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Abstract

In this document, we review the basics of category theory and functors calculus, and we implement some novel concepts. In

particular, we review the concepts of category, functors, and natural transformations. Furthermore we introduce the novel

concept of func- tors of functors. We illustrate these concepts with diagrams to ameliorate the expression of these ideas. We

conclude that these concepts open new avenues and are advancing category.
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3 Introduction74

Category theory is the analogue of theory which takes a astronaut’s eye view of mathematics.75

From the outerspace, details become imperceptible, but we can distinguish patterns that were76

impossible to detect from Earth surface’s level. How does the the direct sum of two vector77

spaces match the lowest common multiple of two numbers ? What do free groups, fields of78

fractions, and discrete topological spaces, have in common? We will explore answers to these79

and many akin questions, seeing patterns in mathematics and physics that you may never80

have seen before. This documents is based on Leinster [1], and Wikipedia contributors [2].81

Note that category theory, has many contemporarily and recent applications, such as82

in physics, in Feynman diagrams [3], cosmology and functors of actions [4], statistics and83

computer science [5], and even epidemiology [6]. Therefore, it is highly importance to develop84

and establish further the concepts of category theory.85

4 Preliminaries86

We start by the concepts introduced in Leinster [1], and Wikipedia contributors [2], and then87

we expand and develop them further. Category theory is a branch of mathematics which88

explores ideas to generalise all subjects of mathematics in terms of categories, independent89

of what their objects represent. Aesthetically, every branch of modern mathematics can be90

stated in terms of categories. These statements often reveal deep insights and similarities91

between apparently different areas of mathematics. By definition, category theory accom-92

modates an alternative foundation for mathematics to proposed axiomatic foundations such93

as set theory. Generically, the objects and their relations could be abstract entities of any94

kind, while the notion of category accommodates an abstract and fundamental way to state95

mathematical entities and their relations.96

In mathematics, a category is a collection of objects that are linked by relations with a97

direction. We can call these relations or links as directed links, directed relations or arrows,98

these are formally named as morphisms. A category has two basic properties: the ability to99

compose the relations associatively and the existence of an identity relation for each object.100

A simple example is the category of sets, whose objects are sets and whose relations are101

functions. Usually, an abstract category is simply stated as category and this notion should102

be distinguished from a concrete category. The notion of concrete category is beyond the103

scope of this document.104

The most important concept in this chapter is that of universal property. The further105

one deepens its knowledge in mathematics, especially pure mathematics, the more universal106

properties one meets. We will study different manifestations of this concept.107

A first example of a universal property can be simply put as follows. In this context,108

the following meanings of the words ’map’, ’mapping’, and ’function’ are identical.109

Example 1. Let’s denote with 1 a set with one element. The nomenclature of this element
can be ignored. Then 1 has the following property:

For all sets, S, there exists a unique map from S to 1.
∀ S, ∃ mu : S → 1 (4.1)

Proof. In other words lets consider the following. Let S be a set, there exist a map S → 1,110

because we can define a map m : S → 1, by taking m(s) to be the single element of 1 for111
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each s ∈ S. This is a unique map S → 1, because there is no other choice for this subject:112

Any function S → 1 must send each element of S to the single element 1.113

Note that phrases formulated as "there exists a unique such-and-such fulfilling some114

condition" are common in category theory. The phrase meaning is that there is only one115

such-and-such fulfilling the condition. The existence part is proven by showing that there116

is at least one, while the uniqueness part is proven by showing that there is at most one;117

i.e. any two such-and-suches fullfilling the condition are equal. The property starts with the118

words ’For all sets S’, which informs something about the relation between 1 and every set119

S: namely, there is a unique function from S to 1.120

Such properties are called "universal" since they state how the object stated (in this121

case the set 1) relates to the entire universe in which it lives (in this case the universe of sets).122

Example 2. Another example of categories is the rings, with the multiplicative identity 1.
Same-wise, homomorphism of rings are considered to preserve mutliplicative identities. The
ring Z has the property that for all rings R, there exists a unique homomorphism, Z → R,
i.e. we write:

∀ R, ∃ unique hm : Z→ R . (4.2)

Proof of existence. Let R be a ring. Define a function φ : Z→ R by

φ(n) =


1 + · · ·+ (n− 2) times+ · · ·+ 1 , if n > 0

0 , if n = 0
−φ(−n) , if n < 0

(4.3)

where n ∈ Z. A series of elementary checks confirms that φ is homomorphism. For example
by checking that for φ(1 + 1) = 1 + 1 = φ(1) + φ(1) = 1 + 1 = 2.
Proof of uniqueness. Let R be a ring and let the existence of the homomorphism be ψ : Z→ R.
It suffices to show that the aforementioned φ is equal to another homomorphism, named as
ψ. We know that these homomorphism preserve multiplicative identities, such as

φ(1) = 1 = ψ(1) (4.4)

they preserve addition, i.e.

φ(n) = 1 + . . . (n− 2)times · · ·+ 1 = ψ(1) + . . . (n− 2)times · · ·+ ψ(1) = ψ(n) , ∀ n > 0 .
(4.5)

They also preserve additive identity, i.e. zero, which means

φ(0) = 0 = ψ(0) . (4.6)

and they preserve negatives

φ(n) = −φ(−n) = −ψ(−n) = ψ(n) , ∀ n < 0 . (4.7)

Note that essentially there is only one object which can satisfy a given universal property.123

The word essentially brings emphasis of the fact that two objects satisfying the same universal124

property need not literally be equal, but they are always isomoprhic. For example125

Definition 1. Lemma Let X be a ring with the property that for all rings, R, there exists a
unique homomorphism from X to R, and then X ' Z. we write:

∀ R, X → R : X ' Z (4.8)
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5 Category theory126

Following from Leinster [1], in this section we give the basic definitions of category theory,127

and we try to generalise them, and remove some degeneracies introduced by previous authors.128

Firstly we start defining the categories, then the functors, including the novel concept of129

functors of functors, and then natural formalism.130

5.1 Category definitions131

Here, we describe the definitions of a category.132

5.1.1 Category: Definition 0133

Generically in mathematics, informally, a category (sometimes called an abstract category to134

distinguish it from a concrete catergory) is a collection of objects that are linked with some135

directed links, e.g. arrows. Any category have two basic properties: the ability to compose136

the directed links associatively and the existence of an identity directed link for each object137

to the same object.138

Example 3. A simple example is the category of sets, whose objects are sets and whose139

directed links are functions. There exist, the set A,B,C, with their identities, idA ∈ A, idC ∈140

C, idC ∈ C and the functions between them f : A → B, g : B → C, and their composition,141

f ◦ g : A→ C. This category usually is denoted with a bold number, 3.142

There are many equivalent definitions of a category. One commonly used definition is143

as follows.144

Definition 2. A category C consist of145

• a class of objects denoted with ob(C)146

• a class of morphism, or links, or arrows, or maps between the objects, denoted wtih147

hom(C).148

• a domain, or source object class function, denoted with dom : hom(C)→ ob(C),149

• a codomain or target object class function, denoted with cod : hom(C)→ ob(C),150

• for every three objects a, b, and ca binary operation

hom(a, b) ◦b inhom(b, c)→ hom(a, c) (5.1)

exists called composition of morphism; the composiiton of f : a → b and g : b → c is151

written as f ◦comp g or simply f ◦ g or fg.152

such that the following axioms hold:153

• Assosiativity. if f : a→ b, g : b→ c and h : c→ d, then (f ◦ g) ◦ h = f ◦ (g ◦ h)154

• Identity. For every object x, there exists a morphism idx : x → x, called the identity155

morphism for x, such that every morphism f : a → x satisfies idx ◦ f → f and every156

morphism g : x→ b satisfies g ◦ idx = g.157
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Note that here hom(a,b) denotes the subclass of morphisms f in hom(C) such that158

dom(f) = a and cod(f) = b. Such morphism is often written as f : a→ b.159

We write f : a → b, and we say "f is a morphism from a to b". We write hom(a, b)160

(or homC(a, b) to denote also the category of the morphism) to denote the hom-class of all161

morphisms from a to b. From these axioms, we can prove that there is exactly one identity162

morphism for every object.163

Generically, in mathematics, morphism, is defined as follows.164

Definition 3. Morphism Informally, a morphism is a structure preserving map from one165

mathematical structure to another of the same type. They are sometime called directed links,166

directed relations or arrows.167

Example 4. In set theory, morphisms are functions; in linear algebra, linear transformations;168

in group theory, group homomorphisms; in topology, continuous functions; and so on.169

In category theory, morphism is a broadly similar idea: the mathematical objects in-170

volved need not be sets, and the relations between them may be something other than maps,171

although the morphism between the objects of a given category have to behave similarly to172

maps in that they have to admit an associative operation similar to function composition.173

Therefore, in category theory a morphism is an abstraction of the homomorphism from group174

theory.175

Definition 4. Morphism. A category C consists of two classes, one of objects and the176

other of morphisms. There are two objects that are associated to every morphism, the source177

and the target. A morphism f with a source X and target Y is written as f : X → Y .178

Diagrammatically represented by an arrow named f from X to Y .179

Note that morphisms are basically links with a direction, or else directed links.180

Note that for common categoties, objects are usually sets (often with some additional181

structure) and morphism are functions from an object to another object. Therefore the source182

and the target of a morphism are often called domain and codomain.183

5.1.2 Category: Definition 1184

From Leinster [1], we have the following definition for the category.185

Definition 5. A category C consists of186

• a collection of objects, denoted with ob(C);187

• for two such objects, A,B ∈ ob(C), a collection of maps or arrows or morphisms or188

directed links exists from A to B, denoted with C(A,B);189

• for three such objects A,B,C ∈ ob(C), a map

C(A,B)× C(B,C)→ C(A,C) (5.2)
(f, g) 7→ f ◦ g (5.3)

exists and it is called composition190

• for each A ∈ ob(C) an element idA ∈ C(A,A) exists, and it is called identity on A.191
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satisfying the axioms:192

• associativity, a

∀, f ∈ C(A,B), g ∈ C(B,C), and h ∈ C(C,D) (5.4)

we have

(f ◦ g) ◦ h = f ◦ g(◦h) . (5.5)

• identity law

∀ f ∈ C(A,B)⇒ idA ◦ f = f ◦ idB = f . (5.6)

5.1.3 Category from Definition 1 to definition 2: Proof193

To define the category, we can have an adaptive definition from Leinster [1], in which we can194

remove any degeneracy that exists in Leinster [1] formalism, as follows.195

Definition 6. A category C consists of the following five items:196

• a collection of objects, denoted with O = O(C) = ob(C);197

• for any two such objects, A,B ∈ ob(C), a collection of maps or arrows or morphisms
or directed links exists from A to B, denoted with

m = C(A,B) (5.7)
m : A→ B (5.8)

• for three such objects A,B,C ∈ ob(C) (which means, A,B,C ∈ O) a map

c : C(A,B)× C(B,C)→ C(A,C) (5.9)
c : (f, g) 7→ f ◦ g (5.10)

exists and it is called composition, denoted with c,198

• for each A ∈ ob(C) (which means A ∈ O) an element idA ∈ C(A,A) exists, and it is199

called identity on A. Since this is true ∀ A ∈ O, we can all this as the existence of idO.200

and201

• associativity, a is defined as

a : (f ◦ g) ◦ h = f ◦ g ◦ (◦h) , (5.11)

∀, f ∈ C(A,B), g ∈ C(B,C), and h ∈ C(C,D) . (5.12)

This means that collectively we can define a category through a signature. Therefore, generi-
cally, a category, C, is considered as a pentuple, or 5-tuple of the set of objects, O, the set of
mormphisms, m, the property of composition, c, identity of any object, idO, and assiosiativity,
a given by

C = {O,m; c, idO, a} . (5.13)

Note that here we have used a mathematical singature, to describe a category, which is202

a new way to view categories.203

Note that we can unexpectedly use the mnemonic rule to remember this definition. The204

initials of the signature of the category, form the word Comcia sounds like "Komcia", which205

sounds like the greek word "komsos" (plural "Komsa", or "Komsia"), meaning elegant.206
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5.1.4 Category: Definition 2207

To define the category, we can have an adaptive definition from Leinster [1], in which we can208

remove any degeneracy that exists in Leinster [1], as follows.209

Definition 7. A category C consists of the following five items:210

• a collection or class of objects, denoted with

O = O(C) (5.14)

• for any two such objects, A,B ∈ O(C), a collection of maps or arrows or morphisms or
directed links exists from A to B, denoted with

C(A,B) : A→ B (5.15)

• for each A ∈ O(C) an element idA ∈ C(A,A) exists, and it is called identity on A. Since
this is true ∀ A ∈ O, we can all this as the existence of idO, and we write:

∀A ∈ O(C) : ∃ idA ∈ C(A,A) (5.16)

• for three such objects A,B,C ∈ O and f ∈ C(A,B) and g ∈ C(B,C), a map

c : C(A,B)× C(B,C)→ C(A,C) (5.17)
c : (f, g) 7→ f ◦ g (5.18)

exists and it is called composition, denoted with c,211

and212

• associativity,

a : (f ◦ g) ◦ h = f ◦ g(◦h) , (5.19)

∀, f ∈ C(A,B), g ∈ C(B,C), and h ∈ C(C,D) . (5.20)

Therefore in general a category, C, is considered as a pentuple, or 5-tuple of the set of objects,
O, the set of mormphisms, C, the property of composition, c, identity of any object, idO, and
assiosiativity, a given by

C = {O, C; c, idO, a} (5.21)

1
213

1Note that we can use the mnemonic rule to remember this signature. The initials of the singature, form
the word, Coccia, which sounds like the greek word, Kotsia, meaning guts.
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5.1.5 Category: Definition 3214

To define the category, we can have an adaptive definition from Leinster [1], in which we can215

remove any degeneracy that exists in Leinster [1], as follows.216

Definition 8. In general, a category, C, is considered as a pentuple, or 5-tuple of the set of
objects, O, the set of mormphisms, m, the property of composition, c, set of identities of any
object, idO, and assiosiativity, a given by

C = {O,m; c, idO, a} (5.22)

where217

• a class of objects, denoted with

O = O(C) (5.23)

• for any four such objects, i.e.

∀ A,B,C,D ∈ O(C) , (5.24)

– a collection of maps or arrows or morphisms or directed links exists from A to B,
denoted with

∃ m = C(A,B) : A→ B (5.25)

– for each A ∈ O(C) an identity element idA ∈ C(A,A) exists, and it is called identity
on A. Since this is true ∀ A ∈ O, we can describe this as the existence of a set of
identity elements idO, and we write:

∃ idA ∈ C(A,A), idO (5.26)

– for three such functions, i.e.

∀ f ∈ C(A,B) , ∀ g ∈ C(B,C) , ∀ h ∈ C(C,D) , (5.27)

there exists composition morphism denoted with

∃ c : C(A,B)× C(B,C)→ C(A,C) (5.28)

or

∃ c : (f, g)→ f ◦ g (5.29)

and218

– assosiativity property, denoted with

∃ a : [C(A,B)× C(B,C)]× C(C,D) = C(A,B)× [C(B,C)× C(C,D)] (5.30)

or

a : (f ◦ g) ◦ h = f ◦ (g ◦ h) (5.31)

– 9 –



or symbolically
a category is

C = {O,m; c, idO, a} (5.32)

where

∀ A,B,C ∈ O(C) = O (5.33)

∃ m = C(A,B) : A→ B (5.34)
∃ idA ∈ C(A,A), idO (5.35)

and

∀ f ∈ C(A,B) , ∀ g ∈ C(B,C) , ∀ h ∈ C(C,D) , (5.36)

∃ c : (f, g)→ f ◦ g (5.37)
∃ a : (f ◦ g) ◦ h = f ◦ (g ◦ h) . (5.38)

or symbolically, in a more concise way, we write:
Category is

C = {O,m; c, idO, a} (5.39)

where

∀ A,B,C ∈ O(C) = O (5.40)

∃ m = C(A,B) : A→ B (5.41)
∃ idA ∈ C(A,A), idO (5.42)

and

∀ C(A,B) , ∀ C(B,C) , ∀ C(C,D) , (5.43)

∃ c : C(A,B)× C(B,C)→ C(A,C) (5.44)
∃ a : [C(A,B)× C(B,C)]× C(C,D) = C(A,B)× [C(B,C)× C(C,D)] (5.45)

We illustrate a simple abstract definition of category theory in Fig. 1. We represent the219

category C as a black line containing all its entities, such as the object, O and its elements,220

C,C ′ ∈ O, as well as the morphism between C(C,C ′). The object collection, O, including its221

elements, C,C ′ ∈ O is illustrated with the same black line line, which contains the elements222

C,C ′. The symbol of morphism, C(C,C ′), is illustrated with a directed link between the223

object C to the object C ′.224

We represent the full definition of category via a simple diagram, as shown in Fig. 2.225

This diagram shows the relation between, objects, morphisms, identities, composition, and226

associativity of a category. Any category C can be represented by a universal set with a black227

– 10 –



Figure 1. Here we illustrate a simple abstract definition of category theory. We illustrate the
category C as a black line containing all its entities. The Object collection, O, including its elements,
C,C ′ ∈ O is illustrated with the same black line line, which contains the elements C,C ′. The symbol
of morphism, C(C,C ′), is illustrated with a directed link between the object C to the object C ′. [See
section 5]

line. Any object collection, O, can be represented with a thin line containing all its elements,228

i.e. A,B,C,D ∈ O. Its element of the identity collection, idO can be represented with a229

curved almost circle arrow around its element, formulated as idA, idB, idC , idD ∈ idO, while230

any identity element collection, idO is represented with dotted line containing all its elements.231

We also represent the morphisms simply as C(A,B), C(B,C), C(C,D), C(A,C), C(A,D) ∈ C.232

In particular, we can see a morphism from an element A to element B symbolised by an
arrow, named as C(A,B). The same holds for all morphism stated in the former paragraph.
Then, we can see the identity property which is basically a curved almost circular morphism
which takes an element A and maps it to itself. The same holds for all the identities stated in
the former paragraph. Furthermore, we can observe the composition property since we can
see the the morphism C(A,B) × C(B,C) is equivalent to C(A,C). We can also observe the
assosiativity property, which is basically shown by the morphism C(A,D) which is equivalent
to [C(A,B)× C(B,C)] × C(C,D) and equivalent to C(A,B) × [C(B,C)× C(C,D)]. We can
also show the assosiativity property algebraically as

C(A,D) = C(A,B)× C(B,C)× C(C,D) (5.46)
= [C(A,B)× C(B,C)]× C(C,D) (5.47)
= C(A,C)× C(C,D) (5.48)
= C(A,B)× [C(B,C)× C(C,D)] (5.49)
= C(A,B)× C(B,D) . (5.50)

5.2 Functors definitions233

Here, we describe the definitions of a functor, including functor of functors.234

When coming across a novel types of objects, we usually ask ourself, if there is a map235

between such objects. In the previous case we have discussed the object of category. The236

map between categories is called functors.237
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Figure 2. Here we illustrate the definition of category theory. The Category C is represented by
a universal set with a black line. The Object collection, O, including its elements, A,B,C,D ∈ O
is represented with a thin line, the identity element collection, idO is represented with dotted line,
while its element of the identity collection is represented with a curved almost circle arrow around its
element, formulated as idA, idB , idC , idD ∈ idO. We also represent the relation between the morphism
simply as C(A,B), C(B,C), C(C,D), C(A,C), C(A,D) ∈ C. This diagram shows the relation between,
objects, morphisms, identities, composition, and associativity of a category. [See section 5]

To define the category, we can have an adaptive definition from Leinster [1], in which238

we can remove any degeneracy that exists in Leinster [1], as follows.239

First we consider the definition from of functors from Leinster [1].240

5.2.1 Functor definition 0241

Definition 9. Functor. Let C and D be two categories, while elements of the objects are
C ∈ O(C) = ob(C) and D ∈ O(D). A functor

F : C → D (5.51)

consists of242

• a function of the objects of those catevories

ob(C)→ ob(D) (5.52)
O(C)→ O(D) (5.53)

– 12 –



written also as

C 7→ F (C) (5.54)

• for each C,C ′ ∈ C, a function

C(C,C ′)→ D
[
F (C), F (C ′)

]
, (5.55)

written as

f 7→ F (f) (5.56)

where f ∈ C(C,C ′) and F (f) ∈ D [F (C), F (C ′)] ,243

satisfying the following axiomatic properties:244

composition heritage written as

F (f ◦ f ′) = F (f) ◦ F (f ′), ∀ C f→ C ′
f ′→ C ′′ ∈ C (5.57)

identity heritage written as

F (1C) = 1F (C), ∀ C ∈ C (5.58)

Notice that we have enriched the notation from Leinster [1] to define, so that we can245

get rid of some degeneracies.Therefore we can have a simpler notation for the definition of246

functor which is the following.247

5.2.2 Functor definition 1248

Definition 10. Functor. Let C and D be two categories, while elements of the objects are
C,C ′ ∈ O(C) and D ∈ O(D), and f ∈ C(C,C ′) and F (f) ∈ D [F (C), F (C ′)]. A functor

F : C → D (5.59)

consists of249

• a function of the objects of those catevories

O(C)→ O(D) (5.60)

written also as

C 7→ F (C) (5.61)

• a function

C(C,C ′)→ D
[
F (C), F (C ′)

]
, (5.62)

written as

f 7→ F (f) (5.63)
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satisfying the following axiomatic properties:250

composition heritage written as

F (f ◦ f ′) = F (f) ◦ F (f ′), ∀ C f→ C ′
f ′→ C ′′ ∈ C (5.64)

identity heritage written as

F (idC) = idF (C), ∀ C ∈ C (5.65)

We can understand the definition of functors with the following sketch, as shown in251

Fig. 3. This functor F is a map between two categories, C and D and it is illustrated directed252

line, from the category C, to the category D. The category C is illustrated with a black lined253

box, with two elements, C and C ′, and a map between them, C(C,C ′). The category D is254

illustrated with a black lined box, with two elements, D and D′, and a map between them,255

D(D,D′).256

Figure 3. Here we illustrate the definition of functor. The functor F is a map between two
categories, C and D and it is illustrated directed line, from the category C, to the category D. The
category C is illustrated with a black lined box, with two elements, C and C ′, and a map between
them, C(C,C ′). The category D is illustrated with a black lined box, with two elements, D and D′,
and a map between them, D(D,D′). [See section 5.2.2]

Definition 11. Remarks. The definition of functor is sketched so that from each chain

C0
f1→ · · · fn−1→ Cn−1

fn→ Cn (5.66)

of maps in C, (∀n ≥ 0), it is possible to built exactly one map

F (C0)→ F (Cn) ∈ D . (5.67)

For example given the maps

C0
f1→ C1

f2→ C2
f3→ C3

f4→ C4 ∈ C , (5.68)

we can build maps of the form

F (C0)
F (f1)F (f2)F (f3)F (f4)−→ F (C4) (5.69)
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which is equivalent to

F (C0)
F (f1f2)F (f3f4)−→ F (C4) (5.70)

which is equivalent to

F (C0)
F (f1)F (f2f3)F (f4)−→ F (C4) (5.71)

which is equivalent to

F (C0)
F (f1)F (f2)F (f3f4)−→ F (C4) (5.72)

5.2.3 Functors of functors257

Functors is applied to categories. Could a functor applied to two different functors, that have258

different domain and codomain ? This is only possible if a functor can be considered as a259

category as well. In this case, a functor of functors can be denote with F. Before reaching260

this term, we are going to define the definition for the function of functors, denoted with F .261

Definition 12. Functor of functors. Let C,D, E ,H be four categories, while elements of
the objects are C,C ′ ∈ O(C), D ∈ O(D), E,E′ ∈ O(E), H ∈ O(H), while there exists the
functions, while there exists the functors:

F : C → D (5.73)
G : E → H (5.74)

which both belong to the functor category, denoted with F̃ , i.e.

F,G ∈ F̃ (5.75)

while there are the functions of objects

f : O(C)→ O(D) (5.76)
g : O(E)→ O(H) (5.77)

(5.78)

written also as

C 7→ F (C) (5.79)
E 7→ G(E) (5.80)

or

F : C → D (5.81)
G : E → H (5.82)

while there is also the functions:

C(C,C ′)→ D
[
F (C), F (C ′)

]
(5.83)

E(E,E′)→ H
[
G(E), G(E′)

]
. (5.84)
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Note that also that

f ∈ C(C,C ′) (5.85)
F (f) ∈ D

[
F (C), F (C ′)

]
(5.86)

g ∈ E(E,E′) (5.87)
G(g) ∈ H

[
G(E), G(E′)

]
, (5.88)

while

f 7→ F (f) (5.89)
g 7→ G(g) (5.90)

and

f ∈ C(C,C ′) (5.91)
F (f) ∈ D

[
F (C), F (C ′)

]
(5.92)

g ∈ E(E,E′) (5.93)
G(g) ∈ H[G(E), G(E′)] . (5.94)

Note that the functor F satisfies the axiomatic properties:262

• composition of functions heritage

F (f ◦ f ′) = F (f) ◦ F (f ′), ∀ C f→ C ′
f ′→ C ′′ ∈ C (5.95)

• identity heritage

F (idC) = idF (C) ∀ C ∈ C (5.96)

while the functor G satisfy the axiomatic properties263

• composition of functions heritage

G(g ◦ g′) = G(g) ◦G(g′), ∀ E g→ E′
g′→ E′′ ∈ E (5.97)

• identity heritage

G(idE) = idG(E) ∀ E ∈ E (5.98)

Given the aforementioned information, a functional of functors exists

F : D → E . (5.99)

which is written analytically as

F : D[F (C), F (C ′)]→ E
{
F [F (C)],F [F (C ′)]

}
(5.100)
(5.101)
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when

C(C,C ′)→ D
[
F (C), F (C ′)

]
≡ D

(
D,D′

)
(5.102)

D
(
D,D′

)
→ E

{
F
(
D,D′

)}
≡ E

{
F
[
F (C), F (C ′)

]}
≡ E

(
E,E′

)
. (5.103)

Given the aforementioned information, a functor of functors exists as

F : F̃ → F̃ (5.104)

and it consists of264

• a functor of the functions of the objects of those functor categories

F : F → G (5.105)
F : F [C(C,C)]→ G [E(E,E)] (5.106)

• a functor of functors

F :
C(C,C ′) → D [F (C), F (C ′)]

↓
E(E,E′) → H [G(E), G(E′)]

(5.107)

written also as

F : F → G (5.108)
F : C → D → E → H (5.109)
F : C → H (5.110)
F :
{
C,C ′

}
→
{
H,H ′

}
(5.111)

written also more analytically as

F :

{
D = F (C)
D′ = F (C ′)

}
→
{
H = G(E)
H ′ = G(E′)

}
(5.112)

or {
D = F (C)
D′ = F (C ′)

}
F→
{
H = G(E)
H ′ = G(E′)

}
(5.113)

or

F :

{
F (C)
F (C ′)

}
→
{
G(E)
G(E′)

}
(5.114)

or in a cleaner form {
F (C)
F (C ′)

}
F→
{
G(E)
G(E′)

}
(5.115)

satisfying the following axiomatic properties:265

– 17 –



• composition heritage heritage, written as

F [F ©G] = F [F ]© F [G] ∀ F,G ∈ F̃ (5.116)

• the identity heritage heritage, written as

F [idF ] = idF[F ] , ∀ F ∈ F̃ (5.117)

We can also define the functor of functors via the following sketch, shown in Fig. 4. To266

build this functor of functors, we need two different functors. The first functor, F is a map267

between two categories, C and D and it is illustrated with a directed line, from the category C, to268

the category D. The category C is illustrated with a black lined box, with two elements, C and269

C ′, and a map between them, denoted with C(C,C ′). The category D is illustrated with a black270

lined box, with two elements, D and D′, and a map between them, denoted with D(D,D′).271

The second functor, G is a map between two categories, E and H and it is illustrated with a272

directed line, from the category E, to the category H. The category E is illustrated with a black273

lined box, with two elements, E and E′, and a map between them, H(H,H ′). The category H274

is illustrated with a black lined box, with two elements, H and H ′, and a map between them,275

H(H,H ′). Then the functor of functors, F, is illustrated with a bold black directed line, from276

the functor F to the functor G.277
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Figure 4. Here we illustrate the simple definition of functors of functors, denoted with F. To build
this functor of functors, we need two different functors. The first functor, F is a map between two
categories, C and D and it is illustrated with a directed line, from the category C, to the category D.
The category C is illustrated with a black lined box, with two elements, C and C ′, and a map between
them, C(C,C ′). The category D is illustrated with a black lined box, with two elements, D and D′,
and a map between them, D(D,D′). The second functor, G is a map between two categories, E and
H and it is illustrated with a directed line, from the category E , to the category H. The category
E is illustrated with a black lined box, with two elements, E and E′, and a map between them,
H(H,H ′). The category H is illustrated with a black lined box, with two elements, H and H ′, and
a map between them, H(H,H ′). Then the functor of functors, F, from the functor F to the functor
G, is illustrated with a bold black directed line. The functor of functor is denoted with F = F(F,G).
[See section 5.2.3]

Definition 13. We can then define the full definition of functors of functors, F . To construct278

that, we need also the category of functors, denoted with CF .279

We can show that the definition of functors of functors, F , is give by the following illus-280

tration, Fig. 5. In particular, we illustrate the full definition of functors of functors, denoted281

with F. To build this functor of functors, we need four different functors and eight differ-282

ent categories. The eight different categories are listed as {A,′A,B,′ B, C,′ C,D,′D} illustrated283

with square boxes. Each category has its own objects, and morphism. In particular, the objects284

{A,A′} ∈ A, {B,D′} ∈ B, {C,D′} ∈ C, {D,D′} ∈ D, while {′A,A′} ∈′ A, {′B,D′} ∈′ B,285

{′C,D′} ∈′ C, and {′D,D′} ∈′ D. Then we have their corresponding functors for each pair.286

In particular we have the functor I for the pair of categories, A and ′A, which is defined287

as IA := I(A,′A). Analogically we have the functors, GB := I(B,′ B), FC := F (C,′ C), and288

JD := F (D,′D). The category of functors or functor category, denoted with CF, consists of289
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the objects I,G, F, J , which are functors and their relations defined by the functor of functors290

F(I,G), F(G,F ), and F(F, J).291

Figure 5. Full definition of functor of functors. Here we illustrate the full definition of functors of
functors, denoted with F. To build this functor of functors, we need four different functors and eight
different categories. The eight different categories are listed as {A,′A,B,′ B, C,′ C,D,′D} illustrated
with square boxes. Each category has its own objects, and morphism. In particular, the objects
{A,A′} ∈ A, {B,D′} ∈ B, {C,D′} ∈ C, {D,D′} ∈ D, while {′A,A′} ∈′ A, {′B,D′} ∈′ B, {′C,D′} ∈′
C, and {′D,D′} ∈′ D. Then we have their corresponding functors for each pair. In particular we have
the functor I for the pair of categories, A and ′A, which is defined as IA := I(A,′A). Analogically
we have the functors, GB := I(B,′ B), FC := F (C,′ C), and JD := F (D,′D). The category of functors
or functor category, denoted with CF, consists of the objects I,G, F, J , which are functors and their
relations defined by the functor of functors F(I,G), F(G,F ), and F(F, J). [See section 5.2.3]

We can show that the definition of category of functors, CF , is give by the following292

illustration, Fig. 6. In particular we illustrate the full definition of category of functors of293

functor category, CF, which includes the functors of functors, denoted with F. To build this294

functor of functors, we need four different functors and four different categories, implying the295

need of another four. The four different categories are listed as {A,B, C,D}, and illustrated296

as indices of the functors, {I,G, F, J}. In particular, each source category, denoted with C297

has a corresponding target category, denoted with ′C, which is created by each correspond-298

ing functor, F , denoted with FC := F (C,′ C). The same applies for the other functors, i.e.299

IA, GB, JD. Each category has its own objects, and morphism, but we omit this information300

here. The category of functors or functor category, denoted with CF, consists of the objects301

{IA, GB, FC , JD} ∈ O ≡ O (CF), which are functors. Then, to illustrate the identity of functor302
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of functors property, we have the collection of identity of functors of functors, denoted with303

idO and the identities of functors of functors denoted with {idIA , idGB , idFC , idJD , } ∈ idO,304

which they map its functor to itself. The functors of functors are CF(IA, GB) := F(IA, GB),305

CF(GB, FC) := F(GB, FC), and CF(FA, JD) := F(FC , JD). Furthermore, we also illustrate the306

relations CF(IA, FC), CF(GB, JD), and CF(IA, JD), to complete the associativity relation.307

Figure 6. Full definition of category of functors or functors category. Here we illustrate the full
definition of category of functors of functor category, CF, which includes the functors of functors,
denoted with F. To build this functor of functors, we need four different functors and four different
categories, implying the need of another four. The four different categories are listed as {A,B, C,D},
and illustrated as indices of the functors, {I,G, F, J}. In particular, each source category, denoted
with C has a corresponding target category, denoted with ′C, which is created by each corresponding
functor, F , denoted with FC := F (C,′ C). The same applies for the other functors, i.e. IA, GB, JD.
Each category has its own objects, and morphism, but we omit this information here. The category of
functors or functor category, denoted with CF, consists of the objects {IA, GB, FC , JD} ∈ O ≡ O (CF),
which are functors. Then, to illustrate the identity of functor of functors property, we have the
collection of identity of functors of functors, denoted with idO and the identities of functors of functors
denoted with {idIA , idGB , idFC , idJD , } ∈ idO, which they map its functor to itself. The functors
of functors are CF(IA, GB) := F(IA, GB), CF(GB, FC) := F(GB, FC), and CF(FA, JD) := F(FC , JD).
Furthermore, we also illustrate the relations CF(IA, FC), CF(GB, JD), and CF(IA, JD), to complete the
associativity relation. [See section 5.2.3]

In particular, we can see a morphism from an element IA to element GB symbol-
ised by a directed link, named as CF(IA, GB). The same holds for all morphism stated in
the former paragraph. Then, we can see the identity property for each functor of func-
tors, which is basically a curved almost circular morphism, denoted with, idIA , which takes
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an element IA and maps it to itself. The same holds for all the identities stated in the
former paragraph. Furthermore, we can observe the composition property since we can
see the the morphism CF(|A, GB) × CF(GB, FC) is equivalent to C(IA, FC). We can also
observe the assosiativity property, which is basically shown by the morphism CF (IA, JD)
which is equivalent to [CF(IA, GB)× CF(GB, FC)]×CF(FC , JD) and equivalent to CF(IA, GB)×
[CF(GB, FC)× CF(FC , JD)]. We can also show the assosiativity property algebraically as

CF(IA, JD) = CF(IA, GB)× CF(GB, FC)× CF(FC , JD) (5.118)
= [CF(IA, GB)× CF(GB, FC)]× CF(FC , JD) (5.119)
= CF(IA, FC)× CF(FC , JD) (5.120)
= CF(IA, GB)× [CF(GB, FC)× CF(FC , JD)] (5.121)
= CF(IA, GB)× CF(GB, JD) . (5.122)

5.3 Natural transformation308

From Leinster [1], we introduce the definitions of a natural transformation. We introduce309

those so that we can compare them with the functors of functors concept.310

5.3.1 Natural transformation definition311

The questions that natural transformation answers is the existence of a map or morphism,312

between, a functor to another ? This answer is positive, and this is applied to functors that313

have the same domain and co-domain.314

Definition 14. A natural transformation is a family of maps between the two functors,315

such that a particular configuration of those maps commutes.316

In mathematical language we write the following.317

Definition 15. Natural transformation . Let C and D be two categories and F and G
two functors that map from C to D, and we write

C
G
⇒
F
D . (5.123)

A natural transformation

τ : F → G (5.124)

is a family of maps

[F (C)→ G(C)]C∈C ∈ D (5.125)

such that

∀C f→ C ′ ∈ C (5.126)

the square configuration318
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(5.127)

commutes. The maps τC and τC′ are called the components of τ .319

Definition 16. Remark.320

• The definition of the natural transformation is such that from each map C f→ C ′ ∈ C, a321

unique map of F (C)
τC◦G(f)→ G(C ′) ∈ D can be constructed. When f = idC this kind of322

map is τC . For a generic f , this map is the diagonal of the square configuration, given323

by Eq. 5.127, and "unique map" implies that the square configuration commutes.324

• The natural transformation is also written symbolically as

(5.128)

which means that τ is a natural transformation from F to G.325

Example 5. Give some examples here.326

Definition 17. Construction. Natural transformations are kinds of maps, so we can com-
pose them. Given natural transformations of the form of

(5.129)

there is the composite natural transformation given by

(5.130)

defined by τ ◦ σ or more specifically, ∀ C ∈ C, ∃(τ ◦ σ)C = σC ◦ τC . There is also the identity
natural transformation denoted by idF , which fullfils the condition

(5.131)

on any functor F , defined by

(idF )C = idF (C) (5.132)
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5.4 Comparison between functors of functors and natural transformation327

The main difference between functors of functors and natural transformation is that the328

functor of functors concept is used to describe the relation between two functors which are329

used to related either the same two categories, or two and two different categories, while330

the concept of natural transformation is ristricted used to describe the relation between two331

functors which relate the same two categories.332

In particular if we have a functor F and G between category C and D, then there is333

a natura transformation between F and G denoted with τ . Note that we can also build a334

functor, F, which related the functors F and G. Furthermore we can also build a functor F335

which can relate a functor F and a functor H. In this case the functor F relates the categories336

C and D, while the functor H relates the categories A and B.337

6 Conclusion338

In this work we review the basics of category theory and functors calculus, and we implement339

some novel concepts. In particular, we review the concepts of category, functors, and natural340

transformations. We describe the concept of category using the concept of a mathematical341

signature, which is a novel way to view categories. Furthermore, we introduce the novel342

concept of functors of functors. We illustrate these concepts with diagrams to ameliorate343

the expression of these ideas. We also compare the concept of functors of functors with the344

concept of natural transformation to show the difference and novelty of functors of functors345

concept. We conclude that these concepts open new avenues for category theory.346
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