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The Maximum Principle with Terminal State Constraints for Optimal

Control of Mean-Field FBSDE Driving by Teugels Martingales ∗

Zhen Huang, Ying Wang†, Xiangyun Lin

( College of Mathematics and Systems Science, Shandong University of Science and Technology,

266590, Shandong , China)

Abstract This paper studies the problem of optimal control with state constraints for mean-field

type stochastic systems, which is governed by a fully coupled forward-backward stochastic differential

equation(FBSDE) with Teugels martingales. In this system, the coefficients contain not only the state

processes but also its marginal distribution, and the cost function is of mean-field type as well. We use

an equivalent backward formulation to deal with the terminal state constraint, and then we obtain a

stochastic maximum principle by Ekeland’s variational principle. In addition, we discuss a stochastic

linear-quadratic (LQ) control problem with state constraints.

Keywords mean-field forward-backward stochastic differential equations, Lévy processes, Teugels

martingales, adjoint equation, state constraints, stochastic maximum principle

1 Introduction
In the classical case, many random phenomena can be described by a mathematic model of stochas-

tic differential equations. However there also exist some cases which should characterize the individuals

mutual interactions. Such models may be identified by mean-field stochastic systems, where the mean-

field term is used to model the interactions among agents and approach the expected value when

the number of individuals tends to infinity. The rigorous investigation of continuous time mean-field

stochastic differential equations was initiated by McKean [1] in 1966. Since then, the interest in mean-

field theory has increased and many applications have been found in physics, engineering, economics,

finance and game theory. Dawson [2] examined the dynamics and fluctuations in the critical situation

with a mean-field model exhibiting bistable macroscopic behavior. Yong [3] discussed corresponding

mean-field stochastic LQ problems by a variational method and decoupling technique. Andersson and

Djehiche [4] solved the Markowitz mean-variance portfolio selection problem based on the stochastic

maximum principle of mean-field type. See also Ahuja et al. [5], Wang et al. [6], Ma and Huang [7]

for the mean-field games of stochastic systems.

The maximum principle is an important approach to study the modern optimal control theories.

It was first studied by Pontryagin et al. [8] and has been developed widely by many authors, including

Kushner [9, 10], Bensoussan [11], Peng [12], Xu [13], also see Wu [14] for the fully coupled FBSDEs.

∗This work is supported by the National Natural Science Foundation of China, Grant Number: 62273212, the

Major Basic Research Program of Natural Science Foundation of Shandong Province, Grant Number: 2019A01

and the Natural Science Foundation of Shandong Province of China, Grant Number: ZR2020MF062
†Corresponding author. E-mail: wangying@sdust.edu.cn
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Moreover, for the control systems related to Teugels martingales can realistically describe the random-

ness in the world, the models with Teugels martingales are of great importance in applications such

as the jump-type behavior in financial markets. Thanks to a very useful predictable representation

property obtained in Nualart and Schoutens [15, 16], stochastic differential equations driven by Teugels

martingales have been investigated increasingly. For backward stochastic systems associated with Lévy

process, existence and uniqueness of solutions were given by Bahlali et al. [17], and the maximum

principle has been studied by Meng and Tang [18]. A survey of stochastic linear quadratic problems

with Lévy process has been investigated by Tand and Wu [19]. The study regarding forward-backward

stochastic control system driven by Teugels martingales were considered, see Baghery et al. [20], and for

the maximum principle see Wang and Huang [21]. However, mean-field forward and backward stochas-

tic differential equations (MFFBSDEs) driven by Teugels martingales theory and state constraints are

not considered in the above control problems, which inspires our work.

This paper is concerned with the mean-field optimal control problem with terminal state constraint.

It has a widely application especially in economics and finance, such as the optimization of recursive

utilities under constraints [22] , and the mean-variance portfolio selection with bankruptcy prohibition

in a complete market model [23]. The difficulty is that the classical theory is generally incapable of

solving this problem as our terminal state constraint is a sample-wise constraint [24]. So we would like

to adopt some recently developed methods called dual method and terminal perturbation method (refer

to [25, 26]). Firstly, we transform the forward and backward stochastic system into a purely backward

stochastic system. Then we derive an equivalent control system on which the terminal state xT is

regarded as the control variable. Meanwhile, the initial condition of the forward equation turns to be

an additional constraint. It is fortunately that this constraint can be tackled by Ekeland’s variational

principle which ensured our transformation feasibly.

Motivated by the above discussion, this paper investigates the stochastic control problem for fully

coupled MFFBSDEs, and gets the results of variational inequality and stochastic maximum principle.

The paper is organized as follows. Section 2 presents some preliminaries used in this paper and formu-

late the optimal control problem. In Section 3, we reformulate the control problem as an equivalent

backward system under some assumptions, then we obtain the variational inequality and the maximum

principle by Ekeland’s variational principle. Section 4 is devoted to the LQ stochastic optimal control

problem with terminal state constraint.

2 Preliminaries and Problem Formulation
2.1 Preliminaries and Basic Notions

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space on which we define two mutually independent

stochastic processes: a d-dimensional standard Brownian motion {Wt}t≥0 and a m-valued Lévy process

{Lt}t≥0 with a Lévy measure ν(dθ) such that
∫
R

(1∧θ2)ν(dθ) <∞. Let FWt and FLt be the P -completed

natural filtration generated by {Wt}t≥0 and {Lt}t≥0 respectively. Set Ft = FWt ∨ FLt ∨ N , where N
denotes the totality of the P -null set.

The real-valued Lévy process L = {Lt, t ≥ 0} has stationary and independent increments with

L0 = 0. Denote the left limit process by Lt− = lim
s→t,s<t

Ls, t ≥ 0 and the jump size at time t by

4Lt = Lt − Lt−. We suppose that for some ε > 0 and λ > 0 ,
∫
(−ε,ε)c exp(λ|θ|)ν(dθ) < ∞. Let’s

recall a convenient basis for martingale representation provided by the Teugels martingales in Nualart-

Schoutens[15]. We denote the power-jump processes by L
(1)
t = Lt and L

(i)
t =

∑
0<s≤t

(4Ls)i for i ≥
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2. Y
(i)
t = L

(i)
t − E[L

(i)
t ] is the compensated power jump process of order i. Then the family of

Teugels martingales {H(i)
t }∞i=1 associated with the Lévy process {Lt}t≥0 is defined by H

(i)
t = ci,iY

(i)
t +

ci,i−1Y
(i−1)
t + ci,i−2Y

(i−2)
t + ...+ ci,1Y

(1)
t , where the coefficients ci,k correspond to orthonormalization

of the polynomials 1, x, x2, ... with respect to the measure µ(dx) = x2ν(dx) + σ2δ0(dx). Moreover,

{H(i)
t }∞i=1 are pairwise strongly orthogonal and their predictable quadratic variation processes satisfy

〈H(i), H(j)〉t = δijt.

For any given Hilbert space H, we denote by | · | the norm of H and by 〈·, ·〉 the scalar product of

H. Then we introduce the following spaces:

L2(Ω,Ft, H) :=
{
ξ : Ω→ H | ξ is Ft-measurable, and E|ξ|2 <∞

}
.

S2
F (0, T ;H) :=

{
x : [0, T ]× Ω→ H | (xt)0≤t≤T is Ft-adapted and càdlàg processes such that

E( sup
0≤t≤T

|xt|2) <∞
}

.

M2
F (0, T ;H) :=

{
ϕ : [0, T ]× Ω→ H | (ϕt)0≤t≤T is Ft-progressively measurable process such that

E
∫ T
0
|ϕt|2dt <∞

}
.

l2(H):=
{
{f (i)}i≥1 | {f (i)}i≥1 is H-valued sequences and satisfies

∞∑
i=1

‖f (i)‖2H <∞
}

.

l2F (0, T ;H) :=
{
{f (i)}i≥1 : [0, T ]× Ω→ l2(H) | {f (i)

t }0≤t≤T is Ft-predictable processes for each

i ≥ 1 , and E
∫ T
0

∞∑
i=1

‖f (i)
t ‖2Hdt <∞

}
.

Recall the more general Itô’s formula about semimartingales. Let X = {Xt : t ∈ [0, T ]} be a càdlàg

semimartingale, and [X] = {[X]t : t ∈ [0, T ]} is the quadratic variation, F is a C2 real valued function,

then F (X) is also a semimartingale and the following Itô’s formula holds

F (Xt) = F (X0) +

∫ t

0

F ′(Xs−)dXs +
1

2

∫ t

0

F ′′(Xs−)d[X]cs +
∑

0<s≤t

{
F (Xs)−F (Xs−)−F ′(Xs−)∆Xs

}
,

where [X]c is the continuous part of the quadratic variation [X].

Let us consider the following fully coupled MFFBSDE with Teugels martingales:

dxt = b̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt)dt+ σ̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt)dWt

+
∞∑
j=1

ḡ(j)(t, xt−, Ext−, yt−, Eyt−, zt, Ezt, rt)dH
(j)
t ,

dyt = −f̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt)dt+ ztdWt +
∞∑
j=1

r
(j)
t dH

(j)
t ,

x0 = a, yT = h(xT , ExT ).

(1)

where Wt is a Rd valued Brownian motion and {H(j)
t }∞j=1 is a family of Teugels martingales independent

of Wt; a is a F0 measurable random variable, and

b̄ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)→ Rn,

σ̄ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)→ Rn×d,

ḡ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)→ l2(Rn),

f̄ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)→ Rm,

h : Ω×Rn ×Rn → Rm

are Ft progressively measurable processes.
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Given a m× n full-rank matrix G. Let

λ =

 x

y

z

 , Eλ =

 Ex

Ey

Ez

 , A(t, λ, Eλ, r) =

 −GT f̄
Gb̄

Gσ̄

 (t, λ, Eλ, r).

Throughout this paper, we assume the following:

(H1) (i) b̄, σ̄, ḡ, f̄ are uniformly Lipschitz with respect to (λ,Eλ, r) ,

(ii) for each λ ∈ Rn ×Rm ×Rm×d and r ∈ l2(Rm), A(·, λ, Eλ, r) is in M2(0, T ),

(iii) h(x,Ex) is uniformly Lipschitz with respect to x ∈ Rn, and h(x,Ex) is in L2(Ω,FT , P ).

Here, we denote M2(0, T ) = S2
F (0, T ;Rn)× S2

F (0, T ;Rm)×M2
F (0, T ;Rm×d)× l2F (0, T ; l2(Rm)) as

the natural space for solutions of equation (1). Set ∆λ = λ−λ′ = (∆x,∆y,∆z) = (x−x′, y−y′, z−z′)
and ∆r = r − r′, let’s assume the following monotonicity conditions

(H2)〈A(t, λ, Eλ, r)−A(t, λ′, Eλ′, r′),∆λ〉+
∞∑
j=1

〈Gḡ(j)(t, λ, Eλ, r)−Gḡ(j)(t, λ′, Eλ′, r′),∆r(j)〉

≤ −β1(|G∆x|2+|GE∆x|2)−β2(|GT∆y|2+|GTE∆y|2+|GT∆z|2+|GTE∆z|2+
∞∑
j=1

‖GT∆r(j)‖2),

〈h(x,Ex)− h(x′, Ex′), G∆x〉 ≥ µ1(|G∆x|2 + |GE∆x|2),

where β1 and β2 are given nonnegative constants with β1 + β2 > 0, β2 + µ1 > 0. Moreover we have

β1 > 0 (resp., β2 > 0) when m > n (resp., n > m).

Then it can be very useful to indicate the following result for the well-posedness of the state equa-

tion.

Lemma 2.1 (Existence and uniqueness of MFFBSDE driven by Teugels martingales)

Assume that (H1) and (H2) hold, the fully coupled MFFBSDE driven by Teugels martingales (1)

admits a unique adapted solution (xt, yt, zt, rt).

The above lemma can be proved by the technique similar to that of [27]. Besides using Itô,s formula

and constructing a contraction mapping, which is the main idea in the derivation, Jensen’s inequality

is also helpful to deal with the mean-field variables in the process. More details about the derivation

can be seen in the appendix.

2.2 Formulation of the Control Problem
The control system is described by the following MFFBSDE:

dxt = b̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt, ut)dt+ σ̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt, ut)dWt

+
∞∑
j=1

ḡ(j)(t, xt−, Ext−, yt−, Eyt−, zt, Ezt, rt, ut)dH
(j)
t ,

dyt = −f̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt, ut)dt+ ztdWt +
∞∑
j=1

r
(j)
t dH

(j)
t ,

x0 = a, yT = h(xT , ExT ),

(2)

where

b̄ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)×Rk → Rn,

σ̄ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)×Rk → Rn×d,

ḡ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)×Rk → l2(Rn),

f̄ : Ω× [0, T ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)×Rk → Rm.

We define the admissible control set by Uad = {u(·) | u(·) ∈ M2(0, T ;Rk)}. Under the assumptions

(H1) and (H2), we know (2) has a unique solution for any admissible controls u(·) ∈ Uad. Our control



5

problem consists in minimizing the cost function as follows:

J̄(u) = E
{∫ T

0

L̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt, ut)dt+ φ(xT , ExT ) + ψ(y0)
}
. (3)

where L̄ : Ω× [0, T ]× Rn × Rn × Rm × Rm × Rm×d × Rm×d × l2(Rm)× Rk → R, φ : Rn × Rn → R,

ψ : Rm → R. We also assume

(H3)(i) b̄, σ̄, ḡ, f̄ , h and L̄, φ, ψ are continuous and continuously differentiable in their arguments,

(ii) The derivatives of b̄, σ̄, ḡ, f̄ and h with respect to their variables are bounded,

(iii) The derivatives of L̄ are bounded by C(1 + |x|+ |Ex|+ |y|+ |Ey|+ |z|+ |Ez|+ |r|+ |u|), and

the derivatives of φ and ψ are bounded by C(1 + |x| + |Ex|) and C(1 + |y|) respectively. Here C > 0

is a constant, which can be different from line to line.

The optimal control problem can be formulated as follows.

Problem A.

Minimize J̄(u)

s.t. u ∈ Uad, xT ∈M, M ⊆ Rn is convex.

An essential feature is that the above optimal control has a terminal state constraint. Since it is

difficult to deal with the stochastic control with sample-wise state constraints, we tackle it smoothly

by the backward stochastic differential equation(BSDE) theory and terminal perturbation method.

2.3 The equivalent problem in backward formulation
Let us transform the mean-field forward-backward control system into an equivalent backward form,

and get an equivalent control problem. Moreover, the stochastic maximum principle will be derived.

For this, we need the following additional assumption:

(H4) The mapping ut →
(

σ̄(t, λ, Eλ, r, u) 0

0 ḡ(t, λ, Eλ, r, u)

)
is a bijection for any (t, λ, Eλ, r).

Therefore, if we set pt = σ̄(t, λ, Eλ, r, u), qt = ḡ(t, λ, Eλ, r, u) under (H4), then there exists the

inverse function σ̄−1, ḡ−1, such that ut =

(
σ̄−1(t, λ, Eλ, r, u) 0

0 ḡ−1(t, λ, Eλ, r, u)

)
. In this way, the

system (2) can be rewritten as
dxt = −b(t, λt, Eλt, rt, pt, qt)dt+ ptdWt +

∞∑
j=1

q
(j)
t dH

(j)
t ,

dyt = −f(t, λt, Eλt, rt, pt, qt)dt+ ztdWt +
∞∑
j=1

r
(j)
t dH

(j)
t ,

x0 = a, yT = h(xT , ExT ),

(4)

where b(t, λt, Eλt, rt, pt, qt) = −b̄(t, λt, Eλt, rt, ut), f(t, λt, Eλt, rt, pt, qt) = f̄(t, λt, Eλt, rt, ut).

Without loss of generality,

(
pt 0

0 qt

)
could be regarded as the control variable. By the exis-

tence and uniqueness theorem of mean-field BSDE, selecting

(
pt 0

0 qt

)
is equivalent to selecting the

terminal state xT . Therefore we obtain an equivalent backward control system as follows:
dxt = −b(t, λt, Eλt, rt, pt, qt)dt+ ptdWt +

∞∑
j=1

q
(j)
t dH

(j)
t ,

dyt = −f(t, λt, Eλt, rt, pt, qt)dt+ ztdWt +
∞∑
j=1

r
(j)
t dH

(j)
t ,

xT = ξ, yT = h(ξ, Eξ),

(5)



6

where the control variable is the random variable ξ ∈ U , U = {ξ | E|ξ|2 <∞, ξ ∈M,a.s.}.
The equivalent cost function is

J(ξ) = E
{∫ T

0

L(t, xt, Ext, yt, Eyt, zt, Ezt, rt, pt, qt)dt+ φ(xT , ExT ) + ψ(y0)
}
, (6)

where L(t, xt, Ext, yt, Eyt, zt, Ezt, rt, pt, qt) = L̄(t, xt, Ext, yt, Eyt, zt, Ezt, rt, ut).

Consequently, the optimal control problem is given rise to the following equivalent optimization

problem.

Problem B.

Minimize J(ξ)

s.t. ξ ∈ U, xξ0 = a,

here xξ0 is the solution of Equation (5) at time 0 under ξ.

In this way, the terminal state turns into a control variable ξ, and the initial condition xξ0 = a is

considered as a constraint. That is, it is more feasible since a control constraint is much easier to be

dealt with than a state constraint. Moreover, b, f , L also satisfy the similar conditions in (H3) accord-

ing to their definitions. From now on, we focus on Problem B to describe the maximum principle of

the optimal control.

3 Maximum Principle
3.1 Variational equation

Let ξ∗ ∈ U be an optimal control of Problem B and (x∗t , y
∗
t , z
∗
t , r
∗
t , p
∗
t , q
∗
t ) be the state process of

(5) with ξ∗. As U is convex, for each 0 ≤ ε ≤ 1, ξ ∈ U , we know ξε = ξ∗ + ε(ξ − ξ∗) ∈ U . The

corresponding trajectory of (5) with ξε is denoted by (xεt , y
ε
t , z

ε
t , r

ε
t , p

ε
t , q

ε
t ).

Consider the following mean-field BSDEs called the variational equations:

dXt = −
[
b∗xXt + b∗x̃EXt + b∗yYt + b∗ỹEYt + b∗zZt + b∗z̃EZt + b∗rRt + b∗pPt + b∗qQt

]
dt

+PtdWt +
∞∑
j=1

Q
(j)
t dH

(j)
t ,

dYt = −
[
f∗xXt + f∗x̃EXt + f∗yYt + f∗ỹEYt + f∗zZt + f∗z̃EZt + f∗rRt + f∗pPt + f∗qQt

]
dt

+ZtdWt +
∞∑
j=1

R
(j)
t dH

(j)
t ,

XT = ξ − ξ∗, YT = hx(ξ∗, Eξ∗) · (ξ − ξ∗) + hx̃(ξ∗, Eξ∗) · E(ξ − ξ∗),

(7)

here b∗a = ba(t, x∗t , Ex
∗
t , y
∗
t , Ey

∗
t , z
∗
t , Ez

∗
t , r
∗
t , p
∗
t , q
∗
t ), f∗a = fa(t, x∗t , Ex

∗
t , y
∗
t , Ey

∗
t , z
∗
t , Ez

∗
t , r
∗
t , p
∗
t , q
∗
t ), which

is a first order partial derivatives to a (a = x, x̃, y, ỹ, z, z̃, r, p, q respectively), x̃, ỹ, z̃ are written for Ex,

Ey, Ez respectively to ease notations.

The above equations (7) are obviously composed of two linear mean-field BSDEs with Teugels

martingales. Under the assumptions, it is easy to check that (7) have the unique adapted solution

(Xt, Yt, Zt, Rt, Pt, Qt).

Set

x̂εt = ε−1(xεt − x∗t )−Xt, ŷεt = ε−1(yεt − y∗t )− Yt, ẑεt = ε−1(zεt − z∗t )− Zt,
r̂εt = ε−1(rεt − r∗t )−Rt, p̂εt = ε−1(pεt − p∗t )− Pt, q̂εt = ε−1(qεt − q∗t )−Qt.

We have the following convergence results:
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Lemma 3.1 Let condition (H1)-(H4) hold, we have

lim
ε→0

sup
0≤t≤T

E|x̂εt |2 = 0, lim
ε→0

E

∫ T

0

|ẑεt |2dt = 0, lim
ε→0

E

∫ T

0

‖r̂εt ‖2dt = 0,

lim
ε→0

sup
0≤t≤T

E|ŷεt |2 = 0, lim
ε→0

E

∫ T

0

|p̂εt |2dt = 0, lim
ε→0

E

∫ T

0

‖q̂εt ‖2dt = 0.

(8)

Proof. It is easy to check that

dx̂εt = −
{
ε−1[b(t, λεt , Eλ

ε
t , r

ε
t , p

ε
t , q

ε
t )− b(t, λ∗t , Eλ∗t , r∗t , p∗t , q∗t )]− b∗xXt − b∗x̃EXt − b∗yYt

−b∗ỹEYt − b∗zZt − b∗z̃EZt − b∗rRt − b∗pPt − b∗qQt
}
dt+ p̂εtdWt +

∞∑
j=1

q̂
(j)ε
t dH

(j)
t ,

= −
{
bx(t)x̂εt + bx̃(t)Ex̂εt + by(t)ŷεt + bỹ(t)Eŷεt + bz(t)ẑ

ε
t + bz̃(t)Eẑ

ε
t + br(t)r̂

ε
t

+bp(t)p̂
ε
t + bq(t)q̂

ε
t +Aεt

}
dt+ p̂εtdWt +

∞∑
j=1

q̂
(j)ε
t dH

(j)
t ,

dŷεt = −
{
ε−1[f(t, λεt , Eλ

ε
t , r

ε
t , p

ε
t , q

ε
t )− f(t, λ∗t , Eλ

∗
t , r
∗
t , p
∗
t , q
∗
t )]− f∗xXt − f∗x̃EXt − f∗yYt

−f∗ỹEYt − f∗zZt − f∗z̃EZt − f∗rRt − f∗pPt − f∗qQt
}
dt+ ẑεt dWt +

∞∑
j=1

r̂
(j)ε
t dH

(j)
t ,

= −
{
fx(t)x̂εt + fx̃(t)Ex̂εt + fy(t)ŷεt + fỹ(t)Eŷεt + fz(t)ẑ

ε
t + fz̃(t)Eẑ

ε
t + fr(t)r̂

ε
t

+fp(t)p̂
ε
t + fq(t)q̂

ε
t +Bεt

}
dt+ ẑεt dWt +

∞∑
j=1

r̂
(j)ε
t dH

(j)
t ,

x̂εT = 0,

ŷεT = ε−1[h(ξε, Eξε)− h(ξ∗, Eξ?)]− hx(ξ∗, Eξ∗) · (ξ − ξ∗)− hx̃(ξ∗, Eξ∗) · E(ξ − ξ∗),

(9)

where

ba(t) =

∫ 1

0

ba
(
t, A(α, t), EA(α, t), B(α, t), EB(α, t), C(α, t), EC(α, t), D(α, t), F (α, t), G(α, t)

)
dα

fa(t) =

∫ 1

0

fa
(
t, A(α, t), EA(α, t), B(α, t), EB(α, t), C(α, t), EC(α, t), D(α, t), F (α, t), G(α, t)

)
dα

a = x, x̃, y, ỹ, z, z̃, r, p, q, respectively,

A(α, t) = x∗t + αε(Xt + x̂εt ), B(α, t) = y∗t + αε(Yt + ŷεt ), C(α, t) = z∗t + αε(Zt + ẑεt ),

D(α, t) = r∗t + αε(Rt + r̂εt ), F (α, t) = p∗t + αε(Pt + p̂εt ), G(α, t) = q∗t + αε(Qt + q̂εt ),

and

Aεt = [bx(t)− b∗x]Xt + [bx̃(t)− b∗x̃]EXt + [by(t)− b∗y]Yt + [bỹ(t)− b∗ỹ]EYt + [bz(t)− b∗z]Zt
+[bz̃(t)− b∗z̃]EZt + [br(t)− b∗r ]Rt + [bp(t)− b∗p]Pt + [bq(t)− b∗q ]Qt,

Bεt = [fx(t)− f∗x ]Xt + [fx̃(t)− f∗x̃ ]EXt + [fy(t)− f∗y ]Yt + [fỹ(t)− f∗ỹ ]EYt + [fz(t)− f∗z ]Zt

+[fz̃(t)− f∗z̃ ]EZt + [fr(t)− f∗r ]Rt + [fp(t)− f∗p ]Pt + [fq(t)− f∗q ]Qt.

With the fact that [H(i), H(j)]t−〈H(i), H(j)〉t is a Ft-martingale, we apply Itô,s formula to |x̂εt |2+ |ŷεt |2,

then

E|x̂εt |2 + E|ŷεt |2 + E

∫ T

t

(
|p̂εs|2 + |ẑεs |2

)
ds+ E

∫ T

t

(
‖r̂εs‖2 + ‖q̂εs‖2

)
ds

≤ E|ŷεT |2 + cE

∫ T

t

(
|x̂εs|2 + |ŷεs |2

)
ds+ c1E

∫ T

t

(
|p̂εs|2 + |ẑεs |2

)
ds

+c1E

∫ T

t

(
‖r̂εs‖2 + ‖q̂εs‖2

)
ds+ c2E

∫ T

t

(
|Aεs|2 + |Bεs |2

)
ds,
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where c1 < 1 and ε > 0 is sufficient small. In the light of Gronwall’s inequality, it follows that

sup
0≤t≤T

E|x̂εt |2 + sup
0≤t≤T

E|ŷεt |2 + E

∫ T

0

(
|p̂εt |2 + |ẑεt |2

)
dt+ E

∫ T

0

(
‖r̂εt ‖2 + ‖q̂εt ‖2

)
dt

≤ c′E|ŷεT |2 + c′E

∫ T

0

(
|Aεt |2 + |Bεt |2

)
dt.

(10)

It is easy to check that lim
ε→0

E | ŷεT |2= 0. Moreover, we can get lim
ε→0

E

∫ T

0

(
|Aεt |2 + |Bεt |2

)
dt = 0 from

the Lebesgue’s dominated convergence theorem. Then, let ε → 0 in (10), the desired results (8) are

obtained.

3.2 Variational inequality
Now let’s recall the following Ekeland’s variational principle to deal with the initial state constraint

xξ0 = a.

Lemma 3.2 (Ekeland’s variational principle) Let (V, d(·, ·)) be a complete metric space and

F (·) : V → R be a proper lower semi-continuous function bounded from below. Suppose that for every

ε > 0, there exists u ∈ V such that F (u) ≤ inf
v∈V

F (v) + ε, then there exists uε ∈ V such that

(i) F (uε) ≤ F (u),

(ii) d(u, uε) ≤
√
ε,

(iii) F (v) +
√
εd(v, uε) ≥ F (uε), ∀v ∈ V.

The metric in U is defined by d(ξ1, ξ2) = (E|ξ1 − ξ2|2)
1
2 for ξ1, ξ2 ∈ U . Obviously, (U, d(·, ·)) is a

complete metric space.

We firstly consider the case where L(t, λ, Eλ, r, p, q) = 0 in the cost function (6). For the given

optimal control ξ∗ ∈ U , we give a penalty function F (·) : U → R by

F (ξ) =
{
|xξ0 − a|

2 +max2
(
0, φ(ξ, Eξ)− φ(ξ∗, Eξ∗) + ψ(yξ0)− ψ(y∗0) + δ

)} 1
2

, (11)

where δ > 0 is an arbitrary constant. It is easy to check that F (·) is a continuous function of ξ defined

on U. From the Ekeland’s variational principle, we have the following variational inequality.

Theorem 3.1 Under the assumptions (H1)-(H4), let ξ∗ be an optimal control to Problem B.

Then for any ξ ∈ U , there exists h0 ≥ 0 and h1 ∈ Rn with h0 + |h1| 6= 0, the following variational

inequality holds

〈h1, X0〉+ h0〈φx(ξ∗, Eξ∗) + φx̃(ξ∗, Eξ∗), ξ − ξ∗〉+ h0〈ψy(y∗0), Y0〉 ≥ 0. (12)

Proof. From the penalty function F (·), we have the following properties:

F (ξ∗) = δ; F (ξ) > 0, ξ ∈ U ; F (ξ∗) ≤ inf
ξ∈U

F (ξ) + δ.

According to Lemma 3.2, there exists ξδ ∈ U satisfying

(i) F (ξδ) ≤ F (ξ∗),

(ii) d(ξδ, ξ∗) ≤
√
δ,

(iii) F (ξ) +
√
δd(ξ, ξδ) ≥ F (ξδ), ∀ξ ∈ U .

Since U is convex, for any ξ ∈ U and 0 ≤ ρ ≤ 1, it is obviously that ξρ = ξδ+ρ(ξ−ξδ) ∈ U . Denote

(xρt , y
ρ
t , z

ρ
t , r

ρ
t , p

ρ
t , q

ρ
t ) and (xδt , y

δ
t , z

δ
t , r

δ
t , p

δ
t , q

δ
t ) to be the solution of (5) with ξ = ξρ, ξδ respectively.
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In the same manner, let (Xδ
t , Y

δ
t , Z

δ
t , R

δ
t , P

δ
t , Q

δ
t ) be the solution of variation equation (7) when ξ∗ is

substituted by ξδ. Therefore, we have

F (ξρ)− F (ξδ) ≥ −
√
δd(ξρ, ξδ). (13)

By using Lemma 3.1, it follows that

lim
ρ→0

E sup
0≤t≤T

|ρ−1(xρt − xδt )−Xδ
t |2 = 0, lim

ρ→0
E sup

0≤t≤T
|ρ−1(yρt − yδt )− Y δt |2 = 0,

lim
ρ→0

E

∫ T

0

|ρ−1(zρt − z
δ
t )− Zδt |2dt = 0, lim

ρ→0
E

∫ T

0

|ρ−1(pρt − p
δ
t )− P δt |2dt = 0,

lim
ρ→0

E

∫ T

0

‖ρ−1(rρt − r
δ
t )−Rδt‖2dt = 0, lim

ρ→0
E

∫ T

0

‖ ρ−1(qρt − q
δ
t )−Qδt ‖2 dt = 0.

(14)

Thus
xρt − xδt = ρXδ

t + o(ρ), yρt − yδt = ρY δt + o(ρ), zρt − zδt = ρZδt + o(ρ),

pρt − pδt = ρP δt + o(ρ), rρt − rδt = ρRδt + o(ρ), qρt − qδt = ρQδt + o(ρ),

Consequently, let us define the following expansions:

|xρ0 − a|
2 − |xδt − a|2 = 2ρ〈xδ0 − a,Xδ

0 〉+ o(ρ),

|φ(ξρ, Eξρ)− φ(ξ∗, Eξ∗) + ψ(yρ0)− ψ(y∗0) + δ|2 − |φ(ξδ, Eξδ)− φ(ξ∗, Eξ∗) + ψ(yδ0)− ψ(y∗0) + δ|2

= 2ρ
[
φ(ξδ, Eξδ)− φ(ξ∗, Eξ∗) + ψ(yδ0)− ψ(y∗0) + δ

]
·
[
〈φx(ξδ, Eξδ) + φx̃(ξδ, Eξδ), ξ − ξδ〉+ 〈ψy(yδ0), Y δ0 〉

]
+ o(ρ).

(15)

For the given δ > 0, we need to consider the penalty function in the following two cases.

Case 1. There exists ρ0 > 0, such that for all 0 ≤ ρ ≤ ρ0, it holds that

φ(ξρ, Eξρ)− φ(ξ∗, Eξ∗) + ψ(yρ0)− ψ(y∗0) + δ ≥ 0.

Therefore,

lim
ρ→0

F (ξρ)− F (ξδ)

ρ
= lim
ρ→0

1

F (ξρ) + F (ξδ)
· F

2(ξρ)− F 2(ξδ)

ρ

=
1

F (ξδ)

{
〈xδ0 − a,Xδ

0 〉+
[
φ(ξδ, Eξδ)− φ(ξ∗, Eξ∗) + ψ(yδ0)− ψ(y∗0) + δ

]
·[

〈φx(ξδ, Eξδ) + φx̃(ξδ, Eξδ), ξ − ξδ〉+ 〈ψy(yδ0), Y δ0 〉
]}
.

Set

hδ0 =
1

F (ξδ)

[
φ(ξδ, Eξδ)− φ(ξ∗, Eξ∗) + ψ(yδ0)− ψ(y∗0) + δ

]
,

hδ1 =
1

F (ξδ)

[
xδ0 − a

]
.

From (13), we obtain

〈hδ1, Xδ
0 〉+ hδ0 ·

[
〈φx(ξδ, Eξδ) + φx̃(ξδ, Eξδ), ξ − ξδ〉+ 〈ψy(yδ0), Y δ0 〉

]
≥ −
√
δ
[
E|ξ − ξδ|2

] 1
2 . (16)

Case 2. There exists a positive sequence {ρn} satisfying ρn → 0 such that

φ(ξρn , Eξρn)− φ(ξ∗, Eξ∗) + ψ(yρn0 )− ψ(y∗0) + δ ≤ 0.

By the definition of the penalty function F (·), we know that F (ξρn) = {|xρn0 − a|2}
1
2 . As F (·) is

continuous, we have F (ξδ) = {|xδ0 − a|2}
1
2 , where xρn0 → xδ0 (n→∞). Then

lim
ρ→0

F (ξρn)− F (ξδ)

ρn
= lim
ρ→0

1

F (ξρn) + F (ξδ)

F 2(ξρn)− F 2(ξδ)

ρn
=
〈xδ0 − a,Xδ

0 〉
F (ξδ)

.
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Set hδ0 = 0, hδ1 =
1

F (ξδ)

[
xδ0 − a

]
, it follows from (13) that

〈hδ1, Xδ
0 〉 ≥ −

√
δ
[
E|ξ − ξδ|2

] 1
2 . (17)

Above all, we have hδ0 ≥ 0, |hδ0|2 + |hδ1|2 = 1 and the inequality (16) holds.

From the above, there exists a subsequence of (hδ0, h
δ
1) which will converge to a limit denoted by

(h0, h1). Since d(ξδ, ξ∗) ≤
√
δ, then we have ξδ → ξ∗ in U as δ → 0. Therefore, from the regularity of

the solutions of mean-field BSDEs, we have Xδ → X∗, Y δ → Y ∗ as δ → 0. Let δ → 0 in (16), we get

the variational inequality (12).

Next, we consider the case where L(t, λ, Eλ, r, p, q) 6= 0. By using the similar analysis, the varia-

tional inequality can be derived as follows:

Theorem 3.2 Under the assumptions (H1)-(H4), let ξ∗ be an optimal control to Problem B.

Then for any ξ ∈ U , there exists h0 ≥ 0 and h1 ∈ Rn with h0 + |h1| 6= 0, the following variational

inequality holds

〈h1, X0〉+ h0〈φx(ξ∗, Eξ∗) + φx̃(ξ∗, Eξ∗), ξ − ξ∗〉+ h0〈ψy(y∗0), Y0〉

+h0E

∫ T

0

[
〈L∗x, Xt〉+ 〈L∗x̃, EXt〉+ 〈L∗y, Yt〉+ 〈L∗ỹ, EYt〉

+〈L∗z, Zt〉+ 〈L∗z̃, EZt〉+ 〈L∗r , Rt〉+ 〈L∗p, Pt〉+ 〈L∗q , Qt〉
]
dt ≥ 0,

(18)

here L∗a = La(t, x∗t , Ex
∗
t , y
∗
t , Ey

∗
t , z
∗
t , Ez

∗
t , r
∗
t , p
∗
t , q
∗
t ), a = x, x̃, y, ỹ, z, z̃, r, p, q, respectively.

3.3 Maximum principle
To derive the maximum principle, we first introduce the Hamiltonian function H(·) associated with

the mean-field stochastic control system as follows:

H(t, λ, Eλ, r, p, q,m, n) = 〈m, b(t, λ, Eλ, r, p, q)〉+ 〈n, f(t, λ, Eλ, r, p, q)〉+ h0L(t, λ, Eλ, r, p, q),

here (mt, nt) is the solution of the following adjoint equations:

dmt =
[
b∗xmt + E(b∗x̃mt) + f∗xnt + E(f∗x̃nt) + h0L

∗
x + h0L

∗
x̃

]
dt

+
[
b∗pmt + f∗pnt + h0L

∗
p

]
dWt +

∞∑
j=1

[
b∗
q(j)

mt + f∗
q(j)

nt + h0L
∗
q(j)

]
dH

(j)
t ,

dnt =
[
b∗ymt + E(b∗ỹmt) + f∗ynt + E(f∗ỹnt) + h0L

∗
y + h0L

∗
ỹ

]
dt

+
[
b∗zmt + E(b∗z̃mt) + f∗z nt + E(f∗z̃ nt) + h0L

∗
z + h0L

∗
z̃

]
dWt

+
∞∑
j=1

[
b∗
r(j)

mt + f∗
r(j)

nt + h0L
∗
r(j)

]
dH

(j)
t ,

m0 = h1, n0 = h0ψy(y∗0).

(19)

Note that the adjoint equations turns out to be two linear mean-field SDEs. From (H3), we know there

admits a unique solution (mt, nt) of the above equation. Associated with the Hamiltonian function

H(·), the adjoint equations (19) can also be rewritten as the following stochastic Hamiltonian system’s

type 
dmt =

[
H∗x + E(H∗x̃)

]
dt+H∗pdWt +

∞∑
j=1

H∗
q(j)

dH
(j)
t ,

dnt =
[
H∗y + E(H∗ỹ)

]
dt+

[
H∗z + E(H∗z̃)

]
dWt +

∞∑
j=1

H∗
r(j)

dH
(j)
t ,

m0 = h1, n0 = h0ψy(y∗0),

(20)
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here H∗a = Ha(t, x∗t , Ex
∗
t , y
∗
t , Ey

∗
t , z
∗
t , Ez

∗
t , r
∗
t , p
∗
t , q
∗
t ), which is a first order partial derivatives to a,

a = x, x̃, y, ỹ, z, z̃, r, p, q respectively.

Next, by using a technique similar to that of refs. [12, 13], we can easily get the following

Theorem 3.3 Suppose that (H1)-(H4) hold, let ξ∗ be an optimal control to Problem B. Then

for any ξ ∈ U , there exists h0 ≥ 0 and h1 ∈ Rn with h0 + |h1| 6= 0, the following maximum principle

holds true,

〈mT + hx(ξ∗, Eξ∗)nT + hx̃(ξ∗, Eξ∗)nT + h0φx(ξ∗, Eξ∗) + h0φx̃(ξ∗, Eξ∗), ξ − ξ∗〉 ≥ 0, a.s. (21)

Proof. By applying Itô’s formula to 〈Xt,mt〉+ 〈Yt, nt〉, we can write

E〈ξ − ξ∗,mT 〉 − 〈X0, h1〉+ E〈hx(ξ∗, Eξ∗) · (ξ − ξ∗) + hx̃(ξ∗, Eξ∗) · E(ξ − ξ∗), nT 〉 − 〈Y0, h0ψy(y∗0)〉

= E

∫ T

0

{
〈Xt,H∗x + E(H∗x̃)〉+ 〈Yt,H∗y + E(H∗ỹ)〉+ 〈Zt,H∗z + E(H∗z̃)〉+ 〈H∗p, Pt〉+ 〈H∗q , Qt〉+ 〈H∗r , Rt〉

−〈b∗xXt + b∗x̃EXt + b∗yYt + b∗ỹEYt + b∗zZt + b∗z̃EZt + b∗rRt + b∗pPt + b∗qQt,mt〉

−〈f∗xXt + f∗x̃EXt + f∗yYt + f∗ỹEYt + f∗zZt + f∗z̃EZt + f∗rRt + f∗pPt + f∗qQt, nt〉
}
dt.

Combing with the variational inequality (18), it can be obtained that

E〈ξ − ξ∗,mT 〉+ E〈hx(ξ∗, Eξ∗) · (ξ − ξ∗) + hx̃(ξ∗, Eξ∗) · E(ξ − ξ∗), nT 〉
+h0〈φx(ξ∗, Eξ∗) + φx̃(ξ∗, Eξ∗), ξ − ξ∗〉

= 〈X0, h1〉+ 〈Y0, h0ψy(y∗0)〉+ h0〈φx(ξ∗, Eξ∗) + φx̃(ξ∗, Eξ∗), ξ − ξ∗〉

+h0E

∫ T

0

[
〈L∗x, Xt〉+ 〈L∗x̃, EXt〉+ 〈L∗y, Yt〉+ 〈L∗ỹ, EYt〉+ 〈L∗z, Zt〉+ 〈L∗z̃, EZt〉

+〈L∗r , Rt〉+ 〈L∗p, Pt〉+ 〈L∗q , Qt〉
]
dt ≥ 0.

The proof is complete.

4 Application: Stochastic LQ control problems with terminal state
constraints

In this section, we apply the results to investigate the linear quadratic control problem with terminal

state constraints. Consider the following mean-field type linear quadratic control system driven by

Teugels martingales:

dxt = (a1xt + a2Ext + a3yt + a4Eyt + a5ut)dt+ (b1xt + b2Ext + b3yt + b4Eyt + b5ut)dWt

+
∞∑
j=1

cjutdH
(j)
t ,

dyt = −(f1xt + f2Ext + f3yt + f4Eyt + f5zt + f6Ezt + f7ut)dt+ ztdWt +
∞∑
j=1

r
(j)
t dH

(j)
t ,

x0 = a, yT = g1xT + g2ExT ,

(22)

the object of our control problem is to minimize the cost function:

J̄(·) =
1

2
E[k1x

2
T + k2y

2
0 ],

subject to u(·) ∈ M2(0, T ;R). ai, bi, fi, gi and cj are finite real numbers with b5 6= 0. k1 and k2 are

positive constants.
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Let b1xt + b2Ext + b3yt + b4Eyt + b5ut = pt, cjut = q
(j)
t , then the system is transformed into:

dxt =
[
(a1 − a5b1

b5
)xt + (a2 − a5b2

b5
)Ext + (a3 − a5b3

b5
)yt + (a4 − a5b4

b5
)Eyt + a5

b5
pt
]
dt

+ptdWt +
∞∑
j=1

q
(j)
t dH

(j)
t ,

dyt = −
[
(f1 − f7b1

b5
)xt + (f2 − f7b2

b5
)Ext + (f3 − f7b3

b5
)yt + (f4 − f7b4

b5
)Eyt + f5zt

+f6Ezt + f7
b5
pt
]
dt+ ztdWt +

∞∑
j=1

r
(j)
t dH

(j)
t ,

xT = ξ, yT = g1ξ + g2Eξ.

(23)

The equivalent cost functional is:

Minimize J(·) =
1

2
E[k1ξ

2 + k2y
2
0 ],

s.t. ξ ∈ R+, xξ0 = a.

we can get the following mean-field adjoint equations:

dmt =
[
(a5b1
b5
− a1)mt + (a5b2

b5
− a2)Emt + (f1 − f7b1

b5
)nt + (f2 − f7b2

b5
)Ent

]
dt

+
[
− a5

b5
mt + f7

b5
nt
]
dWt,

dnt =
[
(a5b3
b5
− a3)mt + (a5b4

b5
− a4)Emt + (f3 − f7b3

b5
)nt + (f4 − f7b4

b5
)Ent

]
dt

+
[
f5nt + f6Ent

]
dWt

m0 = h1, n0 = h0k2y
∗
0 ,

(24)

where y∗0 is the solution of (22) associated with ξ∗. Then, according to the maximum principle in

Theorem 3.3, if ξ∗ is optimal control, we conclude that there exist h0, h1 ∈ R with h0 ≥ 0 and

h0 + |h1| 6= 0 such that, for any ξ ≥ 0,

〈mT + g1nT + g2EnT + h0k1ξ
∗, ξ − ξ∗〉 ≥ 0, a.s. (25)

Denote Ω0 := {ω ∈ Ω | ξ∗(ω) = 0}. From the arbitrariness of ξ in (24), we get the adjoint process

(m., n.) satisfies

mT + g1nT + g2EnT ≥ 0, a.s. on Ω0,

and on ΩC0 , mT + g1nT + g2EnT + h0k1ξ
∗ = 0, a.s.. It follows that if h0 > 0 , we have

ξ∗ = −h−1
0 k−1

1 [mT + g1nT + g2EnT ], a.s..

Appendix. Proof of Lemma 2.1

We give the existence proof in case of m ≥ n as follows.

Consider the following family of mean-field FBSDEs parametrized by α ∈ [0, 1]:

dxαt = [αb̄(t, λαt , Eλ
α
t , r

α
t ) + φt]dt+ [ασ̄(t, λαt , Eλ

α
t , r

α
t ) + ψt]dWt

+
∞∑
j=1

[αḡ(j)(t, λαt , Eλ
α
t , r

α
t ) + ξ

(j)
t ]dH

(j)
t ,

−dyαt = [(1− α)β1Gx
α
t + αf̄(t, λαt , Eλ

α
t , r

α
t ) + ηt]dt− zαt dWt −

∞∑
j=1

r
(j)
t dH

(j)
t ,

xα0 = a, yαT = αh(xαT , Ex
α
T ) + (1− α)GxαT + γ,

(26)

where φ, ψ, ξ and η are processes in M2(0, T ), and γ ∈ L2(Ω,FT , P ). We can easily check that the

above equation has a unique solution when α = 0. Moreover, when α = 1, the existence of solutions
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for equation (26) implies that of MFFBSDE (1).

Next, we introduce a continuous dependence lemma to give a priori estimate for the ”existence

interval” of (26) with respect to α ∈ [0, 1].

Lemma A Suppose that (H2.1) and (H2.2) hold and m ≥ n. If for some α0 ∈ [0, 1) there

exists a solution (xα0 , yα0 , zα0 , rα0) of (26), then there exists a positive constant δ0 , such that for each

δ ∈ [0, δ0] , there exists a solution (xα0+δ, yα0+δ, zα0+δ, rα0+δ) of MFFBSDE (26) for α = α0 + δ.

Proof. Since for each φ, ψ, ξ, η ∈ M2(0, T ), α ∈ [0, 1), there exists a unique solution of (26). Let us

define for each quarter (xt, yt, zt, rt) ∈M2(0, T ;Rn+m+m×d)× l2(0, T ;Rm), the following MFFBSDE:

dXt = [α0b̄(t,Λt, EΛt, Rt) + δb̄(t, λt, Eλt, rt) + φt]dt

+[α0σ̄(t,Λt, EΛt, Rt) + δσ̄(t, λt, Eλt, rt) + ψt]dWt

+
∞∑
j=1

[α0ḡ
(j)(t,Λt, EΛt, Rt) + δḡ(j)(t, λt, Eλt, rt) + ξ

(j)
t ]dH

(j)
t ,

−dYt = [(1− α0)β1GXt + α0f̄(t,Λt, EΛt, Rt) + δ
(
− β1Gxt + f̄(t, λt, Eλt, rt)

)
+ηt]dt− ZtdWt −

∞∑
j=1

R
(j)
t dH

(j)
t ,

X0 = a, YT = α0h(XT , EXT ) + (1− α0)GXT + δ
(
h(xT , ExT )−GxT

)
+ γ,

where Λt = (Xt, Yt, Zt). We are going to prove that the mapping defined by

Iα0+δ(λt, rt, xT ) = (Λt, Rt, XT )

is a contraction.

We set ∆Λ = (∆X,∆Y,∆Z) = (X −X ′, Y − Y ′, Z −Z′), ∆R = R−R′. Applying Itô,s formula to

〈G∆Xt,∆Yt〉, it yields

α0E〈∆h(XT , EXT ), G∆XT 〉+ (1− α0)E|G∆XT |2 + δE〈∆h(xT , ExT )−G∆xT , G∆XT 〉
= E

∫ T
0
〈α0∆A(t,Λt, EΛt, Rt),∆Λt〉dt− (1− α0)β1E

∫ T
0
〈G∆Xt, G∆Xt〉dt

+E
∫ T
0

∞∑
j=1

α0〈∆g(j)(t,Λt, EΛt, Rt), G
T∆R

(j)
t 〉dt+ δE

∫ T
0

{
〈G∆bt,∆Yt〉

−〈G∆Xt,−β1G∆xt + ∆ft〉+ 〈∆σt, GT∆Zt〉+
∞∑
j=1

〈∆g(j)t , GT∆R
(j)
t 〉
}
dt

≤ E
∫ T
0

{
− β1|G∆Xt|2 − α0β1|GE∆Xt|2 − α0β2(|GT∆Yt|2 + |GTE∆Yt|2 + |GT∆Zt|2

+|GTE∆Zt|2 +
∞∑
j=1

|GT∆R
(j)
t |2

}
dt+ δE

∫ T
0

{
〈G∆bt,∆Yt〉 − 〈G∆Xt,−β1G∆xt + ∆ft〉

+〈∆σt, GT∆Zt〉+
∞∑
j=1

〈∆g(j)t , GT∆R
(j)
t 〉
}
dt.

where ∆h(XT , EXT ) = h(XT , EXT )− h(X ′T , EX
′
T ),

∆A(t,Λt, EΛt, Rt) = A(t,Λt, EΛt, Rt)−A(t,Λ′t, EΛ′t, R
′
t),

∆g(j)(t,Λt, EΛt, Rt) = ḡ(j)(t,Λt, EΛt, Rt)− ḡ(j)(t,Λ′t, EΛ′t, R
′
t),

∆bt = b̄(t, λt, Eλt, rt)− b̄(t, λ′t, Eλ′t, r′t), ∆ft = f̄(t, λt, Eλt, rt)− f̄(t, λ′t, Eλ
′
t, r
′
t),

∆σt = σ̄(t, λt, Eλt, rt)− σ̄(t, λ′t, Eλ
′
t, r
′
t), ∆g

(j)
t = ḡ(j)(t, λt, Eλt, rt)− ḡ(j)(t, λ′t, Eλ′t, r′t).

By the assumptions (H1), (H2), we use the Jensen’s inequality and the fact that Ex2 ≥ (Ex)2, then(
α0µ+ (1− α0)

)
E|G∆XT |2 + β1E

∫ T
0
|G∆Xt|2dt

≤ δCE
∫ T
0

(|∆λt|2 + |∆rt|2 + |∆Λt|2 + |∆Rt|2)dt+ δC
(
E|G∆XT |2 + E|G∆xT |2

)
.

By applying the usual technique to the BSDE part, we can obtain

E
∫ T
0

(|∆Λt|2 + |∆Rt|2)dt ≤ δC
(
E
∫ T
0

(|∆λt|2 + |∆rt|2)dt+ E|G∆xT |2
)

+C
(
E
∫ T
0
|G∆Xt|2)dt+ E|G∆XT |2

)
.
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Combing the above estimates, it follows that

E

∫ T

0

(|∆Λt|2 + |∆Rt|2)dt+ E|∆XT |2 ≤ δC′
(
E

∫ T

0

(|∆λt|2 + |∆rt|2)dt+ E|∆xT |2
)
.

Here the constant C′ depends on the Lipschitz constants G, β1, β2 and T . If we take δ0 = 1
2C′ , then

for each δ ∈ [0, δ0], we have

E

∫ T

0

(|∆Λt|2 + |∆Rt|2)dt+ E|∆XT |2 ≤
1

2

(
E

∫ T

0

(|∆λt|2 + |∆rt|2)dt+ E|∆xT |2
)
.

It follows that Iα0+δ is a contraction. Hence Iα0+δ has a unique fixed point (xα0+δ, yα0+δ, zα0+δ, rα0+δ)

which is the unique solution of mean-field FBSDE. Similarly, the case for m < n can be proved by the

same technique. Then the proof of Lemma2.1 is complete.
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tial equations driven by Lévy processes and application to differential games. Random Operators and

Stochastic Equations. 2014, 22(3): 151-161.

[21] Wang X R, Huang H. Maximum principle for forward-backward stochastic control system driven
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