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Abstract

Proteins play an essential role in the vital biological processes governing cellular functions. Most proteins function as members of

macromolecular machines, with the network of interacting proteins revealing the molecular mechanisms driving the formation

of these complexes. Profiling the physiology-driven remodeling of these interactions within different contexts constitutes a

crucial component to achieving a comprehensive systems-level understanding of interactome dynamics. Here, we apply co-

fractionation mass spectrometry and computational modeling to quantify and profile the interactions of ˜2,000 proteins in the

bacterium Escherichia coli cultured under ten distinct culture conditions. The resulting quantitative co-elution patterns revealed

large-scale condition-dependent interaction remodeling among protein complexes involved in diverse biochemical pathways in

response to the unique environmental challenges. Network-level analysis highlighted interactome-wide biophysical properties

and structural patterns governing interaction remodeling. Our results provide evidence of the local and global plasticity of

the E. coli interactome along with a rigorous generalizable framework to define protein interaction specificity. We provide an

accompanying interactive web application to facilitate exploration of these rewired networks.
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Abstract 16 

Proteins play an essential role in the vital biological processes governing cellular functions. 17 

Most proteins function as members of macromolecular machines, with the network of interacting 18 

proteins revealing the molecular mechanisms driving the formation of these complexes. Profiling 19 

the physiology-driven remodeling of these interactions within different contexts constitutes a 20 

crucial component to achieving a comprehensive systems-level understanding of interactome 21 

dynamics. Here, we apply co-fractionation mass spectrometry and computational modeling to 22 

quantify and profile the interactions of ~2,000 proteins in the bacterium Escherichia coli cultured 23 

under ten distinct culture conditions. The resulting quantitative co-elution patterns revealed large-24 

scale condition-dependent interaction remodeling among protein complexes involved in diverse 25 

biochemical pathways in response to the unique environmental challenges. Network-level analysis 26 

highlighted interactome-wide biophysical properties and structural patterns governing interaction 27 

remodeling. Our results provide evidence of the local and global plasticity of the E. coli 28 

interactome along with a rigorous generalizable framework to define protein interaction 29 

specificity. We provide an accompanying interactive web application to facilitate exploration of 30 

these rewired networks.  31 

  32 
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Significance Statement 33 

The protein interactome contains the network of physical interactions that enable the 34 

functions of most proteins. Protein interactions can be disrupted by many triggers, such as 35 

pathogen infection or mutations in protein-coding genes, yet most studies in the field focused on 36 

characterizing the interactome in a static manner, with few devoted to investigating the dynamic 37 

nature of these interactions. In this study, we profiled the dynamics of the Escherichia coli 38 

interactome in response to changes in its growth environment. Our results shed light on the 39 

mechanisms governing protein interaction remodeling, while also providing a rigorous analytical 40 

framework for quantifying interaction dynamics on an interactome-wide scale, representing an 41 

important step towards accurate modeling of dynamic biological systems. 42 

  43 
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Introduction 44 

Microorganisms abundantly exist across all types of ecological environments, but the 45 

molecule basis for these adaptive responses is not fully understood. In the laboratory, certain 46 

bacterial strains can be cultured in a variety of conditions spanning a range of temperatures, pH, 47 

and media compositions, s resulting in different phenotypes and growth rates (µ). For example, 48 

Escherichia coli can propagate in the Luria-Bertani (LB) medium with a near maximal generation 49 

time (µmax) of ~20 minutes at 37°C. However, in its natural environment, which can be nutrient-50 

deficient, the growth rate is significantly reduced. Under nutrient deprivation, microorganisms like 51 

E. coli can maintain continuous but extremely slow growth rates (µ<< µmax) called "near-zero 52 

growth" (NZG)1,2. Accurate descriptions of the molecular mechanisms supporting these vastly 53 

different physiological states in different environments is crucial to elucidating the fundamental 54 

relationship between genotype and phenotype.  55 

While bacteria are known to regulate biochemical responses through transcriptional control 56 

of gene operons, post-translational regulation is also thought to mediate their adaptation to 57 

changing physiological demands3,4,5. Proteomics research therefore plays a particularly important 58 

role in elucidating the physiological state of bacteria due to the crucial role of proteins in executing 59 

essential cellular functions. Comparative proteome studies have found that the distribution of 60 

protein resources in bacteria is related to their growth rate3. Peebo et al. used a chemostat to isolate 61 

E. coli within a range of µ =0.2~0.9 h-1, and found that more proteins in slow-growing cells were 62 

used for energy generation, carbohydrate transport and metabolism, whereas most proteins in fast-63 

growing cells functioned in biological processes closely related to protein synthesis pathways4. 64 

More recently, Schmidt et al. measured the relative abundance of more than 2,300 proteins in E. 65 

coli under 22 culture conditions, and found that growth rate was positively-correlated with the 66 

amount of amino acid transport and ribosomal biogenesis, and negatively-correlated with energy 67 

generation pathways5. 68 

Proteins do not function in isolation in the cell, rather they selectively interacting to form 69 

large multi-subunit complexes that collectively are known as the ‘interactome’. Elucidating the 70 

composition and overall network properties of the interactome is key for revealing the molecular 71 

mechanism of cell growth and environmental adaptation on a proteome-wide level. Butland et al 72 

and Hu et al used affinity purification mass spectrometry (AP-MS) to define a dense network of 73 

protein-protein interactions (PPIs) among the soluble protein complexes of E. coli cultured in LB 74 
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medium6,7.  while Babu et al. reported  PPIs among membrane-associated proteins9 under a single 75 

static growth condition.  76 

Multiplex co-fractionation mass spectrometry (mCF-MS) is a flexible approach for -detecting 77 

and comparing protein complexes and PPI networks under different cellular contexts10. In mCF-78 

MS, cellular lysates are biochemically fractionated prior to mass spectrometry-based shotgun 79 

sequencing and relative protein quantification. Ion-exchange chromatography (IEX) is a 80 

particularly effective method to resolve complex protein mixtures11,12, while sophisticated 81 

computational analysis tools are then used to assign proteins to a given complex based on the 82 

similarity of their co-elute profiles.  Due to its quantitative, high-throughput nature, mCF-MS 83 

technology allows for direct comparison of interactome differences between distinct samples after 84 

controlling for spurious variance using biological replicates.  85 

The protein interactome is a dynamic system that changes in response to different stimuli and 86 

and environments. Studies on the dynamic response of S. cerevisiae PPIs to environmental 87 

disturbances showed that more than half of the PPIs only existed under specific culture 88 

conditions13. Changes of a single protein or a small amount of protein would lead to changes in 89 

PPIs, and some proteins modifications would also lead to changes in interactions13. Other studies 90 

have also revealed that the location and abundance of proteins in S. cerevisiae cells influence PPI 91 

formation14,15. The proteome profile of bacteria similarly varies under different conditions, and so 92 

it follows that the bacterial interactome is expected to exhibit dynamic assembly patterns. 93 

However, there has been no systematic study yet on the bacterial interactome under different 94 

conditions, with the existing E. coli interactome only constructed for LB medium.  95 

In this study, we used mCF/MS along with a customized data analysis pipeline to compare 96 

differences in the PPI networks of E. coli cells grown under 10 different culture conditions. We 97 

defined and investigated extensive condition-dependent remodeling predicted by this dataset. 98 

Projecting this PPI remodeling against evolutionary and biochemical traits allowed us to pinpoint 99 

key biological factors driving protein interaction dynamics, while statistical assessment of the 100 

dynamic networks revealed fundamental mechanistic principles underlying interactome plasticity. 101 

Along with a robust computational framework to support future studies of this nature, we 102 

developed an interactive web application to facilitate exploration of these results by the broader 103 

research community. 104 

 105 
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Results 106 

Experimental design 107 

We grew E. coli BW25113 under 10 alternate growth conditions representing different 108 

types of environmental variations (Table 1): (i) growth on two distinct types of complex medium, 109 

(ii) growth on defined (minimal) medium with one of three different carbon sources, (iii) growth 110 

on glucose minimal medium with two different stress (anaerobic growth, heat shock) conditions, 111 

(iv) growth in glucose-limited chemostat cultures with varying growth rates (NZG, µ»0; Max, 112 

µ»0.8) and (v) stationary phase.. The reasoning behind selecting these particular growth conditions 113 

is elaborated upon in the Methods section. 114 

 115 

Generation of condition-dependent CF/MS proteome profiles 116 

We used multiplex co-fractionation mass spectrometry (mCF/MS; see Methods) to 117 

generate proteomic profiles encompassing 1,937 E. coli proteins, in replicate, across 96 IEX-118 

HPLC fractions for each of the 10 growth conditions (Fig. 1A). We used isobaric Tandem Mass 119 

Tag (TMT) stable isotope chemical labeling to quantify the condition-specific protein elution 120 

profiles for just under half of all curated protein-coding genes (Fig. 1B).  These mCF/MS profiles 121 

consisted of quantitative measurements of each protein relative levels in each fraction, using 122 

summed precursor (MS2) ion intensity as a proxy for protein abundance (Fig. 1C). The proteins 123 

profiled in this dataset represent strong coverage (>70%) of the five largest functional annotation 124 

pathways in the KEGG24 database (Fig. 1D), with all pathways well-represented on average 125 

with >53% coverage. Additionally, chromatograms showed excellent reproducibility between 126 

HPLC runs (triplicate technical injections are shown in Fig. 1E). Given a key premise of mCF/MS 127 

is that physically-interacting proteins display similar elution profiles, we found that pairs of 128 

proteins with high-confidence experimental evidence of interacting in the SRING database16 had 129 

significantly higher correlations in our dataset than random protein pairs (p < 2.2 e-16; Fig. 1F), 130 

demonstrating strong recovery of canonical protein interactions.  131 

 132 
Computational strategy for profiling interactome remodeling from dynamic CF/MS data 133 

A key challenge of the mCF/MS shotgun sequencing routine is that the multiplexed 134 

measurements are made at the peptide-level, after in vitro-digestion of the protein fractions, while 135 

quantitative inferences must be assigned at the higher protein-level. Moreover, while our dataset 136 
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was expected to be dynamic, existing tools such as EPIC17, PrInCe18, and CCprofiler19 were 137 

devised for analyzing static PPI networks using standard non-multiplexed CF/MS data, each 138 

proposing different pre-processing strategies. Thus, we developed a pre-processing workflow 139 

starting from the peptide-level with the optimal set of steps and parameters for our data that led to 140 

the best recapture of literature-reported PPIs (see Methods).  141 

Figure 2 outlines the computational analysis pipeline we developed to profile dynamic 142 

protein interaction remodeling based on conditional mCF/MS data. The pipeline consists of two 143 

modules, with the first dedicated to pre-processing the mCF/MS data (Fig. 2A), and the second 144 

responsible for quantitatively scoring protein interaction remodeling (Fig. 2B). 145 

The second module is concerned with quantitatively profiling protein interaction 146 

remodeling from the pre-processed mCF/MS data. Our strategy begins by computing conditional 147 

similarity scores for each pair of interacting proteins within a reference interactome predicted from 148 

the mCF/MS data using established algorithms (see Methods). We then leveraged the quantitative 149 

nature of the ten mCF/MS reporter channel measurements to quantify the nature and extent of 150 

remodeling exhibited by each putative binding partner in response to each growth environment 151 

based on changes in the similarity of the interactor mCF/MS profiles. This allowed us to profile 152 

changes in the interaction patterns at different levels of biological organization, starting from 153 

individual pairs of proteins and multi-protein complexes, through to whole interactome, in 154 

response to the different growth conditions. Our pipeline enabled the identification of key 155 

pathways and molecular mechanism driving interactome remodeling, as described in later sections, 156 

while providing a rigorous generalizable framework for interactome remodeling using mCF/MS 157 

data. A detailed breakdown of each step in the analysis pipeline can be found in the Methods 158 

section. 159 

We first predicted a reference interactome spanning 6,152 high-confidence pairwise 160 

interactions among the quantified E. coli proteins in the mCF/MS data by combining and scoring 161 

all 10 datasets using the established EPIC software16 (see Methods and Supp. Table 1). This unified 162 

interactome was shown to be highly modular (Louvain modularity = 0.89), encompassing267 163 

putative multi-component complexes ranging in size from just three subunits to a large ribosomal 164 

assembly consisting of 35 polypeptides (Supp. Table 2). While most proteins (68.3%) were 165 

assigned to a single complex, several ‘moonlighting’ proteins were predicted to function as 166 

members of multiple distinct complexes, with nine proteins operating in as many as four 167 
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complexes, including molybdopterin cofactors (moaE, mobA, modE, moeA) and rRNA methylases 168 

(rlmA, rlmB, rlmG). 169 

 170 

Extent of global remodeling of E. coli interactome 171 

We used the standard LB growth medium as a baseline condition to quantify the extent of 172 

interactome remodeling occurring in response to the other nine different environmental 173 

perturbations (as summarized in Table 1). By scoring each constituent interaction’s conditional 174 

remodeling relative to the LB reference , we placed the predicted protein complexes on a spectrum 175 

of stable-to-disrupted complexes detected within each growth medium, with complexes whose 176 

underlying mCF/MS profiles showed the largest increase in dissimilarity being assigned higher 177 

remodeling scores (see Methods). We found that while individual complexes reacted differently 178 

depending on the specific culture conditions, the overall extent of interactome remodeling was 179 

remarkably similar across all conditions, with most complexes (57.8% on average) remaining 180 

quantitatively unchanged relative to the LB baseline, whereas only a small <5% fraction exhibited 181 

high (> 0.5) remodeling scores suggestive of disrupted interactions (Supp. Table 2). 182 

Figure 3 shows the interactome-wide patterns of protein complex remodeling seen among 183 

select representatives of the four major test conditions evaluated in the comparative experiment. 184 

We highlight an example complex from each condition based on biological relevance that are 185 

impacted by relatively high levels of PPI remodeling. The quantitative nature of the mCF/MS 186 

measurements enabled deciphering the nature of the intra-complex remodeling occurring (e.g. 187 

subunit loss versus changes in overall macromolecular abundance relative to LB), and we show 188 

the underlying mCF/MS data for a representative remodeled interaction per complex. 189 

For example, in the condition where galactose was the primary carbon source, we found 190 

evidence of extensive formation of a protein complex composed mainly of galactose metabolism 191 

enzymes, where the assembly extends from one large unit into two distinct subunits connected by 192 

the galM epimerase protein. Additionally, the dynamic association of garD, a galactarate 193 

dehydrase, suggests a peripheral role for this protein with the core complex. Together, these 194 

remodeling patterns suggest the presence of condition-dependent macromolecules driven by the 195 

availability of galactose and simultaneous trimming of less essential interactions. 196 

In response to high temperature (42 °C), we found that one of the top remodeled complexes 197 

showed evidence of decomposition into two separate subcomplexes, with one consisting of the 198 
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heat shock response proteins from the ‘hsl’ family, and the other consisting of hydrogenase 199 

proteins from the ‘hya’ family of genes. Meanwhile, the dimeric histone-like master transcriptional 200 

regulators hupA and hupB and chaperone protein htpG dissociated entirely from a prominent 201 

assembly seen in LB. A potential explanation for this behavior could be induction of a heat shock 202 

transcriptional response in order for the organism to cope with the high temperature.. 203 

A striking example of the influence of highly-connected hub proteins on complex 204 

remodeling was observed when E. coli was cultured in a chemostat at near-zero growth rate. The 205 

complex with the highest remodeling score in this condition involved several transporter proteins, 206 

with the respiratory enzyme glpB playing a central role by being the only member that physically 207 

interacts with all complex members. Both the downregulation and elution shifting of glpB under 208 

the near-zero growth condition coincided with the destruction of all its intra-complex interactions 209 

and the consequent loss of this complex, demonstrating the dynamic nature of complexes with 210 

reliance highly-connected subunits for their structural integrity. 211 

Finally, another complex that had a high remodeling score was detected preferentially 212 

among starved cells, showing extensive disruption primarily due to the loss of interactions 213 

involving the two highly-connected subunits ade and add. Proteins in this conditional assembly 214 

have been associated with multiple types of post-translational protein modifications, including 215 

phosphorylation and acetylation20,21, implying altered activity of an upstream signaling mechanism 216 

as a key response to the starvation condition, presumably triggering energy conservation 217 

mechanisms. 218 

 219 

Biological pathways driving interactome remodeling 220 

Using annotated pathway membership information from the EcoCyc curation database22 221 

combined with our reference EPIC-derived interactome, we quantified the extent of conditional 222 

remodeling detected in each condition among interaction partners mapping to 38 major 223 

biochemical pathway families, classifying them according to the spread of remodeling scores 224 

around the baseline LB condition (Fig. 4A). While most (61.5%) biosynthesis pathway families 225 

showed relatively stable behavior across conditions compared to LB, notable exceptions included 226 

strengthening of genetic machinery involved in cell replication in conjunction with consistent 227 

weakening of interactions related to the synthesis of polyprenyl and tetrapyrrole, which are known 228 

to be growth inhibitory. Interestingly, metabolic regulator biosynthesis displayed a wide range of 229 
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dynamic remodeling, being strengthened in some conditions and weakened in others. Dissecting 230 

the interaction behavior showed that these changes are primarily driven by changes in the elution 231 

profiles of the proteins rather than changes in relative abundance, suggesting possible biochemical 232 

alterations to the structures of these complexes. 233 

In contrast to the biosynthesis pathways, only one-third of pathways associated with 234 

biomolecule degradation were relatively stable across conditions. Reactive oxygen species 235 

degradation, a hallmark stress response, was consistently impacted across all changes in the media, 236 

alongside changes in the machinery linked to the degradation of amino acids and aldehydes. On 237 

the other hand, we observed a relative weakening, i.e. decrease, in assemblies linked to degradation 238 

of fatty acids and lipids, aromatic compounds and alcohol, with alterations primarily driven by 239 

abundance changes. Additionally, interactions involving signal transduction pathways were 240 

elevated concomitant with increased activity of signaling cascades in response to the 241 

environmental perturbations (Figure 4A). A similar pattern was observed for enzyme assemblies 242 

linked to metabolic detoxification and glycan formation. Conversely, persistent global weakening 243 

of interactions among components of the protein modification and energy generation pathways 244 

was seen under non-conventional environments, reflecting a shift to increased conservation. 245 

We also identified pathways most influential in driving the remodeling within each growth 246 

condition. We consequently examined assemblies linked to the top four strengthened and 247 

weakened pathways detected within each culture setting (Fig. 4B). Consistent with the global 248 

trends (Fig. 4A), the protein modification machinery was among the most consistently and 249 

severely impacted systems across all conditions relative to LB, indicative of the key role played 250 

by dynamic post-translational modifications. Interestingly, acid resistance (ability to withstand pH 251 

<2.5) was among the most-strengthened pathways detected under near-zero growth  yet one of the 252 

most weakened in starved cells, despite being generally associated with the stationary phase in the 253 

literatureref. 254 

Hypergeometric enrichment tests revealed that amino acid degradation, cofactor 255 

biosynthesis, and precursor metabolite generation pathways are significantly enriched (FDR < 256 

0.01) among both the top 5% remodeled and top 5% stable proteins on average across conditions 257 

(Fig. 5C&D). Amine degradation and aromatic compound biosynthesis were exclusively strongly 258 

represented among the most stable proteins (Fig. 5D), while a larger set of 13 pathways spanning 259 

diverse biological mechanisms were enriched among the most highly remodeled proteins, 260 
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indicative of the multi-faceted nature of interactome disruption across the diverse growth 261 

conditions. 262 

 263 

Structural and functional properties of interactome remodeling 264 

Our mCF/MS data enabled the capture of two distinct types of data patterns suggestive of 265 

interaction remodeling: (1) qualitative: elution (HPLC retention time) shifts, i.e. impacting the 266 

overlap of the proteins’ cross-fraction co-elution patterns, and (2) quantitative: intensity fold-267 

changes, i.e. the ratio between protein relative expression (co-abundance) between conditions (Fig. 268 

2B). While we opted for a single integrative analysis strategy designed to generate a single score 269 

combining the changes seen in both patterns (see Methods), we also compared the patterns of each 270 

reference interaction and found that the magnitude of changes in interactors’ co-abundance tended 271 

to be significantly greater than that exhibited by coelution changes, suggesting that expression-272 

level regulation plays a prominent role as the dominant mechanism influencing downstream 273 

interaction remodeling (Fig. 5A). 274 

To identify biological properties that distinguish proteins based on their levels of 275 

interaction remodeling, we computed associations between diverse protein traits and their 276 

corresponding averaged integrated remodeling score within each growth condition separately. A 277 

negative correlation between remodeling scores and summed protein intensities indicated that low-278 

abundance proteins were more prone to remodeling (Fig. 5B), consistent with past findings from 279 

mammalian interactome remodeling studies24. Classifying the proteins based on their evolutionary 280 

age also revealed that certain conditions, including near-zero growth and stationary phase, favored 281 

ancient protein interaction stability, implying that adaptation to certain types of environments, such 282 

as growth on xylose-rich media, is a modern adaptation (Fig. 5C). Strikingly, we found that 283 

membrane proteins were relatively more stable than their cytosolic and periplasmic counterparts 284 

(Fig. 5D), while proteins subject to phosphorylation were likewise generally more stable (Fig. 5E). 285 

Counter-intuitively, proteins annotated as containing intrinsically disordered structures had a 286 

lower median remodeling score (Fig. 5F), suggesting they tend to form constitutive assemblies. 287 

Similarly, highly-connected hub proteins that participated in many (6 or more) interactions were 288 

more stable, likely due to their persistent and essential role in maintaining interactome structure 289 

(Fig. 5G), while unexpectedly the number of complexes a protein participates in was less 290 

influential (Fig. 5H). 291 
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We explored the overarching structural patterns of interactome remodeling by examining 292 

the relationship between the integrated remodeling scores and the mathematical properties at both 293 

the pairwise interaction level and the protein complex level. We found no correlation between each 294 

interaction’s betweenness score within the interactome and its corresponding remodeling 295 

propensity (Fig. 5I). This indicates that unlike hub proteins, individual central interactions have 296 

the same tendency to be remodeled as more peripheral ones. Meanwhile, tightly-connected protein 297 

complexes had relatively lower remodeling scores on average than those with sparser intra-298 

complex connections, suggesting higher structural resilience to changes in the surrounding 299 

environment (Fig. 5J). 300 

 301 

Discussion 302 

Here, we present the results of a multi-factorial perturbation experiment investigating the 303 

global robustness and localized dynamics of the E. coli interactome in response to different types 304 

of environmental perturbations. We cultured a K-12 laboratory strain under 10 different growth 305 

media and generated high-throughput mCF/MS data to enable comparative protein interaction 306 

prediction and quantitative profiling of interactome dynamics. We found rewired protein 307 

complexes that were altered preferentially, or even exclusively, in certain physiological contexts 308 

that highlight key players in environmental adaptation responses. We also pinpointed 309 

macromolecules and their associated biological pathways driving this remodeling in comparison 310 

to crucial (housekeeping) assemblies that remain universally unaltered (stable core). Our 311 

integrative scoring approach also revealed interactome-wide biological, biophysical, and structural 312 

patterns governing the tendency of bacterial interactions to become disrupted or strengthened.  313 

To facilitate exploration of the results, an interactive web application visualizing the 314 

dynamic E.coli mCF/MS profiles is available at https://bnfweb.bu.edu/EcoliDynamicInteractome/. 315 

Finally, we note that the experimental and computational pipelines reported here provide a 316 

generalizable workflow for future studies of interactome dynamics in other settings. 317 

  318 
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Methods 319 

Strain 320 

The wild-type Escherichia coli K-12 strain BW25113 1 was stored in the lab and used to 321 

generate the data for all 10 culture conditions. 322 

 323 

Media 324 

Chemical reagents for media preparation were purchased from Sigma-Aldrich unless 325 

specified otherwise. The LB broth miller was purchased from Fisher BioReagentsTM. Twenty-five 326 

grams of LB broth power, with tryptone 10 g, yeast extract 5 g and NaCl 10 g, was suspended in 327 

one liter of Mini-Q water and sterilized by autoclaving. The LB plates were produced by adding 328 

1.5 g agar to 100 mL LB medium mixture before autoclaving.  329 

M9 minimal medium without carbon source was prepared in the following ways: 200 ml 330 

of 5´M9 salts (Na2HPO4 33.9g/L, KH2PO4 15g/L, NH4Cl 5g/L, NaCl 2.5 g/L), 1 ml 1 M MgSO4 331 

solution, 0.1 ml 1 M CaCl2 solution, 1 ml of Trace elements (ZnSO4·7H2O 0.5 g/L, CoCl2·6H2O 332 

0.5 g/L, (NH4)Mo7O24·4H2O 0.5 g/L, CuSO4·5H2O 0.5 g/L, H3BO4 0.1 g/L, MnCl2·4H2O 0.5 g/L). 333 

The resulting solution was filled up to 980 ml with water and then filter sterilized (Nalgene™ 334 

Rapid-Flow™ Sterile Disposable Filter Units with PES Membrane, Thermo Fisher Scientific, 335 

USA). Different carbon source stocks were prepared with glucose 20%, galactose 10%, and Xylose 336 

20% and filter sterilized.  Before use, each carbon source was added to minimal media with a final 337 

concentration of 4 g/L to achieve an equal concentration of carbon atoms in each medium.  338 

FeSO4·7H2O solution was prepared with 5g/L (10000 ´), filter sterilized, frozen in -20°C and 339 

added 0.1 mL to 1 L M9 minimal medium before use. 340 

The Amino acid medium (AA) was made by supplementing the medium with glucose with 341 

a final concentration of 4 g/L, and the amino acids solution (50 ´), which was purchased from 342 

Sigma (R7131), was used to replace NH4Cl in the M9 medium as the nitrogen. The amino acids 343 

solution consisted the following individual amino acids: Arginine 10.0 g/L, Asparagine 2.84 g/L, 344 

Aspartic Acid 1.0 g/L, Cystine 2.5 g/L, Glutamic Acid 1.0 g/L, Glycine 0.5 g/L, Histidine 0.75 345 

g/L, Hydroxy-L-Proline 1.0 g/L, Isoleucine 2.5 g/L, Leucine 2.5 g/L, Lysine 2.0 g/L, Methionine 346 

0.75 g/L, Phenylalanine 0.75 g/L, Proline 1.0 g/L, Serine 1.5 g/L, Threonine 1.0 g/L, Tryptophan 347 

0.25 g/L, Tyrosine 1.16 g/L, Valine 1.0 g/L. Other supplement salt mixture in AA was the same 348 

as M9 minimal medium. For chemostat growth, 3 g/L glucose in M9 minimal medium was used.  349 
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Media list 350 

Media list Growth conditions and why we choose them 

Complex 

medium 

1 LB The most commonly media used for E. coli cultivation.  

For comparison with published protein complex to illustrate BP 

method used in this project is good and credible for E.coli protein 

complex studies. 

2 Glucose+AA Amino acids replaced ammonium as nitrogen source.  

Minimal 

Medium 

(MM) with 

different 

carbon 

sources, 

NH4Cl as 

nitrogen 

source 

3 Glucose Glucose as carbon in MM, as a standard in all 10 conditions. 

4 Galactose The slowest growth rate in selected batch culture conditions. 

Showed different proteome data with glucose when analyze 

reference (1) data 

5 Xylose Pentose, different with glucose. Special D-xylose metabolic 

process, significantly upregulated genes were found (1) 

Highest growth rate in selected MM. (1.18-fold than glucose). In 

(1) data, E. coli have almost the same growth rate both in glucose 

and xylose 

Stress 

conditions 

on glucose 

6 42C 42ºC high temperature stress 

High temperature makes E. coli fragile. When put E.coli culture 

from 42C to refrigerator and then put back to 42C, E. coli almost 

can’t grow (death cell precipitation appear). It didn’t happen in 

37C (37C-4C-37C, grow normal). 

When E.coli grown in 42C, some flasks grow faster and some 

flasks grow slower, not uniform. Maybe growth heterogeneity 

happened in high temperature stress.  

7 Anaerobic E.coli is facultative anaerobic strain. 

In chemostat anaerobic condition, plan to design growth 

rate/dilution rate D=0.25 h-1 

We also have “E. coli grown in chemostat aerobic condition with 

the same growth rate” sample, can do proteome comparison if 

necessary. 
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fixed growth 

rate on 

glucose 

8 Chemostatµ=

0.8 

D=0.8 h-1, the max growth rate in chemostat. In (1) D=0.12 h-1, 

0.2 h-1, 0.35 h-1, 0.5 h-1 were chosen.  

Chemostat is different with batch, and commonly used in bacterial 

cultivation to get high growth rate and high density. Studying 

E.coli grown in chemostat with max growth rate can help people 

better understand E. coli growth process and guild people to use 

E.coli for biotechnology applications. 

9 Chemostat 

µ=0 (near-

zero growth, 

NZG) 

NZG in chemostat continuous culture vessel, simulate E. coli 

grown in nature environment. 

starved cells 10 Stationary 1 

day 

Starvation condition, different with exponential phase. 

 351 

 352 

Cultivation 353 

For the preculture, a single colony was picked from the LB plate and grown overnight in 354 

50 ml LB medium in a 250-ml Erlenmeyer flask at 37°C, 200 rpm. For the batch cultures, the cells 355 

from a preculture were washed twice with sterilized ice-cold phosphate-buffered saline (PBS) and 356 

re-inoculated into 100 ml of the appropriate medium in a 500-ml Erlenmeyer flask and grown at 357 

37°C, 200 rpm. The cells were first grown to exponential phase and then transferred into a second 358 

shake-flask containing fresh medium under the respective condition and growing to early 359 

exponential phase. The cells undergoing temperature stress were grown at 42°C. 360 

A BIOFLO 2000 bioreactor (New Brunswick Sci., USA) was used for batch and chemostat 361 

cultivation under a biocontroller of temperature (37°C), pH 7, airflow, pO2 and stirring. The 362 

stirring rate varied from 200 to 1200 rpm to keep pO2 above 50% of air saturation. An infrared 363 

analyzer LI-800 (LI-COR Biosciences, Lincoln, NE, USA) was used to measure off-gas CO2.  364 

For cell cultivation, frozen glycerol stocks were inoculated into 5 mL LB medium and 365 

grown overnight. The precultures were 1:10 diluted with fresh glucose M9 medium, and allowed 366 

to grow in the batch mode to a specific OD before continuous operation initiated. Then cultures 367 

were stabilized in chemostat mode at a dilution rate (D) (µmin) =0.00097 h-1 (near-zero growth) 368 
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until achieving the steady-state. After sample collection, a continuous increase of D started until 369 

cells could not keep up with the rising D (resulting in culture washout) and achieved the maximal 370 

specific growth rate (µmax) at » 0.8 h-1. 371 

Starved cells were continuously grown after reaching stationary phase for 1 day. 372 

 373 

Protein samples extraction 374 

When cells grow to OD600=0.2~0.3, cells under the respective condition were collected by 375 

centrifugation at 3197g at 4°C for 20 min, washed twice with ice-cold PBS buffer, harvested by 376 

centrifugation at 10000g and the cell pellet was stored at -80°C until further processing. 377 

For all batch cultures (totally six culture conditions), each culture condition generated three 378 

independent culture cells that were subjected to three independent protein samples extraction. The 379 

cultured cells under each chemostat culture condition (totally four) had only one biological 380 

replicate and each was used to generate protein samples extraction three times. 381 

 382 

Cofractionation samples preparation 383 

BP (Biochemical purification) with Ion Exchange Chromatography (HPLC-IEX) 384 

Per 100 µg frozen cells were resuspended in 0.5 ml fresh protein extraction buffer (20 mM 385 

Tris-HCl, pH 8.0, 150 mM NaCl, 0.2 mM EDTA, 10% glycerol, protease inhibitor (PI, Roche, 386 

Cat. No. 04693159001), 0.25 mM TCEP), and lightly disrupted by sonication on ice. The soluble 387 

proteins were obtained by Centrifugation at 15,000 × g for 10 min at 4 °C, a small aliquot of the 388 

supernatant was taken to determine proteins concentration using a BCA assay.  389 

An Agilent 1260 Infinity II was equipped with columns PolyWAX LP 204WX0510 390 

(200×4.6mm i.d., 5 µm, 1000-Å) and PolyCAT A 204CT0510 (200×4.6 mm i.d., 5 µm, 1000-Å) 391 

(PolyLC INC, MD, USA). Before sample injection, the columns were balanced with 10 bed 392 

volumes of buffer A (0.75 mM AmAc). About ~2.5 mg of fresh soluble protein sample was 393 

injected to the IEC column and separated by a linear gradient of 4-30% buffer B (2.5 M AmAc) 394 

for 90 min and 30-60% buffer B for 30 min, with a flow rate of 0.4 ml/min. Totally 96 fractions 395 

were collected using a 96-deep well plate (Thermo Scientific™ Abgene™ AB0564) with 1 min 396 

intervals.  397 

 398 

Fractionated proteins digestion and peptides desalting 399 
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Take a small aliquot (25 µl) of proteins from each fraction of the 96-deep well collection 400 

plate, to a new 96-well plate to measure protein concentration using BCA assay in a Bio-tek 401 

microplate reader. The rest of proteins of each fraction were dried by a Savant SpeedVac SC210A 402 

(Thermo Fisher Scientific, USA), resuspended in 100 µL buffer (8.5 M urea-100 mM Tris-HCl, 403 

pH 8.0, 5 mM TCEP) reduced at 37°C for 60 min, alkylated with 15 mM IAA for 60 min, diluted 404 

with 50 mM Tris-HCl with urea<1 M, digested by incubation with sequencing-grade modified 405 

trypsin (1/20~1/100, w/w) overnight at 37 °C. After digestion, the reaction was stopped by adding 406 

FA with a final concentration of 1%. The peptides were desalted by a Sep-Pak tC18 96-well 407 

µElution plate (Waters, USA, Product Number 186002318). Before loading samples, the desalting 408 

plate was wetted with 0.5 mL methanol twice and washed with 0.5 mL 0.1% FA twice. Peptide 409 

fractions were loaded on the plate by centrifugation for 1 min at 100 g. Based on the amount of 410 

proteins from each fraction measured with a BCA assay previously, the total peptides for each 411 

fraction loaded to the desalting plate should not exceed 1% of the sorbent weight (10 mg). The 412 

desalting plate was washed twice with 0.5 mL of 0.1% FA to remove the unbinding materials and 413 

eluted with 150 µL 0.1% FA/60% ACN twice, the elution samples were collected with PlateOneTM 414 

96-well 0.5 ml polypropylene plate (USA Scientific, USA, Product number 1896-5110). The 415 

fractioned desalted samples in the plate were divided into three low-profile 96-Well PCR Plates 416 

(Bio-rad, USA, Product number HSP9601) and dried by Speedvac. Dried peptides in one plate 417 

were used for further TMT-labeling, and the other two plates were stored at -80°C as backups.  418 

TMT labeling  419 

We used 20 µl of 50 mM HEPES buffer to resuspend each fraction of peptides in a plate, 420 

then transfer 4 μg peptides per fraction into a new low-profile 96-Well PCR Plate and adjust to a 421 

final volume of 20 μL with 50mM HEPES buffer. Note that for fractions 1-4, each with a total 422 

protein digest of 1 µg, these peptides were all transferred into the new 96-Well PCR Plate. Using 423 

this way, cells from 10 culture conditions generated 30 of 96-well plates of peptide samples.  424 

For the 5mg TMT label reagent vials (TMT 10plex Isobaric Label Reagent Set plus 425 

TMT11-131C Label Reagent, Thermo Fisher Scientific, catalog number A34808), add 250 µl of 426 

ACN to each tube to make the reagents concentration of 20 µg/µl, took half (125 µl) of the reagents 427 

to new tubes and diluted to 2 µg/µl with ACN.  428 

When doing TMT labeling, for the 10 plates in a group, took 2 µl from the same fraction 429 

of each plate and put them into a new plate. The 11th plate was a mixture of the 10 plates and used 430 
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for normalization. Added 10 µl of 2 µg/µl TMT reagent to each fraction of peptides to make the 431 

TMT/sample=5:1 (v/v) for labeling. The mixtures were incubated for 1 hour at room temperature. 432 

After the reaction, added 2 µl 5% hydroxylamine incubating at room temperature for 15 min to 433 

quench the reaction. The labeled peptides in the 11 plates were pooled into a 96-well plate and 434 

desalted with a Sep-Pak tC18 96-well µElution plate. The desalted peptides were eluted into a 435 

PlateOneTM 96-well 0.5 ml polypropylene plate and divided to three new low-profile 96-Well PCR 436 

Plate and dried by SpeedVac. These three plates were stored in -80°C, one waiting for mass spec 437 

analysis and the others stored as backups.  438 

 439 

LC-MS/MS 440 

The dried peptides were resuspended in 100 µl of solvent A and 15 µl of each sample was 441 

taken and loaded on an EASY nLC 1200 system coupled to a Q Exactive HF mass spectrometer 442 

equipped with an EASY-Spray ion source (all from Thermo Fisher Scientific, USA). The peptides 443 

mixtures were separated by a C18 Acclaim PepMap 100 pre-column (75 µm i.d.´2 cm, 3 µm, 100 444 

Å) hyphenated to a PepMap RSLC C18 analytical column (75 µm i.d.´50 cm, 2 µm, 100 Å) (all 445 

from Thermo Fisher Scientific, USA). Each fractionated sample was eluted from the column with 446 

a 120-min gradient.  447 

 448 

Protein identification with MaxQuant 449 

The MS/MS raw files were searched using MaxQuant Version 1.6.0.16 against the E. coli 450 

database (Uniprot, download data:2018/06/25). The database consists of 4, 313 E. coli proteins as 451 

well as known contaminants. Reporter ion MS2 was used for quantification with 10plex TMT and 452 

a reporter mass tolerance of 0.003 Da. Peptide search tolerance was set to 4.5ppm for MS1, and 453 

MS2 fragment tolerance was set to 10ppm. Match between runs was active with an alignment 454 

window of 20 min and a match window of 0.7 min. Other MaxQuant parameters were performed 455 

by default.  456 

 457 

CF/MS Data Preprocessing 458 

We sought to develop a pre-processing workflow with the optimal set of steps and 459 

parameters for our data that would lead to the best recapture of literature-reported protein 460 
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interactions. Starting from the peptide-level data, the following four steps represent the pre-461 

processing steps in our final pipeline: 462 

(i) Normalization. To correct for the different number of peptides identified in each of the 96 463 

fractions (850 - 5940 peptides per fraction), MS intensity values were normalized within each 464 

fraction, converting the raw intensity of each peptide to its proportion of all peptides within that 465 

fraction, followed by log2-transformation.  466 

(ii) Smoothing signals. Each peptide’s 96-fraction conditional profile is smoothed by taking a 467 

moving average of 4 fractions to smooth out the short-term fluctuations across neighboring 468 

fractions.  469 

(iii) Filter outlier sibling peptides. On average, each protein in this dataset has 14 peptides mapped 470 

to it (IQR 5-19). It is expected that the peptides that map to the same protein should have similar 471 

profiles to each other, and as such any peptide that deviates significantly from its group is likely a 472 

faulty measurement or incorrect mapping. To filter out these outlier peptides, we performed 473 

average-linkage hierarchical clustering on the sibling peptides based on their similarity to each 474 

other, split the resulting dendrogram into two clusters, and retained the peptides belonging to the 475 

larger cluster as being representative of the protein.  476 

(iv) Construct protein profiles. Finally, we collapsed the sibling peptide profiles into their 477 

corresponding protein profiles by averaging their per-fraction intensities, leading to a final set of 478 

1,937 proteins for downstream analysis. 479 

In developing this pipeline, we benchmarked different strategies for each step as follows:  480 

1) Generate protein profiles from peptide profiles using different sets of processing parameters. 481 

2) Compute distances between resultant protein profiles. 482 

3) Compare distances to literature-curated PPIs using a ROC analysis. 483 

For step 2, the distances between protein profiles were computed using three metrics: 484 

Pearson distance, Euclidean distance, and Wasserstein distance, with Pearson distances eventually 485 

leading to the best performance. This dataset has 2 replicates, and as such 4 distances were 486 
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computed per protein pair, with the average of these 4 distances taken as the representative distance 487 

between the two proteins. This distance was then converted into a signal-to-noise ratio by dividing 488 

the distance by the average cross-replicate distance, i.e. noise, of the given two proteins. 489 

For step 3, the following datasets were used as reference protein interactions to benchmark against: 490 

1) A set of one million pairwise interactions from the STRING database v1116. STRING is a 491 

repository of interactions compiled from seven different sources. The dataset was filtered for high-492 

confidence interactions only (STRING score > 0.7). Only pairs for which elution data is present 493 

in our data for both members were retained for further analysis, leading to a dataset of 24,912 494 

interactions among 1,821 unique proteins.  495 

2) A set of 184,023 interactions from the BioGRID database25. BioGRID is a literature-curated 496 

database of genetic and protein interaction data. Only pairs for which elution data is present for 497 

both members in our data were retained for further analysis, leading to a dataset of 36,204 498 

interactions among 1,690 unique proteins. 499 

For each set of pre-processing parameters and each reference dataset, the benchmarking ROC 500 

analysis was carried out as such:  501 

1) Compute average distance between each pair of proteins. 502 

2) Sort the protein pairs in ascending order of distances. 503 

3) Label each pair as true or false depending on presence within the given reference network. 504 

4) Compute the area under the ROC curve using the pairwise distances as weights. 505 

The pipeline that led to the highest AUC score in this analysis was selected (Fig. 2A). 506 

Predicting E. coli interactome to probe for remodeling 507 

The EPIC software17 was employed to predict protein interactions in the conditional 508 

CF/MS data, representing the E. coli interactome that we later searched for evidence of 509 

remodeling. The software was run on the pooled CF/MS data across conditions and replicates. The 510 

default PPI score cutoff of 0.5 was applied. EPIC used the following metrics for determining co-511 
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elution: mutual information, Euclidean distance, Jaccard index, Pearson correlation, Pearson 512 

correlation with Poisson noise coefficient, apex score, and a novel Bayes correlation.  513 

This network contains 6,152 interactions among 1,866 proteins. The average degree is 6.6 514 

(IQR 4-7). EPIC detected 267 complexes among this interactome with an average size of 9.2 515 

proteins (IQR  6-11). A total of 1,806 proteins (96.8% of all proteins in the interactome) were 516 

determined to be members of complexes in this interactome. 68.3% of these proteins were a 517 

member of just one complex while at the other extreme there are 9 proteins that are members of 4 518 

complexes. 83.6% of edges in the interactome were within complexes as opposed to across 519 

complexes. 520 

 521 

  522 
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Computing conditional similarities 523 

We used two different metrics to score the similarity of each pair of protein profiles in each 524 

of the growth conditions (Fig. 2B). Each of these metrics captures a different mathematical 525 

property of the CF/MS profiles which are potentially informative of different mechanisms of 526 

remodeling. To recap, a protein’s CF/MS profile in a given condition is its relative abundance in 527 

each of the 96 consecutive fractions. The two similarity metrics are: 528 

 529 

1) Co-elution. This corresponds to the similarity of the ‘shape’ of the two protein CF/MS profiles, 530 

i.e. the patterns of relative abundance across the fractions, and commonly used for inferring protein 531 

interactions from CF/MS data. Computed as the Pearson correlation between the two CF/MS 532 

profiles and is independent of the magnitude of the protein’s relative abundances. Finally, each 533 

protein pair’s correlation within each condition was averaged across the two replicates. 534 

 535 
2) Co-abundance. This corresponds to the ratio between the two proteins’ total relative abundance 536 

in each condition. Computed as intensity fold-changes between each pair of proteins in each of the 537 

10 conditions as follows. We first reversed the log2-transformation of the CF/MS profiles. We 538 

then summed each protein’s MS2 intensity values across fractions. Since protein-protein 539 

interactions are inherently undirected in CF/MS methods, the fold-change for a given protein pair 540 

was consistently computed as the ratio between the lower summed abundance to the higher one. 541 

These ratios were then log2-transformed. Finally, each protein pair’s fold-change within each 542 

condition was averaged across the two replicates. 543 

 544 

We then combined these two scores into one similarity score as follows. We created a table 545 

with the combined coelution and coabundance scores for all protein pairs in our predicted E. coli 546 

interactome across all conditions. Each row of this table corresponded to one protein-protein 547 

interaction (PPI) in one condition, and the table has one column with the corresponding co-elution 548 

score and one with the co-abundance score. We then took the first principal component of the PCA 549 

decomposition of this table to represent our final PPI similarity scores. This principal component 550 

represented 62% of the data variance. This PCA method was used since it computes a score that 551 

captures the information in both similarity metrics without being affected by their correlation or 552 

the differences in their scales. 553 
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Scoring interactome remodeling 554 

We selected the commonly-used LB growth media as a baseline reference condition to 555 

compare the other growth conditions against for evidence of protein interaction remodeling. For 556 

each interaction in our E. coli interactome, we computed conditional remodeling scores as the 557 

difference between its similarity score in the LB condition and its similarity scores in the other 558 

conditions. As such, each interaction has one remodeling score per condition. To ensure the 559 

remodeling score is higher for PPIs that are considered weakened/disrupted (‘more remodeled’) 560 

and lower for those that are considered strengthened/conserved (‘less remodeled’), the remodeling 561 

score is always computed as score(LB) - score(condition). This way, the interacting protein 562 

profiles that become less similar will have a positive remodeling score and those that become more 563 

similar will have a negative remodeling score, while those that remain unchanged compared to the 564 

LB condition will have a score of zero. 565 

These scores were summarized at the level of the 267 protein complexes detected in the 566 

predicted interactome by averaging the remodeling scores of each complex’s intra-complex 567 

interactions, where an intra-complex interaction is defined as an interaction between two complex 568 

members that was detected in the predicted interactome. The same strategy was used to compute 569 

remodeling scores for the E. coli pathways from the EcoCyc database22 that were examined for 570 

remodeling (see section titled ‘Compiling E. coli pathways’). Pathways were classified as 571 

‘weakened’, ‘strengthened’, ‘stable’, and ‘dynamic’ based on whether their minimum cross-572 

condition remodeling score was below 1 standard deviation of all remodeling scores, their 573 

maximum score greater than 1 standard variation of all scores, if all the conditional scores were 574 

within 1 standard deviation of all pathway scores, or if the maximum and minimum scores both 575 

exceeded 1 standard deviation in their corresponding directions,  respectively. Finally, the scores 576 

were also summarized at the level of the 1,866 individual proteins present in the predicted 577 

interactome by averaging the remodeling scores of all the interactions that each protein is involved 578 

in. 579 

 580 

Compiling E.coli pathways 581 

Information on 445 E. coli pathways including 1,170 protein-coding genes was 582 

downloaded from the EcoCyc database22. 397 pathways containing at least one protein in our 583 

dataset were initially retained prior to downstream interrogation of interactome remodeling. 584 
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Finally, we quantified the interactome remodeling among the 206 pathways that had at least one 585 

intra-pathway interaction in our predicted interactome. 586 

 587 

Pathway enrichment analysis 588 

We used the hypeR R package26 to perform hypergeometric gene set enrichment tests to 589 

detect significantly-enriched pathways (FDR < 0.01) among the proteins of interest in our dataset, 590 

using the compiled pathways from EcoCyc (see section titled ‘Compiling E. coli pathways’) as the 591 

background gene sets. 592 

 593 

Compiling E.coli protein properties 594 

Information on the evolutionary age of 4,140 Ecoli proteins was downloaded from the 595 

GenOrigin database27. This included the age of 1,785 proteins in our dataset, or 95.7% of all 596 

quantified proteins. Protein relative abundance was computed from this dataset by summing the 597 

MS2 intensity of each protein across all CF/MS fractions in each growth condition. Cellular 598 

compartment information for 817 genes in our dataset was downloaded from EcoCyc22. We 599 

focused our analysis on the three main cellular compartments: cytosol, membrane, and periplasmic 600 

space. Phosphorylation evidence for 535 E.coli proteins were downloaded from the dbPSP 601 

database28. 505 of these proteins were present in our dataset. Evidence for 101 Ecoli proteins with 602 

disordered structures, including 89 in our dataset, was downloaded from the DisProt database29. 603 

 604 

Interactive web application 605 

An interactive web application to explore the results was developed using the R Shiny 606 

framework. The web application includes visualizations of individual or grouped protein and 607 

peptide CF/MS profiles across the 10 growth conditions and two replicates. It also displays 608 

putative conditional protein interactions for any protein of the user’s choice based on evidence 609 

from our dataset and external databases. 610 

  611 
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Tables 612 

 Growth conditions (Abbr.) 

Complex medium 
1 LB (LB) 

2 Glucose + Amino acids (AA) 

Carbon sources 

3 Glucose (Glc) 

4 Galactose (Gal) 

5 Xylose (Xyl) 

Stress conditions on glucose 
6 Anaerobic (Ana) 

7 42°C (T42C) 

Fixed growth rate on glucose 
8 chemostat µ»0 (NZG) 

9 chemostat µ»0.8 (Max) 

Starved cell 10 Stationary 1 day (SP) 

Table 1. List of 10 different growth conditions of E. coli BW25113.  613 
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Figure Captions 614 

Figure 1: Profiling E. coli interactome dynamics 615 

1a: Experimental design. Quantitative CF/MS data was generated from E. coli cultured under 10 616 

different media. 617 

1b: E. coli proteome coverage. Fraction of E. coli protein-coding genes quantified in our dataset. 618 

1c: Coverage of largest E. coli pathways in the KEGG database. 619 

1d: Dynamic CF/MS profiles. Heatmaps visualizing the CF/MS data generated for each of the 620 

growth media. 621 

1e: Reproducibility of data. Overlap of replicate HPLC data. 622 

1f: Recovery of known E. coli interactions. Comparison of Pearson correlation between pairs of 623 

proteins known to interact in the STRING database and all possible pairs of proteins in our dataset. 624 

Figure 2: Computational pipeline for quantifying interactome remodeling from dynamic CF/MS 625 

data 626 

2a: CF/MS data processing. Pipeline for processing peptide-level CF/MS data leading to 627 

generation of protein-level profiles. 628 

2b: Profiling protein interaction remodeling. Analysis workflow for quantifying interactome 629 

remodeling under different conditions. 630 

Figure 3: Global patterns of interactome remodeling 631 

3a: Leftmost network plots visualize protein complexes predicted from the dynamic CF/MS data. 632 

Nodes represent protein complexes color-coded by quantitative extent of remodeling in given 633 

condition compared to base growth media (LB) and sized according to number of member proteins. 634 

Middle network plots visualize example complexes selected due to high level of remodeling and 635 

biological significance. Rightmost plots visualize CF/MS profiles of example intra-complex 636 

pairwise protein interactions with high remodeling scores. 637 

Figure 4: Biological pathways driving interactome remodeling 638 
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4a: Average remodeling scores of main E. coli pathway families. Boxplots represent distribution 639 

of each pathway family’s remodeling scores in each of the growth media. Pathway families colored 640 

according to spread of remodeling scores around base growth medium (LB). 641 

4b: Top remodeled and stable pathways across conditions. Top four strengthened and weakened 642 

pathways for selected growth conditions based on remodeling scores. 643 

4c: Pathways enriched among top remodeled proteins. Results of hypergeometric enrichment test 644 

for top 5% most disrupted proteins based on averaged remodeling scores. 645 

4d: Pathways enriched among top stable proteins. Results of hypergeometric enrichment test for 646 

top 5% most stable proteins based on averaged remodeling scores. 647 

Figure 5: Structural and functional properties of interaction remodeling 648 

5a: Boxplots comparing distribution of co-elution and co-abundance remodeling scores across all 649 

interactions. 650 

5b: Relationship between summed protein MS2 intensities and averaged protein remodeling 651 

scores. The downwards trend suggests higher remodeling scores for lower abundance proteins. 652 

5c: Confidence intervals of averaged protein remodeling scores for two categories of proteins 653 

based on evolutionary age using information from the GenOrigin database. Some types of 654 

environmental changes favored the stability of ancient proteins while others the modern proteins.  655 

5d: Confidence intervals of averaged protein remodeling scores for proteins from different cellular 656 

compartments. Membrane proteins tended to be the most stable across conditions. 657 

5e: Confidence intervals of averaged protein remodeling scores for proteins with and without 658 

evidence of phosphorylation in the dbPSP database. Phosporylated proteins were marginally more 659 

stable across conditions. 660 

5f: Confidence intervals of averaged protein remodeling scores for proteins with and without 661 

evidence of intrinsically disordered structures in the DisProt database. No dominant pattern was 662 

observed among intrinsically disordered proteins. 663 
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5g: Confidence intervals of averaged protein remodeling scores based on number of interactions. 664 

Hub proteins with higher number of interactions were more stable across conditions. 665 

5h: Confidence intervals of averaged protein remodeling scores for proteins based on number of 666 

complexes. Despite the higher stability of hub proteins, there was no strong association between 667 

protein complex membership and remodeling. 668 

5i: Relationship between edge betweenness score of interactions relative to the interactome 669 

structure and remodeling scores. Consistently near-zero correlation suggests that central 670 

interactions exhibit the same amount of remodeling as periphery ones. 671 

5j: Relationship between protein complex density and averaged protein remodeling scores. The 672 

downwards trend suggests tightly-connected complexes are less prone to remodeling.  673 
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Associated data 681 

The raw data has been deposited in the PRIDE database with the identifier PXD041263. The scripts 682 

to perform the analysis can be found at https://github.com/AhmedYoussef95/Ecoli-dynamic-683 

interactome. An interactive web application to explore the results was developed and is available 684 

at https://bnfweb.bu.edu/EcoliDynamicInteractome/. 685 
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