥𝑖|

)𝑝

𝑁1−𝑞
(

𝑁
∑

𝑖=1
|𝑥𝑖|

)𝑞
≤

𝑁
∑

𝑖=1
|𝑥𝑖|

𝑞 ≤
(

𝑁
∑

𝑖=1
|𝑥𝑖|

)𝑞

2.3 Problem description
This paper considers a multi-agent system consisting of 𝑁 agents. The dynamic model of agent 𝑖 is described as

𝑥̇𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) + 𝐵𝑢𝑖(𝑡), (3)

where 𝑖 = 1, 2,⋯ , 𝑁 , 𝑥𝑖(𝑡) ∈ 𝑅𝑛 represents the state vector, 𝑢𝑖(𝑡) ∈ 𝑅𝑚 represents the control input, 𝐴 ∈ 𝑅𝑛×𝑛 and 𝐵 ∈ 𝑅𝑛×𝑚

are constant matrices.
The goal of this paper is to design a distributed control protocol based on dynamic event-triggered mechanism for the general

linear multi-agent system (1), so that each agent can achieve average consensus in a fixed time by using only local information
and without continuous controller update. To this end, before designing the control protocol, the relevant assumptions and
definitions required by the system are given.

Assumption 1. The matrix 𝐵 is row full rank, that is, there exists a matrix 𝐾 ∈ 𝑅𝑚×𝑛 such that 𝐵𝐾 = 𝐼𝑛.

Assumption 2. The undirected communication topology graph 𝜎(𝑡) is connected at any time 𝑡.

Assumption 3. For the switching signal 𝜎(𝑡) ∶ [0,+∞) →  = {1,⋯ , 𝑝}, the set  is finite, and 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑠 < 𝑡𝑠+1 < ⋯
is the corresponding switching instant. Within the adjacent switching instant interval [𝑡𝑠, 𝑡𝑠+1), the communication topology is
fixed, and there is 𝜏 < 𝑡𝑠+1 − 𝑡𝑠 <  , where 𝑠 = 0, 1,⋯, the residence time 𝜏 and switching period  are positive constants.

Definition 2 (23). For the multi-agent system (3), if there exist a time 𝑇 and a sufficiently small positive number 𝜖 such that
any agent 𝑖 satisfies lim𝑡→𝑇 ‖𝑥𝑖(𝑡) −

1
𝑁

∑𝑁
𝑗=1 𝑥𝑗(𝑡)‖ ≤ 𝜖, and when 𝑡 ≥ 𝑇 , ‖𝑥𝑖(𝑡) −

1
𝑁

∑𝑁
𝑗=1 𝑥𝑗(𝑡)‖ ≤ 𝜖 still holds, and the system

also has 𝑇max > 0 such that 𝑇 ≤ 𝑇max exists under any initial conditions, then the multi-agent system (3) achieves the practical
fixed-time average consensus.

3 MAIN RESULTS

3.1 Design of distributed dynamic event-triggered control protocol
For the multi-agent system (3), based on the event-triggered control method and by using the local information exchange between
neighbors, a distributed fixed-time consensus controller for agent 𝑖 is designed as

𝑢𝑖(𝑡) = −𝛾1𝐵𝑇𝑃𝜉𝑖(𝑡𝑖𝑘) − 𝛾2𝐾𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡𝑖𝑘)) − 𝛾3𝐾𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡𝑖𝑘)), (4)
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where 𝑡 ∈ [𝑡𝑖𝑘, 𝑡
𝑖
𝑘+1), 𝛾1, 𝛾2, 𝛾3 > 0 are the design parameters, 𝜇 > 1 is the ratio of two positive odd numbers, 𝑃 ∈ 𝑅𝑛×𝑛 is a

positive definite matrix to be determined, the matrix 𝐾 ∈ 𝑅𝑚×𝑛 can be obtained by Assumption 1, 𝑡𝑖𝑘 is the 𝑘th triggering instant
of agent 𝑖, and it is considered that the control input of agent 𝑖 is unchanged before the next triggering instant 𝑡𝑖𝑘+1 of the latest
triggering instant 𝑡𝑖𝑘. In addition, 𝜉𝑖(𝑡) ∈ 𝑅𝑛 represents the relative state measurement, and 𝜉𝑖(𝑡) =

∑𝑁
𝑗=1 𝑎𝑖𝑗(𝑡)(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) is

defined.

Remark 1. For the distributed event-triggered controller under the switching topologies, the switching instant of the system
topology graph is also considered as the event-triggered instant of each agent, because the change of the communication topology
will generate new local information. That is,

𝑡𝑖𝑘 =

{

𝑡𝑠, topology switching instant
𝑡𝑖𝑘. event triggering instant

(5)

Therefore, agent 𝑖 only performs control update at its own event-triggered instant and the topology switching instant.

The measurement error of agent 𝑖 is defined as
𝑒𝑖(𝑡) =𝛾1𝐵𝑇𝑃𝜉𝑖(𝑡𝑖𝑘) + 𝛾2𝐾𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡𝑖𝑘)) + 𝛾3𝐾𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡𝑖𝑘))−

𝛾1𝐵
𝑇𝑃𝜉𝑖(𝑡) − 𝛾2𝐾𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡)) − 𝛾3𝐾𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡)).

(6)

Then, the event-triggered function of agent 𝑖 is designed as

𝑔𝑖(𝑡) = ‖𝑒𝑖(𝑡)‖2 − 𝜂2𝑖 𝜉
𝑇
𝑖 (𝑡)𝑃𝐵𝐵

𝑇𝑃𝜉𝑖(𝑡), (7)

where 𝜂𝑖 > 0 is the design parameter.
Inspired by References 22 and 32, this paper considers the use of dynamic event-triggered mechanism. Therefore, design the

auxiliary dynamic variable 𝜙𝑖(𝑡) for agent 𝑖 as follows:

𝜙̇𝑖(𝑡) = − 2𝛼𝜙
1
2
𝑖 (𝑡) − 2𝛽𝜙

𝜇+1
2

𝑖 (𝑡) − 𝜉𝑇𝑖 (𝑡)𝑃𝐵𝑒𝑖(𝑡) + 𝜏, (8)

where 𝛼 > 0, 𝛽 > 0, 𝜏 > 0, 𝜙𝑖(0) > 0 are the design parameters that can be selected as required.
The dynamic event-triggered condition of agent 𝑖 is constructed as

𝑡𝑖𝑘+1 = inf{𝑡 > 𝑡𝑖𝑘|𝑔𝑖(𝑡) ≥ 𝑓 (𝜙𝑖(𝑡))}, 𝑘 = 0, 1,⋯ , (9)

where 𝑓 (𝜙𝑖(𝑡)) = 𝜂𝑖𝛼𝜙
1
2
𝑖 (𝑡) + 𝜂𝑖𝛽𝜙

𝜇+1
2

𝑖 (𝑡).

Remark 2. The event-triggered condition (9) is distributed. According to (9), for agent 𝑖, 𝑔𝑖(𝑡) ≤ 𝑓 (𝜙𝑖(𝑡)) is totally satisfied at
any 𝑡 ∈ [𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1), and ‖𝑒𝑖(𝑡)‖2 ≤ 𝜂2𝑖 𝜉

𝑇
𝑖 (𝑡)𝑃𝐵𝐵

𝑇𝑃𝜉𝑖(𝑡) + 𝜂𝑖𝛼𝜙
1
2
𝑖 (𝑡) + 𝜂𝑖𝛽𝜙

𝜇+1
2

𝑖 (𝑡) always holds at this time. In addition, based on
(8), 𝜙𝑖(𝑡) > 0 can be obtained for any 𝑡 ≥ 0 by designing appropriate parameters.

3.2 Analysis of fixed-time average consensus
The average consensus error of agent 𝑖 is defined as

𝛿𝑖(𝑡) = 𝑥𝑖(𝑡) −
1
𝑁

𝑁
∑

𝑗=1
𝑥𝑗(𝑡). (10)

Then there is

𝛿(𝑡) = (𝑀 ⊗ 𝐼𝑛)𝑥(𝑡), (11)

where 𝑀 = 𝐼𝑁 − 1
𝑁
1𝑁1𝑇𝑁 , 𝛿(𝑡) = 𝑐𝑜𝑙(𝛿1(𝑡), 𝛿2(𝑡),⋯ , 𝛿𝑁 (𝑡)), 𝑥(𝑡) = 𝑐𝑜𝑙(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑁 (𝑡)).

The derivative of (11) with respect to time 𝑡 can be expressed as

𝛿̇(𝑡) = (𝑀 ⊗ 𝐼𝑛)𝑥̇(𝑡). (12)

According to (6), the distributed controller (4) can be rewritten as

𝑢𝑖(𝑡) = − 𝑒𝑖(𝑡) − 𝛾1𝐵
𝑇𝑃𝜉𝑖(𝑡) − 𝛾2𝐾𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡)) − 𝛾3𝐾𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡)). (13)
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Substituting (13) into (3) yields that

𝑥̇𝑖(𝑡) =𝐴𝑥𝑖(𝑡) − 𝐵𝑒𝑖(𝑡) − 𝛾1𝐵𝐵
𝑇𝑃𝜉𝑖(𝑡) − 𝛾2𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡)) − 𝛾3𝑠𝑖𝑔

𝜇(𝑃𝜉𝑖(𝑡)). (14)

The (14) is rewritten into a compact supervector form as follows:
𝑥̇(𝑡) =(𝐼𝑁 ⊗𝐴)𝑥(𝑡) − (𝐼𝑁 ⊗𝐵)𝑒(𝑡) − 𝛾1(𝜎(𝑡) ⊗𝐵𝐵𝑇𝑃 )𝑥(𝑡)−

𝛾2𝑠𝑖𝑔𝑛((𝜎(𝑡) ⊗ 𝑃 )𝑥(𝑡)) − 𝛾3𝑠𝑖𝑔
𝜇((𝜎(𝑡) ⊗ 𝑃 )𝑥(𝑡)),

(15)

where 𝑒(𝑡) = 𝑐𝑜𝑙(𝑒1(𝑡), 𝑒2(𝑡),⋯ , 𝑒𝑁 (𝑡)).
Substituting (15) into (12) yields that

𝛿̇(𝑡) =(𝐼𝑁 ⊗𝐴)𝛿(𝑡) − (𝑀 ⊗𝐵)𝑒(𝑡) − 𝛾1(𝑀𝜎(𝑡) ⊗𝐵𝐵𝑇𝑃 )𝛿(𝑡)−
𝛾2(𝑀 ⊗ 𝐼𝑛)𝑠𝑖𝑔𝑛((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)) − 𝛾3(𝑀 ⊗ 𝐼𝑛)𝑠𝑖𝑔𝜇((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)).

(16)

Thus, the practical fixed-time average consensus problem of multi-agent system (3) is transformed into the fixed-time stable
convergence problem of system (16).

Theorem 1. For the multi-agent system (3) satisfying Assumptions 1-3, the individual controller and event-triggered condi-
tion are given by (4) and (9), respectively. If there exists a positive definite matrix 𝑃 such that the following linear matrix
inequality(LMI)

𝑃𝐴 + 𝐴𝑇𝑃 − 2𝑃𝐵𝐵𝑇𝑃 < −𝛾𝑃 (17)

holds, and the conditions

𝛾1 ≥
1

𝜆2−min
+ 2𝜂max , (18)

𝛾2 ≥
𝛼

(2𝜆2−min𝜆min(𝑃 ))
1
2

, (19)

𝛾3 ≥
𝛽

𝑛
1−𝜇
2 (2𝜆2−min𝜆min(𝑃 ))

𝜇+1
2

, (20)

𝛾 ≥ 0 (21)

hold at the same time, where 𝜆2−min = min{𝜆2(𝜎(𝑡))}, then the system (3) can achieve the practical fixed-time average consensus.

Proof. Consider the Lyapunov candidate function as follows:

𝑉 (𝑡) = 1
2
𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡) +

𝑁
∑

𝑖=1
𝜙𝑖(𝑡). (22)

Let 𝑉1(𝑡) =
1
2
𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡), 𝑉2(𝑡) =

∑𝑁
𝑖=1 𝜙𝑖(𝑡), then

𝑉 (𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡).

The derivative of 𝑉1(𝑡) with respect to time 𝑡 can be expressed as

𝑉̇1(𝑡) =𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝛿̇(𝑡)
=𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )

(

(𝐼𝑁 ⊗𝐴)𝛿(𝑡) − 𝛾1(𝑀𝜎(𝑡) ⊗𝐵𝐵𝑇𝑃 )𝛿(𝑡) − (𝑀 ⊗𝐵)𝑒(𝑡)−
𝛾2(𝑀 ⊗ 𝐼𝑛)𝑠𝑖𝑔𝑛((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)) − 𝛾3(𝑀 ⊗ 𝐼𝑛)𝑠𝑖𝑔𝜇((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡))

)

=𝛿𝑇 (𝑡)
(

𝜎(𝑡) ⊗ 𝑃𝐴 + 𝐴𝑇𝑃
2

− 𝛾1(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝐵𝐵𝑇𝑃 )
)

𝛿(𝑡) − 𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃𝐵)𝑒(𝑡)−

𝛾2𝛿
𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝑠𝑖𝑔𝑛((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)) − 𝛾3𝛿

𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝑠𝑖𝑔𝜇((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)).

(23)

The derivative of 𝑉2(𝑡) with respect to time 𝑡 can be expressed as

𝑉̇2(𝑡) =
𝑁
∑

𝑖=1
𝜙̇𝑖(𝑡) = −2𝛼

𝑁
∑

𝑖=1
𝜙

1
2
𝑖 (𝑡) − 2𝛽

𝑁
∑

𝑖=1
𝜙

𝜇+1
2

𝑖 (𝑡) −
𝑁
∑

𝑖=1
𝜉𝑇𝑖 (𝑡)𝑃𝐵𝑒𝑖(𝑡) +𝑁𝜏. (24)
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According to (23) and (24), we can get

𝑉̇ (𝑡) =𝛿𝑇 (𝑡)
(

𝜎(𝑡) ⊗ 𝑃𝐴 + 𝐴𝑇𝑃
2

− 𝛾1(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝐵𝐵𝑇𝑃 )
)

𝛿(𝑡)−

𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃𝐵)𝑒(𝑡) −
𝑁
∑

𝑖=1
𝜉𝑇𝑖 (𝑡)𝑃𝐵𝑒𝑖(𝑡) − 2𝛼

𝑁
∑

𝑖=1
𝜙

1
2
𝑖 (𝑡) − 2𝛽

𝑁
∑

𝑖=1
𝜙

𝜇+1
2

𝑖 (𝑡)−

𝛾2𝛿
𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝑠𝑖𝑔𝑛((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)) − 𝛾3𝛿

𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝑠𝑖𝑔𝜇((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡)) +𝑁𝜏.

(25)

By using Young’s inequality, the second and third terms on the right side of the equal sign of (25) can be transformed into

−𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃𝐵)𝑒(𝑡) −
𝑁
∑

𝑖=1
𝜉𝑇𝑖 (𝑡)𝑃𝐵𝑒𝑖(𝑡)

= − 2
𝑁
∑

𝑖=1
𝜉𝑇𝑖 (𝑡)𝑃𝐵𝑒𝑖(𝑡) ≤

𝑁
∑

𝑖=1
𝜂𝑖𝜉

𝑇
𝑖 (𝑡)𝑃𝐵𝐵

𝑇𝑃𝜉𝑖(𝑡) +
𝑁
∑

𝑖=1

𝑒𝑇𝑖 (𝑡)𝑒𝑖(𝑡)
𝜂𝑖

.

(26)

Combining with (26), and according to the event-triggered condition (9), the second, third, fourth, and fifth items on the right
side of the equal sign of (25) can be transformed into

−𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃𝐵)𝑒(𝑡) −
𝑁
∑

𝑖=1
𝜉𝑇𝑖 (𝑡)𝑃𝐵𝑒𝑖(𝑡) − 2𝛼

𝑁
∑

𝑖=1
𝜙

1
2
𝑖 (𝑡) − 2𝛽

𝑁
∑

𝑖=1
𝜙

𝜇+1
2

𝑖 (𝑡)

≤ 2
𝑁
∑

𝑖=1
𝜂𝑖𝜉

𝑇
𝑖 (𝑡)𝑃𝐵𝐵

𝑇𝑃𝜉𝑖(𝑡) − 𝛼
𝑁
∑

𝑖=1
𝜙

1
2
𝑖 (𝑡) − 𝛽

𝑁
∑

𝑖=1
𝜙

𝜇+1
2

𝑖 (𝑡)

≤ 2𝜂max𝛿
𝑇 (𝑡)(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝐵𝐵𝑇𝑃 )𝛿(𝑡) − 𝛼

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
1
2 − 𝛽𝑁

1−𝜇
2

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
𝜇+1
2 ,

(27)

where 𝜂max = max{𝜂1, 𝜂2,⋯ , 𝜂𝑁}.
Let (𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡) = 𝑧(𝑡) = 𝑐𝑜𝑙(𝑧1(𝑡), 𝑧2(𝑡),⋯ , 𝑧𝑁𝑛(𝑡)), then according to Lemma 3, the sixth term on the right side of the

equal sign of (25) can be written as
−𝛾2𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝑠𝑖𝑔𝑛((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡))

= −𝛾2
𝑁𝑛
∑

𝑖=1
|𝑧𝑖(𝑡)| = −𝛾2

𝑁𝑛
∑

𝑖=1
(𝑧2𝑖 (𝑡))

1
2

≤ −𝛾2
(

𝑁𝑛
∑

𝑖=1
𝑧2𝑖 (𝑡)

)
1
2 = −𝛾2

(

𝛿𝑇 (𝑡)(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝑃 )𝛿(𝑡)
)

1
2 .

(28)

Similarly, the seventh term on the right side of the equal sign of (25) can be written as
−𝛾3𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝑠𝑖𝑔𝜇((𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡))

= −𝛾3
𝑁𝑛
∑

𝑖=1
|𝑧𝑖(𝑡)|𝜇+1 = −𝛾3

𝑁𝑛
∑

𝑖=1
(𝑧2𝑖 (𝑡))

𝜇+1
2

≤ −𝛾3(𝑁𝑛)
1−𝜇
2

(

𝑁𝑛
∑

𝑖=1
𝑧2𝑖 (𝑡)

)
𝜇+1
2 = −𝛾3(𝑁𝑛)

1−𝜇
2

(

𝛿𝑇 (𝑡)(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝑃 )𝛿(𝑡)
)

𝜇+1
2 .

(29)

Substituting (27), (28) and (29) into (25) yields that

𝑉̇ (𝑡) ≤𝛿𝑇 (𝑡)
(

𝜎(𝑡) ⊗ 𝑃𝐴 + 𝐴𝑇𝑃
2

− (𝛾1 − 2𝜂max)(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝐵𝐵𝑇𝑃 )
)

𝛿(𝑡)−

𝛼
(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
1
2 − 𝛾2

(

𝛿𝑇 (𝑡)(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝑃 )𝛿(𝑡)
)

1
2−

𝛾3(𝑁𝑛)
1−𝜇
2

(

𝛿𝑇 (𝑡)(𝜎(𝑡)𝜎(𝑡) ⊗ 𝑃𝑃 )𝛿(𝑡)
)

𝜇+1
2 − 𝛽𝑁

1−𝜇
2

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
𝜇+1
2 +𝑁𝜏.

(30)
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According to Lemma 2, there exists a unitary matrix 𝑈 ∈ 𝑅𝑁×𝑁 such that 𝑈𝑇𝜎(𝑡)𝑈 = Λ𝜎(𝑡) = 𝑑𝑖𝑎𝑔{𝜆1(𝜎(𝑡)),
𝜆2(𝜎(𝑡)),⋯ , 𝜆𝑁 (𝜎(𝑡))} holds. Define 𝛿(𝑡) = 𝑐𝑜𝑙(𝛿1(𝑡), 𝛿2(𝑡),⋯ , 𝛿𝑁 (𝑡)) = (𝑈𝑇 ⊗ 𝐼𝑛)𝛿(𝑡), then (30) can be written as

𝑉̇ (𝑡) ≤𝛿𝑇 (𝑡)
(

Λ𝜎(𝑡) ⊗ 𝑃𝐴 + 𝐴𝑇𝑃
2

− (𝛾1 − 2𝜂max)(Λ𝜎(𝑡)Λ𝜎(𝑡) ⊗ 𝑃𝐵𝐵𝑇𝑃 )
)

𝛿(𝑡)−

𝛼
(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
1
2 − 𝛾2

(

𝛿𝑇 (𝑡)(Λ𝜎(𝑡)Λ𝜎(𝑡) ⊗ 𝑃𝑃 )𝛿(𝑡)
)

1
2−

𝛾3(𝑁𝑛)
1−𝜇
2

(

𝛿𝑇 (𝑡)(Λ𝜎(𝑡)Λ𝜎(𝑡) ⊗ 𝑃𝑃 )𝛿(𝑡)
)

𝜇+1
2 − 𝛽𝑁

1−𝜇
2

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
𝜇+1
2 +𝑁𝜏

≤
𝑁
∑

𝑖=1
𝜆𝑖(𝜎(𝑡))𝛿𝑇𝑖 (𝑡)

(𝑃𝐴 + 𝐴𝑇𝑃
2

− (𝛾1 − 2𝜂max)𝜆𝑖(𝜎(𝑡))𝑃𝐵𝐵𝑇𝑃
)

𝛿𝑖(𝑡)−

𝛼
(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
1
2 − 𝛾2

(

𝑁
∑

𝑖=1
𝜆2𝑖 (

𝜎(𝑡))𝛿𝑇𝑖 (𝑡)𝑃𝑃𝛿𝑖(𝑡)
)

1
2−

𝛾3(𝑁𝑛)
1−𝜇
2

(

𝑁
∑

𝑖=1
𝜆2𝑖 (

𝜎(𝑡))𝛿𝑇𝑖 (𝑡)𝑃𝑃𝛿𝑖(𝑡)
)

𝜇+1
2 − 𝛽𝑁

1−𝜇
2

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
𝜇+1
2 +𝑁𝜏.

(31)

According to the conditions of Theorem 1, (31) can be written as

𝑉̇ (𝑡) ≤ − 1
2
𝛾

𝑁
∑

𝑖=1
𝜆𝑖(𝜎(𝑡))𝛿𝑇𝑖 (𝑡)𝑃𝛿𝑖(𝑡) − 𝛼

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
1
2 − 𝛽𝑁

1−𝜇
2

(

𝑁
∑

𝑖=1
𝜙𝑖(𝑡)

)
𝜇+1
2 −

𝛼
(1
2

𝑁
∑

𝑖=1
𝜆𝑖(𝜎(𝑡))𝛿𝑇𝑖 (𝑡)𝑃𝛿𝑖(𝑡)

)
1
2 − 𝛽𝑁

1−𝜇
2

(1
2

𝑁
∑

𝑖=1
𝜆𝑖(𝜎(𝑡))𝛿𝑇𝑖 (𝑡)𝑃𝛿𝑖(𝑡)

)
𝜇+1
2 +𝑁𝜏

≤ −𝛾𝑉1(𝑡) − 𝛼
(

𝑉
1
2
1 (𝑡) + 𝑉

1
2
2 (𝑡)

)

− 𝛽𝑁
1−𝜇
2

(

𝑉
𝜇+1
2

1 (𝑡) + 𝑉
𝜇+1
2

2 (𝑡)
)

+𝑁𝜏

≤ −𝛼𝑉
1
2 (𝑡) − 𝛽(2𝑁)

1−𝜇
2 𝑉

𝜇+1
2 (𝑡) +𝑁𝜏.

(32)

Then, according to Lemma 1, it can be known from (32) that the system (16) is globally practical fixed-time stable. The up-
per bound of the settling time is 𝑇 ≤ 𝑇max = 2

𝛼𝜅
+ 2

𝜇+1
2 𝑁

𝜇−1
2

𝛽𝜅(𝜇−1)
, and the residual error set of the solution is {lim𝑡→𝑇 𝛿(𝑡)|𝑉 (𝑡) ≤

min{( 𝑁𝜏
𝛼(1−𝜅)

)2, (2𝑁)
𝜇−1
𝜇+1 ( 𝑁𝜏

𝛽(1−𝜅)
)

2
𝜇+1 }}. Thus, the considered multi-agent system (3) achieves the practical fixed-time average

consensus. The proof of Theorem 1 is completed.

Theorem 2. For the multi-agent system (3) satisfying Assumptions 1-3, the individual controller and event-triggered condition
are given by (4) and (9), respectively, then the Zeno behavior will not occur in the system (3).

Proof. By proving that the minimum event interval 𝑡𝑖𝑘+1 − 𝑡𝑖𝑘 is strictly positive, it is proved that the system will not have
Zeno behavior under the proposed dynamic event-triggered mechanism. Since the adjacent topology switching instant satisfies
𝜏 < 𝑡𝑠+1 − 𝑡𝑠 <  and 𝜏 is a positive constant, it can be seen that topology switching will certainly not lead to Zeno behavior.
In general, the exclusion of Zeno behavior under switching topologies needs to consider the following three cases.

1. Consider that the time between adjacent events satisfies 𝑡𝑖𝑘+1 − 𝑡𝑖𝑘 < 𝜏, and there is no topology switching in the triggering
interval [𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1). At this time, the communication topology is fixed. According to (6), we can get

𝑒𝑖(𝑡) =𝛾1𝐵𝑇𝑃𝜉𝑖(𝑡𝑖𝑘) + 𝛾2𝐾𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡𝑖𝑘)) + 𝛾3𝐾𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡𝑖𝑘))
− 𝛾1𝐵

𝑇𝑃𝜉𝑖(𝑡) − 𝛾2𝐾𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡)) − 𝛾3𝐾𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡))
=𝛾1𝐵𝑇𝑃𝑒1,𝑖(𝑡) + 𝛾2𝐾𝑒2,𝑖(𝑡) + 𝛾3𝐾𝑒3,𝑖(𝑡),

(33)

where 𝑒1,𝑖(𝑡) = 𝜉𝑖(𝑡𝑖𝑘) − 𝜉𝑖(𝑡), 𝑒2,𝑖(𝑡) = 𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡𝑖𝑘)) − 𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡)), 𝑒3,𝑖(𝑡) = 𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡𝑖𝑘)) − 𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡)).
For 𝑡 ∈ [𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1), there is

𝑑‖𝑒𝑖(𝑡)‖
𝑑𝑡

≤ ‖𝑒̇𝑖(𝑡)‖ = ‖𝛾1𝐵
𝑇𝑃 𝑒̇1,𝑖(𝑡) + 𝛾2𝐾𝑒̇2,𝑖(𝑡) + 𝛾3𝐾𝑒̇3,𝑖(𝑡)‖

≤ ‖𝛾1𝐵
𝑇𝑃‖‖𝑒̇1,𝑖(𝑡)‖ + ‖𝛾2𝐾‖‖𝑒̇2,𝑖(𝑡)‖ + ‖𝛾3𝐾‖‖𝑒̇3,𝑖(𝑡)‖.

(34)
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Calculate ‖𝑒̇1,𝑖(𝑡)‖, ‖𝑒̇2,𝑖(𝑡)‖ and ‖𝑒̇3,𝑖(𝑡)‖ respectively as follows:

‖𝑒̇1,𝑖(𝑡)‖ ≤ ‖𝜉̇𝑖(𝑡)‖ = ‖𝐴𝜉𝑖(𝑡) + 𝐵
𝑁
∑

𝑗=1
𝑎𝑖𝑗(𝑢𝑖(𝑡) − 𝑢𝑗(𝑡))‖

≤ ‖𝐴‖‖𝜉𝑖(𝑡)‖ + ‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖,

(35)

‖𝑒̇2,𝑖(𝑡)‖ ≤ ‖

𝑑
𝑑𝑡

𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡))‖ ≈ ‖

𝑑
𝑑𝑡

𝑡𝑎𝑛ℎ(𝜀𝑃 𝜉𝑖(𝑡))‖

≤ 𝜀‖1 − 𝑡𝑎𝑛ℎ2(𝜀𝑃 𝜉𝑖(𝑡))‖‖𝑃‖‖𝜉̇𝑖(𝑡)‖

≤ 𝜀‖𝑃‖
(

‖𝐴‖‖𝜉𝑖(𝑡)‖ + ‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖

)

,

(36)

‖𝑒̇3,𝑖(𝑡)‖ ≤ ‖

𝑑
𝑑𝑡

𝑠𝑖𝑔𝜇(𝑃𝜉𝑖(𝑡))‖ ≤ 𝜇‖𝑃‖‖𝑃𝜉𝑖(𝑡)‖𝜇−1‖𝜉̇𝑖(𝑡)‖

≤ 𝜇(𝜉𝑇 (𝑡)(𝐼𝑁 ⊗ 𝑃𝑃 )𝜉(𝑡))
𝜇−1
2
‖𝑃‖‖𝜉̇𝑖(𝑡)‖

≤ 𝜇(2𝜆𝑁 ()𝜆max(𝑃 )𝑉1(𝑡))
𝜇−1
2
‖𝑃‖‖𝜉̇𝑖(𝑡)‖

≤ 𝜇(2𝜆𝑁 ()𝜆max(𝑃 )𝑉1(0))
𝜇−1
2
‖𝑃‖

(

‖𝐴‖‖𝜉𝑖(𝑡)‖ + ‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖

)

.

(37)

In addition, there is

‖𝜉𝑖(𝑡)‖ ≤ ‖𝑃 −1
‖‖𝑃𝜉𝑖(𝑡)‖ ≤ ‖𝑃 −1

‖(𝜉𝑇 (𝑡)(𝐼𝑁 ⊗ 𝑃𝑃 )𝜉(𝑡))
1
2

≤ ‖𝑃 −1
‖(2𝜆𝑁 ()𝜆max(𝑃 )𝑉1(𝑡))

1
2 ≤ ‖𝑃 −1

‖(2𝜆𝑁 ()𝜆max(𝑃 )𝑉1(0))
1
2 .

(38)

Substituting (35), (36), (37) and (38) into (34) yields that

𝑑‖𝑒𝑖(𝑡)‖
𝑑𝑡

≤‖𝛾1𝐵𝑇𝑃‖
(

Π
1
2
‖𝐴‖‖𝑃 −1

‖ + ‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖

)

+ 𝜀‖𝛾2𝐾‖‖𝑃‖
(

Π
1
2
‖𝐴‖‖𝑃 −1

‖ + ‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖

)

+ 𝜇Π
𝜇−1
2
‖𝛾3𝐾‖‖𝑃‖

(

Π
1
2
‖𝐴‖‖𝑃 −1

‖ + ‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖

)

≤𝛾1Π
1
2
‖𝐵𝑇

‖‖𝑃‖‖𝐴‖‖𝑃 −1
‖ + 𝛾2𝜀Π

1
2
‖𝐾‖‖𝑃‖‖𝐴‖‖𝑃 −1

‖ + 𝛾3𝜇Π
𝜇
2
‖𝐾‖‖𝑃‖‖𝐴‖‖𝑃 −1

‖

+ 𝛾1‖𝐵
𝑇
‖‖𝑃‖‖𝐵‖‖

𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖ + 𝛾2𝜀‖𝐾‖‖𝑃‖‖𝐵‖‖

𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖ + 𝛾3𝜇Π

𝜇−1
2
‖𝐾‖‖𝑃‖‖𝐵‖‖

𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡)‖

≤
(

𝛾1Π
1
2
‖𝐵𝑇

‖ + 𝛾2𝜀Π
1
2
‖𝐾‖ + 𝛾3𝜇Π

𝜇
2
‖𝐾‖

)

‖𝑃‖‖𝐴‖‖𝑃 −1
‖

+
(

𝛾1‖𝐵
𝑇
‖ + 𝛾2𝜀‖𝐾‖ + 𝛾3𝜇Π

𝜇−1
2
‖𝐾‖

)

‖𝑃‖‖𝐵‖‖
𝑁
∑

𝑗=1
𝑙𝑖𝑗𝑢𝑗(𝑡

𝑗
𝑘′)‖

=Δ0 + Δ1(𝑡
𝑗
𝑘′),

(39)

where 𝑡𝑗𝑘′ is the most recent triggering instant for agent 𝑗, Π = 2𝜆𝑁 ()𝜆max(𝑃 )𝑉1(0), Δ0 = (𝛾1Π
1
2
‖𝐵𝑇

‖ + 𝛾2𝜀Π
1
2
‖𝐾‖ +

𝛾3𝜇Π
𝜇
2
‖𝐾‖)‖𝑃‖‖𝐴‖‖𝑃 −1

‖, Δ1(𝑡
𝑗
𝑘′) = (𝛾1‖𝐵𝑇

‖ + 𝛾2𝜀‖𝐾‖ + 𝛾3𝜇Π
𝜇−1
2
‖𝐾‖)‖𝑃‖‖𝐵‖‖

∑𝑁
𝑗=1 𝑙𝑖𝑗𝑢𝑗(𝑡

𝑗
𝑘′)‖.

Since 𝑒𝑖(𝑡𝑖𝑘) = 0, there is

‖𝑒𝑖(𝑡)‖ ≤

𝑡

∫
𝑡𝑖𝑘

‖𝑒̇𝑖(𝜁 )‖𝑑𝜁 ≤

𝑡

∫
𝑡𝑖𝑘

(Δ0 + Δ1(𝑡
𝑗
𝑘′))𝑑𝜁. (40)
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According to the event-triggered condition (9), when 𝑔𝑖(𝑡𝑖𝑘+1) ≥ 𝑓 (𝜙𝑖(𝑡𝑖𝑘+1)), the 𝑘 + 1-th event of agent 𝑖 is triggered. Then
there is

‖𝑒𝑖(𝑡𝑖𝑘+1)‖
2 ≥ 𝜂2𝑖 𝜉

𝑇
𝑖 (𝑡

𝑖
𝑘+1)𝑃𝐵𝐵

𝑇𝑃𝜉𝑖(𝑡𝑖𝑘+1) + 𝜂𝑖𝛼𝜙
1
2
𝑖 (𝑡

𝑖
𝑘+1) + 𝜂𝑖𝛽𝜙

𝜇+1
2

𝑖 (𝑡𝑖𝑘+1). (41)

According to (40) and (41), we can get

0 < Θ ≤ ‖𝑒𝑖(𝑡𝑖𝑘+1)‖ ≤

𝑡𝑖𝑘+1

∫
𝑡𝑖𝑘

(Δ0 + Δ1(𝑡
𝑗
𝑘′))𝑑𝜁 ≤ (Δ0 + Δ1)(𝑡𝑖𝑘+1 − 𝑡𝑖𝑘), (42)

where Δ1 = max{Δ1(𝑡
𝑗
0),Δ1(𝑡

𝑗
1),Δ1(𝑡

𝑗
2),⋯}, Θ = (𝜂2𝑖 𝜉

𝑇
𝑖 (𝑡

𝑖
𝑘+1)𝑃𝐵𝐵

𝑇𝑃𝜉𝑖(𝑡𝑖𝑘+1) + 𝜂𝑖𝛼𝜙
1
2
𝑖 (𝑡

𝑖
𝑘+1) + 𝜂𝑖𝛽𝜙

𝜇+1
2

𝑖 (𝑡𝑖𝑘+1))
1
2 . Further, it can

be obtained that

𝑡𝑖𝑘+1 − 𝑡𝑖𝑘 ≥
Θ

Δ0 + Δ1
> 0. (43)

Therefore, in case 1, Zeno behavior does not occur in the multi-agent system.
2. Consider that there is a certain topology switching in the triggering interval [𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1). At this time, it is best to assume

that the switching instant is 𝑡𝑠, and the time interval [𝑡𝑠, 𝑡𝑖𝑘+1) satisfies 𝑡𝑖𝑘+1 − 𝑡𝑠 < 𝜏. According to (5), 𝑡𝑠 is regarded as a new
triggering instant, then the exclusion of Zeno behavior of the system is the same as the first case.

3. Consider that the time interval [𝑡𝑖𝑘, 𝑡𝑠) satisfies 𝑡𝑠 − 𝑡𝑖𝑘 < 𝜏. Since 𝑡𝑖𝑘+1 is earlier than 𝑡𝑠+1, the next triggering interval is
[𝑡𝑠, 𝑡𝑖𝑘+1). Therefore, it is only necessary to prove that the minimum time interval 𝑡𝑖𝑘+1 − 𝑡𝑠 is strictly positive. At this time, the
exclusion of Zeno behavior of the system is the same as the second case.

It is worth mentioning that for the case of multiple topology switching in the triggering interval [𝑡𝑖𝑘, 𝑡
𝑖
𝑘+1), the problem can be

transformed into the case of fixed topology by segmenting the time interval, which can easily exclude the Zeno behavior of the
system. In summary, Zeno behavior does not occur in the system (3).

Remark 3. A sufficient and necessary condition for the existence of the solution 𝑃 > 0 of LMI (17) is that the matrix pair (𝐴,𝐵)
is stable.33 Assumption 1 imposes a restriction on the control matrix 𝐵 with row full rank, which indicates that the matrix pair
(𝐴,𝐵) is controllable. This is a sufficient condition for the solvability of the LMI (17).

Remark 4. According to the definition of 𝑉 (𝑡), 2𝑉 (𝑡) ≥ 𝛿𝑇 (𝑡)(𝜎(𝑡) ⊗ 𝑃 )𝛿(𝑡) holds, so there is 𝛿𝑇 (𝑡)𝛿(𝑡) ≤ 2𝑉 (𝑡)
𝜆2−min𝜆min(𝑃 )

, and

further there is ‖𝛿𝑖(𝑡)‖ ≤ ( 2𝑉 (𝑡)
𝜆2−min𝜆min(𝑃 )

)
1
2 . Then, according to the settling time and the residual error set of the solution of the

system (16), it can be seen that when 𝑡 → 𝑇 and 𝑡 ≥ 𝑇 , ‖𝑥𝑖(𝑡) −
1
𝑁

∑𝑁
𝑗=1 𝑥𝑗(𝑡)‖ ≤ (

2min{( 𝑁𝜏
𝛼(1−𝜅)

)2,(2𝑁)
𝜇−1
𝜇+1 ( 𝑁𝜏

𝛽(1−𝜅)
)

2
𝜇+1 }

𝜆2−min𝜆min(𝑃 )
)
1
2 holds. Thus,

the multi-agent system (3) achieves the practical fixed-time average consensus.

Remark 5. The derivative of the sign function with respect to time 𝑡 is required in (36), but the sign function is not continuous,
we consider using the continuous hyperbolic tangent function to approximate the sign function,22,34 namely 𝑠𝑖𝑔𝑛(𝑃𝜉𝑖(𝑡)) ≈
𝑡𝑎𝑛ℎ(𝜀𝑃 𝜉𝑖(𝑡)), where 𝜀 ≫ 1.

4 NUMERICAL SIMULATION

In this section, the effectiveness of the theoretical results is verified by an example simulation. Then the influence of the relevant
parameters in the designed dynamic event-triggered control protocol on the number of triggering events of the system is analyzed.
Finally, a comparative experiment shows that the dynamic event-triggered mechanism based on auxiliary dynamic variables can
avoid a large number of triggering events and save more resources.

4.1 Theoretical verification
Consider that the multi-agent system consists of four agents with general continuous linear dynamic model, namely 𝑁 = 4. The
switching communication topologies and switching mechanism between agents are shown in Figure 1.
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Figure 1 (a):Communication topologies. (b):State switching mechanism.

Suppose that the switching topologies 𝜎(𝑡) are determined by the following switching signal.

𝜎(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, Ω𝑇𝑠 ≤ 𝑡 < (Ω + 1
3
)𝑇𝑠

2, (Ω + 1
3
)𝑇𝑠 ≤ 𝑡 < (Ω + 2

3
)𝑇𝑠

3, (Ω + 2
3
)𝑇𝑠 ≤ 𝑡 < (Ω + 1)𝑇𝑠

where 𝑇𝑠 = 0.15s is the switching period and Ω is a non-negative integer. It can be seen that Assumption 2 and Assumption 3
are satisfied. In order to facilitate the calculation and analysis, the weight of each connection edge in the system communication
topology is taken as 1. According to Figure 1, 𝜆2−min = 0.5858 can be obtained.

For the dynamic model of multi-agent system (3), the system matrices are selected as

𝐴 =
[

−1 4
−5 3

]

, 𝐵 =
[

0 1 0
1 0 2

]

.

It can be seen that Assumption 1 holds. Based on the Assumption 1, the matrix 𝐾 can be obtained as follows:

𝐾 =
⎡

⎢

⎢

⎣

0 −1
1 0
0 1

⎤

⎥

⎥

⎦

.

Take 𝛾 = 2 and solve LMI (17), the matrix 𝑃 can be obtained as follows:

𝑃 =
[

1.0370 −0.0574
−0.0574 0.8901

]

.

The initial states of the agents are taken as 𝑥1(0) = [32, 12]𝑇 , 𝑥2(0) = [−8,−4]𝑇 , 𝑥3(0) = [16,−10]𝑇 , and 𝑥4(0) = [−24, 8]𝑇 .
For the controller (4), the event-triggered function (7) and the auxiliary dynamic variable (8), the design parameters are selected
as 𝜇 = 7∕5, 𝛾1 = 3.64, 𝛾2 = 1.74, 𝛾3 = 1.68, 𝜂𝑖 = 0.9, 𝛼 = 1.48, 𝛽 = 0.5, 𝜏 = 0.001, 𝜙𝑖(0) = 162 and 𝜅 = 0.8, respectively. It
can be verified that the design parameters satisfy the conditions of Theorem 1. At this time, the simulation results are shown in
Figure 2-Figure 5.

  

Figure 2 State evolution of each agent.
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Figure 3 Average consensus error evolution of each agent.

 

Figure 4 Trajectory of auxiliary dynamic variable of each agent.

 

Figure 5 Triggering instants of each agent.

Figure 2 shows the state evolution of each agent, and Figure 3 shows the average consensus error evolution of each agent. It can
be seen that the states of the four agents achieve consensus at 𝑡 = 0.4s, and the average consensus error of each agent converges
within ±0.005. In addition, it can be found that the system can achieve the practical fixed-time consensus under different initial
states, and Theorem 1 is verified. Figure 4 shows the trajectories of the auxiliary dynamic variables. It can be seen that the
auxiliary dynamic variables converge to the bounded region of the 0 neighborhood when the system achieves consensus, and
𝜙𝑖(𝑡) > 0 is verified. Figure 5 shows the respective triggering instants of the four agents. It can be seen that there is no Zeno
behavior in the system, and Theorem 2 is verified. The results show that the control protocol based on dynamic event-triggered
mechanism for the practical fixed-time average consensus of general linear multi-agent systems is effective.

4.2 Parametric analysis
Different control parameters produce different control effects. Designing reasonable parameters can reduce the number of trig-
gering events while ensuring that the system has good convergence performance. Based on the simulation example in Section
4.1, this section analyzes the influence of the design parameters 𝛾1, 𝛾2, 𝛾3, 𝜇, 𝜂𝑖, 𝛼, 𝛽, 𝜏, 𝜙𝑖(0) on the number of triggering events of
the system. When other parameters are fixed, the relationships between the parameters studied and the total number of triggering
events of the multi-agent system are shown in Figure 6-Figure 14.

 

Figure 6 The total number of events varies with 𝛾1.

 

Figure 7 The total number of events varies with 𝛾2.

Figure 6-Figure 9 shows the influence of controller parameters on the number of triggering events. It can be seen that with
the increase of 𝛾1, 𝛾2 and 𝛾3, the total number of events shows a trend of local fluctuation and overall increase. With the increase
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Figure 8 The total number of events varies with 𝛾3.

 

Figure 9 The total number of events varies with 𝜇.

 

Figure 10 The total number of events varies with 𝜂𝑖.

 

Figure 11 The total number of events varies with 𝛼.

 

Figure 12 The total number of events varies with 𝛽.

 

Figure 13 The total number of events varies with 𝜏.

of 𝜇, the total number of events shows a monotonically increasing trend. Figure 10-Figure 14 shows the influence of triggering
condition parameters on the number of triggering events. It can be seen that within a certain range of meeting the system
requirements, the total number of events decreases oscillatingly with the increase of 𝜂𝑖, fluctuates in a small range with the
increase of 𝛼, decreases oscillatingly first and then increases oscillatingly with the increase of 𝛽, remains unchanged with the
increase of 𝜏, and decreases oscillatingly first and then fluctuates steadily with the increase of 𝜙𝑖(0).

The method of adjusting parameters is as follows. 1. The triggering condition parameters are initially selected according to
the design requirements. That is, the values of 𝜂𝑖, 𝛼, 𝛽, 𝜏 and 𝜙𝑖(0) are pre-determined. 2. The values of the controller parameters
𝛾1, 𝛾2 and 𝛾3 are determined by the sufficient conditions of Theorem 1, and the value of 𝜇 is preliminarily selected. 3. According
to the results of parametric analysis, adjust the values of 𝜂𝑖, 𝛼, 𝛽, 𝜏, 𝜙𝑖(0). 4. Correct the values of 𝛾1, 𝛾2, 𝛾3 and 𝜇 again. In

 

Figure 14 The total number of events varies with 𝜙𝑖(0).
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addition, when adjusting the parameters, it is found that the number of triggering events is inversely related to the convergence
speed. The parameter 𝜏 is only related to the convergence error, but has little effect on the number of triggering events and the
convergence speed. Therefore, in practical engineering applications, designers can balance the number of triggering events and
the convergence speed in the process of parameter adjustment according to the needs of the system, and reduce the convergence
error by adjusting the parameter 𝜏.

4.3 Comparative experiment
In order to present the advantages of the control protocol designed in this paper in reducing the number of system triggering
events, the results of the static event-triggered control protocol are given below for comparison.

The static event-triggered condition is given as

𝑡𝑖𝑘+1 = inf{𝑡 > 𝑡𝑖𝑘|𝑔𝑖(𝑡) ≥ 0}, 𝑘 = 0, 1,⋯ . (44)

When the parameters are the same as Section 4.1, for the multi-agent system (3) with controller (4) and event-triggered
condition (44), the simulation results for the practical fixed-time average consensus are shown in Figure 15-Figure 17.

  

Figure 15 State evolution of each agent under the static event-triggered control.

  

Figure 16 Average consensus error evolution of each agent under the static event-triggered control.

 

Figure 17 Triggering instants of each agent under the static event-triggered control.
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Figure 15 and Figure 16 show the state evolution and the average consensus error evolution of each agent under the static
event-triggered mechanism, respectively. Figure 17 shows the triggering instants of each agent under the static event-triggered
mechanism. Compared with the simulation results in Section 4.1, it is found that the multi-agent system based on the dynamic
event-triggered mechanism has fewer event-triggered moments at almost the same convergence rate.

Further, under two different event-triggered mechanisms, the number of triggering events of each agent in the first 0.6s is
shown in Table 1.

Table 1 The number of triggering events of each agent under two event-triggered mechanisms.

Event-triggered mechanism The number of triggering events of each agent

agent 1 agent 2 agent 3 agent 4

(9) 62 51 56 51
(44) 553 701 611 537

The results show that the dynamic event-triggered mechanism designed in this paper can avoid a large number of triggering
events and significantly reduce the energy consumption of the multi-agent system and the update frequency of the controller
compared to the static event-triggered mechanism.

5 CONCLUSION

In this paper, the practical fixed-time average consensus problem of general continuous linear multi-agent systems under switch-
ing topologies is studied, and a distributed control protocol based on dynamic event-triggered mechanism is proposed, which
significantly reduces the number of triggering events and can effectively reduce the energy dissipation of the system and the
update frequency of the controller. Firstly, a fixed-time consensus controller is designed for individual agent by using local in-
formation exchange between neighbors. Secondly, a dynamic event-triggered condition based on auxiliary dynamic variable
is designed for individual agent to determine the triggering instants of each agent. Thirdly, the sufficient conditions for the
multi-agent system to solve the practical fixed-time average consensus problem are given. Then, it is proved that the proposed
protocol can make the multi-agent system achieve the practical fixed-time average consensus without Zeno behavior by using
Lyapunov stability theory, linear matrix inequality and algebraic graph theory. Finally, numerical simulation is carried out. The
results show that the control protocol designed in this paper and based on dynamic event-triggered mechanism for the practical
fixed-time average consensus of general linear multi-agent systems is effective and feasible, and compared with the static event-
triggered mechanism, the dynamic event-triggered mechanism can avoid a lot of triggering events. Future work will study the
fixed-time leader-follower consensus of general linear multi-agent systems based on the dynamic event-triggered mechanism.
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