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Abstract

HIV is a serious disease that threatens and affects capital stock, population composition and economic growth. This research

paper aims to study the mathematical modeling and disease dynamics of HIV/AIDS with memory effect. We propose two

fractional models in the Caputo sense for HIV/AIDS with and without migration. First, we prove the existence and positivity

of both models and calculate the basic reproduction number R 0 using the next generation method. Then, we study the local and

global stability of the obtained equilibria. In addition, numerical simulations are provided for different values of the fractional

order ρ using the Adams-Bashforth-Moulton fractional scheme, to verify the theoretical results. Moreover, a sensitivity analysis

of the parameters for the model with migration is carried out.
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Abstract

HIV is a serious disease that threatens and affects capital stock, population
composition and economic growth. This research paper aims to study the
mathematical modeling and disease dynamics of HIV/AIDS with memory
effect. We propose two fractional models in the Caputo sense for HIV/AIDS
with and without migration. First, we prove the existence and positivity
of both models and calculate the basic reproduction number R0 using the
next generation method. Then, we study the local and global stability of
the obtained equilibria. In addition, numerical simulations are provided for
different values of the fractional order ρ using the Adams-Bashforth-Moulton
fractional scheme, to verify the theoretical results. Moreover, a sensitivity
analysis of the parameters for the model with migration is carried out.

Keywords: Caputo derivative, HIV/AIDS disease, Fractional
Adams-Bashforth method, Fractional differential equations.

1. Introduction

AIDS is a disease brought on by the human immunodeficiency virus (HIV)
that results in a continuous deterioration of the immune system [19, 20]. It
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is extremely harmful. Once infected with HIV, the immune system become
impaired, resulting in various diseases such as opportunistic infections and
eventually leading to death.

In 1981, five young homosexual men in California who had been diagnosed
with Pneumocystis carinii pneumonia were found to have the first cases of
human immunodeficiency virus [10]. Since then, there has been a steady
rise in cases throughout the world, which has had a significant impact on
global public health. According to the World Health Organization (WHO),
approximately 20 million people have already lost their lives due to acquired
immunodeficiency syndrome(AIDS), and an estimated 38.4 million people
are living with the virus through 2021; 25.6 million of them are in Africa.
The virus kills CD4+ T cells, causing a loss of cell-mediated immunity and
leaving the immune system vulnerable to cancer and other infectious dis-
eases.AIDS is not always present in people with HIV. It can take many years
for the virus to cause a major infection in the body. With the development of
HIV/AIDS, many mathematicians have established a large number of math-
ematical models to assess potential effects and explanations for the spread
of HIV/AIDS and to find out how these models can be used to prevent or
reduce this disease ([1, 4, 14, 18, 21, 25, 28, 31]).

We refer to some research on the evolution of the HIV/AIDS pandemic
and ways to prevent it. In [12], the authors have illustrated the influence of
treatment on the progression of the HIV epidemic by including a compart-
ment of the population on treatment in the epidemiological model. Y.-H.
Hsieh and S.-P. Sheu [11] have proposed a mathematical model for the spread
of HIV and AIDS through heterosexual relationships, with community-based
systems for testing and enrollment in care. The authors in [13] develop a
mathematical model to analyze the impact of awareness-raising and educa-
tional efforts on the spread of HIV epidemic. There are many reasons for
the spread of HIV in the world, one of them is migration. We review some
articles that deal with the issue of migration and its effects on the spread of
HIV [7, 9, 32].

Most of the mathematical models used to explain the transmission of
epidemics are differential equations (systems), which contain derivatives of
functions with respect to time. Recently, the fractional derivative has been
widely used in mathematical epidemiology[5, 15, 22, 30]. The memory effect
is the primary characteristic of the fractional order derivative as opposed to
the classical (integer order) derivative, which is a local operator, see [17, 29].
Furthermore, the extendement of the stability region of mathematical sys-
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tems is considered an added benefit of the non-integer derivative. Saeedian
et al.[24] constructed a SIR model to show the effects of memory on the
evolution of the epidemic. Moreover, there are many definitions for the
fractional derivative, including those from Riemann-Liouville, Hadamard,
Caputo, Grnwald-Letnikov, Weyl, and Hifler. The characteristic that the
derivative of a constant is zero is not satisfied by the majority of definitions
of fractional derivatives, in contrast to Caputo’s fractional derivative.

Inspired by this work [3], which established a mathematical model with
population migration, and obtained that migration plays an essential role
in the prevalence of AIDS. We have proposed two mathematical models of
HIV/AIDS that identify , and describe HIV transmission using the fractional
derivative in the sense of Caputo, motivated by existing work and the benefits
of fractional derivative equations.

This work is organized as follows: in section 2, we will start with some
preliminaries on fractional derivatives in the Caputo sense. Sections 3 and
4 provide the basic properties of the fractional model without migration
and with migration . Then, the numerical simulation of the two proposed
fractional models using the Adams-Bashforth-Moulton fractional technique
is obtained in section 5. We conclude this article with a sensitivity analysis
of the model parameters without migration.

2. Preliminaries

In this section, we will present some basic definitions and notations related
to the Caputo fractional derivative that we will use in this paper (see for
example [27, 23]).

Definition 2.1. [23]. The Riemann-Liouville fractional integral of order
ρ > 0 of a function f : R+ → R is given by

Iρf(t) =
1

Γ(ρ)

∫ t

0

(t− x)ρ−1f(x)dx,

where Γ(ρ) =

∫ ∞
0

tρ−1e−tdt is the Euler Gamma function.

Definition 2.2. [23]. Let ρ > 0, n = [ρ] + 1, n − 1 < ρ ≤ n, where [ρ]
denotes the integer part of ρ. The Caputo fractional derivative of order ρ for

3



a function f ∈ Cn([0,+∞),R) is defined by

CDρf(t) = In−ρDnf(t) =
1

Γ(n− ρ)

∫ t

0

f (n)(s)

(t− s)ρ+1−nds, t > 0

when 0 < ρ ≤ 1 we find

CDρf(t) = I1−ρDf(t) =
1

Γ(1− ρ)

∫ t

0

f(s)

(t− s)ρ
ds, t > 0

In this article, we propose two models of HIV/AIDS-infected population.
The first is the model withoud migration and the second model with migra-
tion.

3. Fractional Model of HIV/AIDS whithout migration

In this model, we divide the hosts population into three compartiments,
namely Susceptible (S), the infected (I) by HIV, and (A) the infected by
AIDS. Where susceptible individuals can be infected at a rate of αI where
α is HIV transmission rate for susceptible individuals. Individuals infected
with HIV develop AIDS at a γ rate.

Finally, µ is the natural mortality rate, Λ is the recruitment birth rate,
δ1 and δ2 are the HIV-related mortality rate and the AIDS-related mortality
rate respectively. The flow diagram of HIV transmission without migration
is shown in Figure 1.

S I A
Λ αIS γ

µ µ + δ1µ + δ2

Figure 1: Schematic diagram of HIV transmission.
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Based on the above assumptions, we obtain the classical formula for this
model as follows: 

dS

dt
= Λ− αIS − µS

dI

dt
= αIS − (µ+ δ1 + γ)I

dA

dt
= γI − (µ+ δ2)A

(1)

Fractional Model

Now by changing the classical derivative in model 1 to the fractional
derivative in the sense of Caputo, we get the following system of fractional
ODEs: 

CDρ
tS = Λ− αIS − µS

CDρ
t I = αIS − (µ+ δ1 + γ)I

CDρ
tA = γI − (µ+ δ2)A

(2)

With non-negative initial conditions S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, A(0) =
A0 ≥ 0 and the operator CD is the Caputo fractional derivatives of order
ρ ∈ (0, 1].

3.1. Positivity and boundedness of solution

Lemma 3.1. (Generalized Mean Value Theorem [26] ). Suppose that
f ∈ C[a, b], and CDρ

t f(t) ∈ C(a, b], 0 < ρ ≤ 1. Then,

f(t) = f(0) +
1

Γ(ρ)

(
CDρ

t f
)

(ξ)(t− a)ρ,

Where 0 ≤ ξ ≤ t,∀t ∈ (a, b].

Corollary 3.1. [26] Suppose that f ∈ C[a, b], and CDρ
t f(t) ∈ C(a, b], 0 <

ρ ≤ 1. Then,

1. If CDρ
t f(t) ≥ 0, ∀t ∈ (a, b], then CDρ

t f(t) is non-decreasing.

2. If CDρ
t f(t) ≤ 0, ∀t ∈ (a, b], then CDρ

t f(t) is non-increasing.
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Theorem 3.1. The region Θ+ = {(S, I, A) ∈ R+;S ≥ 0, I ≥ 0, A ≥ 0 } is
positivity invariant set for the system (2).

Proof. From Theorem 3.1 and the remark 3.2 in [16] the solution of system
(2) is exist and unique. Now we prove the positivity of the solution, since

CDρ
tS\S=0 = Λ ≥ 0,

CDρ
t I\I=0 = 0,

CDρ
tA\A=0 = γI ≥ 0,

By using the Corollary (3.1), we get that is, the solution will stay in R4
+ and

hence,
Θ+ = {(S, I, A) ∈ R+;S ≥ 0, I ≥ 0, A ≥ 0 } is positivity invariant set for
the system (2).

Next we establish the boundedness of solution by the following theorem.

Theorem 3.2. The region Θ = {(S, I, A) ∈ R+;S ≥ 0, I ≥ 0, A ≥ 0,

0 ≤ N(t) ≤ Λ

µ
, where N(t) = S(t) + I(t) + A(t) } is positivity invariant set

for the system (2).

Proof. Summing all the equations of system (2), we have

CDρ
tN(t) = Λ− µN(t)− δ1I(t)− δ2A(t), (3)

In the absence of disease the equation (3) becames

CDρ
tN(t) ≤ Λ− µN(t), (4)

Solving the equation (4), we get

N(t) ≤ Eρ,1(−µ tρ)N(0) + Λ tρEρ,ρ+1(−µ tρ),

≤ Λ

µ
[Eρ,1(−µ tρ) + µ tρEρ, ρ+1(−µ tρ)] =

Λ

µ
,

Then, the feasible region Θ is positivity invariant. this imply the bounded-
ness of solution .
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3.2. Equilibrium and basic reproduction number

To calculate the equilibrium of model (2) we solve :

CDρ
tS() = CDρ

t I(t) = CDρ
tA(t) = 0,

Then, we obtain the disease free equilibrium DFE which is given by

E0 = (S0, I0, A0), (5)

Where S0 =
Λ

µ
, I0 = 0, A0 = 0. The basic reproduction number R0 obtained

by the next generation which is given as follows :

1. There are two infected states: A, I, and one non infected state: S.

2. Equilibrium without infection is S =
Λ

µ
, I = A = 0. Linearized system

around the equilibrium point associated with the infected states,

CDρ
t I = αIS − (µ+ δ1 + γ)I, CDρ

tA = γI − (µ+ δ2)A,

The transmission and transition matrices are given by

T =

(
αS0 0
0 0

)
, Σ =

(
−(µ+ δ1 + γ) 0

γ −(µ+ δ2)

)
,

Finally the basic reproduction number for the SIA model is given by

R0 = %
(
−TΣ−1

)
=

αS0

(µ+ δ1 + γ)
=

αΛ

µ(µ+ δ1 + γ)
. (6)

Theorem 3.3. If R0 > 1, then there exists a unique endemic equlibrium
E1 = (S∗, I∗, A∗) of system (2).

Proof. To find the endemic equlibrium, we solve the system

CDρ
tS(t) = CDρ

t I(t) = CDρ
tA(t) = 0,

The model (2) has a unique endemic equilibrium denoted by E1 = (S∗, I∗, A∗)
With,

S∗ =
µ+ δ1 + γ

α
, I∗ =

αΛ− µ (µ+ δ1 + γ)

α (µ+ δ1 + γ)
, A∗ =

γ I∗

µ+ δ2
, (7)

As we have R0 > 1, then I∗ > 0, which implies S∗ > 0, andA∗ > 0.

7



3.3. Stability analysis

Theorem 3.4. If R0 < 1, then the disease free equilibrium E0 of system (2)
is locally asymptotically stable. If R0 > 1, then E0 is unstable.

Proof. The Jacobian matrix of system (2) at E0 is

J (E0) =

−µ −α 0
0 αS0 − (µ+ δ1 + γ) 0
0 γ −(µ+ δ2)

 .

By some calculations, we obtain the characteristic roots are:

λ1 = −µ, λ2 = −(µ+ δ2), λ3 = α
Λ

µ
− (µ+ δ1 + γ).

Evident, λ1 < 0 and λ2 < 0. If R0 < 1, then λ3 < 0. Thus, we have

| arg (λi)| >
ρπ

2
(i = 1, 2, 3). Hence the stability local of disease-free equilib-

rium.

Theorem 3.5. If R0 > 1 then the endemic equilibrium E1 of system (2) is
locally asymptotically stable. If R0 < 1, then E1 is unstable.

Proof. The Jacobian matrix of system (2) at E1 is

J (E1) =

−αI∗ − µ −αS∗ 0
αI∗ αS∗ − (µ+ δ1 + γ) 0
0 γ −(µ+ δ2)

 .

We replace I∗ and S∗ by their values we obtain

J (E1) =

 −µR0 −(µ+ δ1 + γ) 0
µ (R0 − 1) 0 0

0 γ −(µ+ δ2)

 .

To determine the eigenvalues, we solve the equation

det(J (E1)− λI3) = 0.

det(J (E1)− λI3) =det

−µR0 − λ −(µ+ δ1 + γ) 0
µ (R0 − 1) −λ 0

0 γ −(µ+ δ2)− λ

 ,

= (µ+ δ2 + λ)((µR0 + λ)λ+ (µ+ δ1 + γ)µ (R0 − 1)),

= (µ+ δ2 + λ)(λ2 + µR0λ+ (µ+ δ1 + γ)µ (R0 − 1)).

8



We pose ∆ = (µR0)
2 − 4µ(µ+ δ1 + γ)(R0 − 1).

We can see if ∆ > 0, we find

λ1 =
−(µR0)−

√
∆

2
, λ2 =

−(µR0) +
√

∆

2
, λ3 = −(µ+ δ2).

If R0 > 1, then λ1 < 0, λ2 < 0 and λ3 < 0. Thus all eigenvalues have
negative real parts. Hence the endemic equlibrium of system (2) is locally
asymptotically stable for all α ∈ (0, 1].

Theorem 3.6. The disease-free equilibrium E0, of the fractional model (2)
is globally asymptotically stable when R0 ≤ 1.

Proof. Consider the Lyapunov function L0(S, I, A) defined as follows:

L0(t) =
1

2
(S(t)− S0 + I(t))2 +

2µ+ δ1 + γ

α
I(t).

Using Lemma 1 in [2], we can calculate the derivative of L0 along the solution
of model (2), we have got that

CDρ
tL0(t) ≤ (S(t)− S0 + I(t) )

(
CDρ

tS(t) +C Dρ
t I(t)

)
+

2µ+ δ1 + γ

α
CDρ

t I(t),

=(S(t)− S0 + I(t))[−µ(S(t)− S0)− (µ+ δ1 + γ)I(t)]

+
2µ+ δ1 + γ

α
[α(S(t)− S0)I(t)− (µ+ δ1 + γ − αS0) I] ,

=− µ (S(t)− S0)
2 − (µ+ δ1 + γ)I2(t) +

2µ+ δ1 + γ

α
(R0 − 1) I(t).

If R0 ≤ 1, then we get

CDρ
tL0 = −µ(S(t)− S0)

2 − (µ+ δ1 + γ)I2 +
2µ+ δ1 + γ

α
(R0 − 1) < 0.

The globally asymptotic stability of the disease-free equilibrium is demon-
strated by the Lyapunov stability theorem[34].

Theorem 3.7. The endemic equilibrium E1, of the fractional model (2) is
globally asymptotically stable when R0 > 1.
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Proof. We define the Lyapunov function as follows:

L1(t) =
1

2
(S − S∗ + I − I∗)2 +

(2µ+ δ1 + γ)

α

(
I − I∗ − I∗ ln

I

I∗

)
+

(µ+ δ1 + γ)(µ+ δ2)

γ2R0

(A− A∗)2 .

Using Lemma 1 in [2], and Lemma 3.1 in [33] , we find

CDρ
tL1 ≤ (S − S∗ + I − I∗)

(
CDα

t S + CDα
t I
)

+
2µ+ δ1 + γ

α

(
1− I∗

I

)
CDα

t I

+ 2× (µ+ δ1 + γ)(µ+ δ2)

γ2R0

(A− A∗) CDα
t A,

= (S − S∗ + I − I∗) [Λ− µS − (µ+ δ1 + γ)I]

+
(2µ+ δ1 + γ)

α

(
1− I∗

I

)
[αSI − (µ+ δ1 + γ)I]

+ 2× (µ+ δ1 + γ)(µ+ δ2)

γ2R0

(A− A∗) [γ I − (µ+ δ2)A],

= (S − S∗ + I − I∗) [µS∗ + (µ+ δ1 + γ)I∗ − µS − (µ+ δ1 + γ)I ]

+ 2× (µ+ δ1 + γ)(µ+ δ2)

γ2R0

(A− A∗) [γ I − γ I∗ + (µ+ δ2)A
∗ − (µ+ δ2)A]

+
2µ+ δ1 + γ)

α
(I − I∗) (αS − αS∗) ,

≤− µ (S − S∗)2 − (µ+ δ1 + γ) (I − I∗)2 − 2× (µ+ δ1 + γ)(µ+ δ2)
2

γ2R0

(A− A∗)2

+ 2× (µ+ δ1 + γ)(µ+ δ2)

γR0

(A− A∗) (I − I∗)

≤− µ (S − S∗)2 − (µ+ δ1 + γ) (I − I∗)2 − 2× (µ+ δ1 + γ)(µ+ δ2)
2

γ2R0

(A− A∗)2

+
(µ+ δ1 + γ)(µ+ δ2)

2

γ2R0

(A− A∗)2 +
µ+ δ1 + γ

R0

( I − I∗)2 ,

≤− µ (S − S∗)2 − (µ+ δ1 + γ)(1− 1

R0

) (I − I∗)2 − (µ+ δ1 + γ)(µ+ δ2)
2

γ2R0

(A− A∗)2 .

Since R0 > 1, then
CDρ

tL1 < 0.

Therefore, E1 is globally asymptotically stable .
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4. Fractional model of HIV/AIDS whith migration

The HIV/AIDS model is extended in this part to account for the impact
of migration, as shown in the following figure 2.

S I A
Λ

σM

µ

αIS γ

qM

m mm

pM

µ+ δ1 µ+ δ2

Figure 2: HIV/AIDS transmission pattern with migration

We use the same parameters as the previous model and add others:

• M represents the immigration of people into the host country.

• σ rate of migrants engaged in S.

• p rate of migrants enrolled in I.

• q rate of migrants enrolled in A.

• m migration rate at which the population leaves.

We assumed that a proportion of σ, p, and q were recruited from the S(t),
I(t), and A(t) populations, respectively. In addition, We assumed that im-
migrants in populations S(t), I(t), and A(t) left the host country at a rate
of m. Under these assumptions, we have the model described below:

dS

dt
= σM + Λ− αIS − (µ+m)S

dI

dt
= pM + αIS − (µ+m+ δ1 + γ)I

dA

dt
= qM + γI − (µ+m+ δ2)A

(8)

11



Fractional model

By replacing the classical derivative in model (8) by the fractional deriva-
tive of Caputo, we obtain the following system

CDρ
tS = σM + Λ− αIS − (µ+m)S

CDρ
t I = pM + αIS − (µ+m+ δ1 + γ)I

CDρ
tA = qM + γI − (µ+m+ δ2)A

(9)

4.1. Positivity and boundedness of solution

Theorem 4.1. The region Θ1 = {(S, I, A) ∈ R+;S ≥ 0, I ≥ 0, A ≥ 0}, is
positivity invariant set for the system (9).

Proof. Similar to the Theorem (3.1), we obtain that Θ1 is positivity invariant
set for the system (9).

Theorem 4.2. The region Θ2 = {(S, I, A) ∈ R+;S ≥ 0, I ≥ 0, A ≥ 0,

0 ≤ N(t) ≤ Λ + σM

µ+m
, where N(t) = S(t)+I(t)+A(t) } is positivity invariant

set for the system (9).

Proof. Similar to the Theorem (3.2), we obtain that Θ2 is positivity invariant
set for the system (9).

Next, we will analyze the local and global stability of the equilibrium
points associated with System 9 with the help of the basic reproduction
number. As transportation has advanced, leading to an increase in migration
and the movement of individuals from different areas contributing to the
overall population movement, we will examine three scenarios of individual
migration and their impact on disease transmission.

4.2. The absence of migration in the infected population

In this subsection, we will focus on the presence of migration only in the
susceptible population. The migration within infected individuals is ignored
(p = q = 0).

12



4.2.1. The equilibrium points

To obtain the equilibria, we solve the following equations;
Λ + σM − αIS − (µ+m)S = 0

αIS − (µ+m+ δ1 + γ)I = 0

γI − (µ+m+ δ2)A = 0

(10)

Then, we obtain the disease free equilibrium DFE which is given by

E0 = (S0, I0, A0), (11)

Where S0 =
Λ + σM

µ+m
, I0 = 0, A0 = 0. The basic reproduction number R0

obtained by the next generation which is given as follows :

R0 =
αS0

(µ+m+ δ1 + γ)
=

α (Λ + σM)

(µ+m)(µ+m+ δ1 + γ)
. (12)

The model (9) has a unique endemic equilibrium denoted by
E1 = (S∗, I∗, A∗) with,

S∗ =
µ+m+ δ1 + γ

α
, I∗ =

α (σM + Λ)− (µ+m) (µ+m+ δ1 + γ)

α (µ+m+ δ1 + γ)
, A∗ =

γ I∗

µ+m+ δ2
.

(13)

Theorem 4.3. When p = q = 0, we have

1. If R0 < 1, then the fractional SIA model (9) has a unique disease-free
equilibrium E0.

2. If R0 ≥ 1, then the fractional SIA model (9) also has a unique endemic
equilibrium E1 = (S∗, I∗, R∗), where S∗, I∗ and A∗ are given in (13).

4.2.2. The local stability analysis of the equilibrium points

The local stability of equilibria can be determined by examining the Ja-
cobian matrix.

Theorem 4.4. For model SIA fractional with p = 0 and q = 0, we get

13



1 - The disease-free equilibrium E0 is locally asymptotically stable when
R0 < 1, and it is unstable when R0 > 1.

2 - The unique endemic equilibrium E∗ = (S∗, I∗, R∗) is locally asymptoti-
cally stable when R0 > 1.

Proof. 1 - The Jacobian matrix at equilibrium E0 of fractional model (10)
can be presented as

J (E0) =

−(µ+m) −α 0
0 αS0 − (µ+m+ δ1 + γ) 0
0 γ −(µ+m+ δ2)


The eigenvalues of the matrix can be easily obtained:

λ1 = −(µ+m+ δ2), λ2 = −(µ+m), λ3 = αS0 − (µ+m+ δ1 + γ).

If R0 < 1, the eigenvalues are all less than zero. This suggests that E0

is locally asymptotically stable.

2 - For the endemic equilibrium E∗, the Jacobian matrix is given by

J (E1) =

 −(µ+m)R0 −(µ+m+ δ1 + γ) 0
(µ+m) (R0 − 1) 0 0

0 γ −(µ+m+ δ2)


To calculate the eigenvalues, we solve the equation

det(J (E1)− λI3) = 0.

We obtain,

(µ+m+δ2+λ)(λ2+(µ+m)R0λ+(µ+δ1+m+γ)(µ+m) (R0−1)) = 0.

If ∆ = ((µ+m)R0)
2 − 4(µ+m)(µ+m+ δ1 + γ)(R0 − 1) > 0, then

λ1 =
−((µ+m)R0)−

√
∆

2
; λ2 =

−((µ+m)R0) +
√

∆

2
; λ3 = −(µ+m+ δ2).

If R0 > 1, then λ1 < 0, λ2 < 0 and λ3 < 0. Thus all eigenvalues have
negative real parts. Hence the endemic equlibrium of system (9) is
locally asymptotically stable for all ρ ∈ (0, 1].
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4.2.3. The global stability analysis of the equilibrium points

Theorem 4.5. If p = q = 0 and R0 < 1, then the disease-free equilibrium
E0 of model (9) is globally asymptotic stable.

Proof. We consider the following Lyapunov function

L0(t)) =
1

2
(S(t)− S0 + I(t))2 +

2(µ+m) + δ1 + γ

α
I(t).

Using Lemma 1 in [2] ,we obtain,

CDρ
tL0(t) ≤ (S(t)− S0 + I(t) )

(
CDρ

tS(t) + CDρ
t I(t)

)
+

2(µ+m) + δ1 + γ

α
CDρ

t I(t),

=(S(t)− S0 + I(t))[−(µ+m)(S(t)− S0)− (µ+m+ δ1 + γ)I(t)]

+
2 (µ+m) + δ1 + γ

α
[α(S(t)− S0)I(t)− (µ+ δ1 + γ − αS0) I] ,

=− (µ+m)(S(t)− S0)
2 − (µ+m+ δ1 + γ)I2 +

2(µ+m) + δ1 + γ

α
(R0 − 1) I(t),

If R0 < 1, then we find

CDρ
tL0(t) = −(µ+m)(S(t)−S0)

2−(µ+m+δ1+γ)I2(t)+
2(µ+m) + δ1 + γ

α
(R0 − 1) I(t) < 0.

as the theorem is established.

The following theorem is used to determine the global stability of the
endemic equilibrium E1 .

Theorem 4.6. If p = q = 0 and R0 > 1, then the endemic equilibrium E1

of the model (9) is globally asymptotically stable.

Proof. We define the Lyapunov function as follows:

L1(t) =
1

2
(S − S∗ + I − I∗)2 +

(2(µ+m) + δ1 + γ)

α

(
I − I∗ − I∗ ln

I

I∗

)
+

(µ+m+ δ1 + γ)(µ+m+ δ2)

γ2R0

(A− A∗)2 .
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Using Lemma 1 in [2], and Lemma 3.1 in [33] , we find

CDρ
tL1(t) ≤ (S − S∗ + I − I∗)

(
CDρ

t S + CDρ
t I
)

+
2(µ+m) + δ1 + γ

α

(
1− I∗

I

)
CDρ

t I

+ 2× (µ+ δ1 + γ)(µ+ δ2)

γ2R0
(A−A∗) CDρ

tA,

= (S − S∗ + I − I∗) [Λ + σM − (µ+m)S − (µ+m+ δ1 + γ)I]

+
2(µ+m) + δ1 + γ

α

(
1− I∗

I

)
[αSI − (µ+m+ δ1 + γ)I]

+ 2× (µ+m+ δ1 + γ)(µ+m+ δ2)

γ2R0
(A−A∗) [γ I − (µ+m+ δ2)A],

= (S − S∗ + I − I∗) [µS∗ + (µ+m+ δ1 + γ)I∗ − µS − (µ+m+ δ1 + γ)I ]

+ 2× (µ+m+ δ1 + γ)(µ+m+ δ2)

γ2R0
(A−A∗) [γ I − γ I∗ + (µ+m+ δ2)A∗ − (µ+m+ δ2)A]

+
2(µ+m) + δ1 + γ

α
(I − I∗) (αS − αS∗) ,

≤− (µ+m) (S − S∗)
2 − (µ+m+ δ1 + γ) (I − I∗)

2

− 2× (µ+m+ δ1 + γ)(µ+m+ δ2)2

γ2R0
(A−A∗)

2

+ 2× (µ+m+ δ1 + γ)(µ+m+ δ2)

γR0
(A−A∗) (I − I∗) ,

≤− (µ+m) (S − S∗)
2 − (µ+m+ δ1 + γ) (I − I∗)

2
+
µ+m+ δ1 + γ

R0
( I − I∗)

2

− 2× (µ+m+ δ1 + γ)(µ+m+ δ2)2

γ2R0
(A−A∗)

2
+

(µ+m+ δ1 + γ)(µ+m+ δ2)2

γ2R0
(A−A∗)

2
,

≤− (µ+m) (S − S∗)
2 − (µ+m+ δ1 + γ)(1− 1

R0
) (I − I∗)

2

− (µ+m+ δ1 + γ)(µ+m+ δ2)2

γ2R0
(A−A∗)

2
.

Since R0 > 1, then
CDρ

tL1(t) < 0.

Therefore, E1 is globally asymptotically stable .

4.3. The presence of migration in the HIV-infected population

We limit our selves to the case where individuals infected with HIV virus
are able to migrate with the rate (p > 0). The infected individuals with AIDS
are less likely to migrate or travel q = 0.
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4.3.1. The equilibrium points

If p = 0 and q > 0. In this case, the existence of an equilibrium for the
model (9) are given as follows.

Theorem 4.7. When p = 0 and q > 0, the model (9) has one endemic
equilibrium E∗ = (S∗, I∗, A∗), and also If α(Λ +σM)− (µ+ δ1 +m+ γ)(µ+
m) > 0, the model (9) has two endemic equilibriums E∗ = (S∗, I∗, A∗) and
E∗∗ = (S∗∗, I∗∗, A∗∗), where

S∗ =
Λ + σM

µ+m
, I∗ = 0, A∗ =

qM

µ+m+ δ2
,

S∗∗ =
Λ + σM − (µ+ δ1 +m+ γ)I∗

µ+m
, I∗∗ =

α(Λ + σM)− (µ+ δ1 +m+ γ)(µ+m)

α(µ+ δ1 +m+ γ)
,

A∗∗ =
qM + γ I∗∗

µ+m+ δ2
.

Proof. Any equilibrium of model (9) can be obtained as

Λ + σM − αIS − (µ+m)S = 0,

αIS − (µ+m+ δ1 + γ)I = 0,

qM + γI − (µ+m+ δ2)A = 0,

(14)

All solutions of equation (14) satisfy I 6= 0 and A 6= 0, indicating that model
(9) does not have a disease-free equilibrium. When we add the first two
equations in the system (14), we get

S =
Λ + σM − (µ+ δ1 +m+ γ)I

µ+m
, (15)

We replace (15) in equation two of the system (17), we obtain

−α(µ+ δ1 +m+γ)I2 + (α(Λ +σM)− (µ+ δ1 +m+γ)(µ+m))I = 0, (16)

If α(Λ + σM) − (µ + δ1 + m + γ)(µ + m) > 0, then the equation (16)
admits two positive solutions which we note E∗ = (S∗, I∗, A∗) and E∗∗ =
(S∗∗, I∗∗, A∗∗).
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4.3.2. The local stability analysis of the equilibrium points

Theorem 4.8. When p = 0 and q > 0,

1- If α(Λ + σM)− (µ+ δ1 +m+ γ)(µ+m) > 0, the endemic equilibrium
E∗ = (S∗, I∗, A∗) of model (9) is locally asymptotically stable

2- If α(Λ + σM)− (µ+ δ1 +m+ γ)(µ+m) > 0, the endemic equilibrium
E∗∗ = (S∗∗, I∗∗, A∗∗) is locally asymptotically stable

Proof. 1- For the endemic equilibrium E∗, the Jacobian matrix is given
by

J (E∗) =

−(µ+m) −αS∗ 0
0 αS∗ − (µ+ δ1 +m+ γ) 0
0 γ −(µ+m+ δ2)


By some calculations, we obtain the characteristic roots are:

λ1 = −(µ+m), λ2 = αS∗ − (µ+ δ1 +m+ γ), λ3 = −(µ+m+ δ2).

Evident, λ1 < 0 and λ3 < 0.
If α(Λ + σM) − (µ + δ1 + m + γ)(µ + m) > 0, then λ2 < 0. Thus, we

have | arg (λi)| >
ρπ

2
(i = 1, 2, 3). Hence the stability of the endemic

equilibrium E∗∗.

2- For the endemic equilibrium E∗∗, the Jacobian matrix is given by

J (E∗∗) =

−αI∗∗ − (µ+m) −αS∗∗ 0
αI∗∗ αS∗∗ − (µ+ δ1 +m+ γ) 0

0 γ −(µ+m+ δ2)



det(λ− J (E∗∗)) =

−αI∗∗ − (µ+m)− λ −αS∗∗
αI∗∗ αS∗∗ − (µ+ δ1 +m+ γ)− λ

0 γ


We search for the eigenvalues of the Jacobian matrix J (E∗∗) as follows:

det(λ− J (E∗∗)) = 0.

λ2+λ(αI∗+µ+m+(µ+δ1+m+γ)−αS∗)+α2S∗I∗+(αI∗+µ+m)(µ+δ1+m+γ−αS∗) = 0,
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If ∆1 = (αI∗ + µ+m+ (µ+ δ1 +m+ γ)− αS∗)2 − 4(α2S∗I∗ + (αI∗ +
µ+m)(µ+ δ1 +m+ γ − αS∗)) > 0, then we have

λ1 =
−(αI∗ + µ+m+ (µ+ δ1 +m+ γ)− αS∗)−

√
∆1

2
,

λ2 =
−(αI∗ + µ+m+ (µ+ δ1 +m+ γ)− αS∗) +

√
∆1

2
,

If α(Λ+σM)−(µ+δ1+m+γ)(µ+m) > 0, then λ1 < 0 and λ2 < 0.Thus,

we have | arg (λi)| >
ρπ

2
(i = 1, 2). Hence, the stability of the endemic

equilibrium E∗∗∗.

4.3.3. The global stability analysis of the equilibrium points

Theorem 4.9. When p > 0 and q = 0, and α(Λ+σM)−(µ+δ1+m+γ)(µ+
m) > 0 the endemic equilibrium E∗ of model (9) is globally asymptotically
stable.

Proof. We define the Lyapunov function as follows:

L2(t) =
1

2
(S − S∗ + I − I∗)2 +

2(µ+m) + δ1 + γ

α

(
I − I∗ − I∗ ln

I

I∗

)
+ C1 (A− A∗)2 ,

With

C1 =
(µ+m+ δ2)(µ+m+ δ1 + γ)2(µ+m)

αγ2(Λ + σM)
.

By using lemma 1 in [2], and lemma 3.1 in [33] we obtain
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CDρ
tL2 ≤ (S − S∗ + I − I∗)

(
CDρ

t S + CDρ
t I
)

+
2(µ+m) + δ1 + γ

α

(
1− I∗

I

)
CDρ

t I

+ 2C1 (A−A∗) CDρ
tA,

= (S − S∗ + I − I∗) [σM + pM + Λ− (µ+m)S − (µ+m+ δ1 + γ)I]

+
2(µ+m) + δ1 + γ

α

(
1− I∗

I

)
[pM + αSI − (µ+m+ δ1 + γ)I]

+ 2C1 (A−A∗) [γ I − (µ+m+ δ2)A]

= (S − S∗ + I − I∗) [ (µ+m)(S∗ − S) + (µ+m+ δ1 + γ)(I∗ − I)]

+ 2C1 (A−A∗) [γ I − γ I∗ + (µ+m+ δ2)A
∗ − (µ+m+ δ2)A]

+
2(µ+m) + δ1 + γ

α
(I − I∗) (αS − αS∗)− pM 2(µ+m) + δ1 + γ

αI I∗
(I − I∗)2 ,

≤− (µ+m) (S − S∗)2 − (µ+m+ δ1 + γ) (I − I∗)2 − pM 2(µ+m) + δ1 + γ

αI I∗
(I − I∗)2

+ 2× C1γ (A−A∗) (I − I∗)− 2× C1(µ+m+ δ2) (A−A∗)2 ,
≤− (µ+m) (S − S∗)2 − (µ+m+ δ1 + γ) (I − I∗)2 − 2× C1(µ+m+ δ2) (A−A∗)2

− pM 2(µ+m) + δ1 + γ

αI I∗
(I − I∗)2

+ C1(µ+m+ δ2) (A−A∗)2 +
C1γ

2

(µ+m+ δ2)
( I − I∗)2 ,

≤− (µ+m) (S − S∗)2 − C1(µ+m+ δ2) (A−A∗)2

− (µ+m+ δ1 + γ)
α(Λ + σM)− (µ+ δ1 +m+ γ)(µ+m)

α(Λ + σM)
(I − I∗)2 ,

If we have α(Λ + σM) − (µ + δ1 + m + γ)(µ + m) ≥ 0, then E∗ is globally
asymptotically stable.

Theorem 4.10. When p > 0 and q = 0, and α(Λ+σM)−(µ+δ1+m+γ)(µ+
m) > 0 the endemic equilibrium E∗∗ of model (9) is globally asymptotically
stable.

Proof. As in the proof of the previous theorem, it is sufficient to replace the
Lyapunov function with this function.

L3(t) =
1

2
(S − S∗∗ + I − I∗∗)2 +

2(µ+m) + δ1 + γ

α

(
I − I∗∗ − I∗∗ ln

I

I∗∗

)
+ C2 (A− A∗∗)2 .

With

C2 =
(µ+m+ δ2)(µ+m+ δ1 + γ)2(µ+m)

αγ2(Λ + σM)
.
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4.4. The presence of migration in the both HIV and AIDS infected popula-
tions

Here we extend the migration to the whole model and reveal its influence
on the transmission of HIV and AIDS viruses (p > 0, q > 0).

4.4.1. The equlibrium points

If p > 0 and q > 0. In the latter case, the existence of equilibrium for
model (9) is obtained as follows.

Theorem 4.11. When p > 0 , q > 0 and if α(Λ + σM) − (µ + δ1 + m +
γ)(µ+m) > 0, the model (9) admits a unique endemic equilibrium, denoted
by E∗ = (S∗, I∗, A∗), where

S∗ =
(µ+ δ1 +m+ γ)(µ+m)(B + 1) + α pm−

√
C

2α (µ+m)
,

I∗ =
(µ+ δ1 +m+ γ)(µ+m)(B − 1) + α pm+

√
C

2α (µ+ δ1 +m+ γ)
, A∗ =

qM + γI∗

µ+m+ δ2
.

with

B =
α(Λ + σM)

(µ+ δ1 +m+ γ)(µ+m)
> 1,

C = (α(Λ + (p+ σ)m)− (µ+ δ1 +m+ γ)(µ+m))2 + 4αpm(µ+ δ1 +m+ γ)(µ+m).

Proof. whene Any equilibrium of model (9) can be found as follows

σM + Λ− αIS − (µ+m)S = 0,

pM + αIS − (µ+m+ δ1 + γ)I = 0,

qM + γI − (µ+m+ δ2)A = 0.

(17)

It is simple to see that none of the solutions of equation (17) can have I = 0
and A = 0, indicating that model (9) has no disease-free equilibrium. This
solution is noted by E∗ = (S∗, I∗, A∗). After some calculations, we find

−α(µ+ δ1 +m+ γ)I∗
2

+(α(Λ + (σ + p)m)− (µ+ δ1 +m+ γ)(µ+m))I∗

+ 4αpm(µ+ δ1 +m+ γ)(µ+m) = 0, (18)

If α(Λ + σM)− (µ + δ1 + m + γ)(µ + m) > 0, the equation (18) admits
one positive solution I∗.
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4.4.2. The local stability analysis of the equilibrium points

The following theorem allows to study the local stability of the endemic
equilibrium of model (9) in the case when p > 0 and q > 0.

Theorem 4.12. When p > 0 , q > 0, and if α(Λ + σM) − (µ + δ1 + m +
γ)(µ + m) > 0, the endemic equilibrium E∗ = (S∗, I∗, A∗) of model (9) is
locally asymptotically stable.

Proof. As the second part of the theorem (4.8), we obtain that E∗ = (S∗, I∗, A∗)
of model (9) is locally asymptotically stable. (9).

4.4.3. The global stability analysis of the equilibrium points

Theorem 4.13. When p > 0 and q > 0, and α(Λ+σM)−(µ+δ1+m+γ)(µ+
m) > 0 the endemic equilibrium E∗ of model (9) is globally asymptotically
stable.

Proof. We define the Lyapunov function as follows:

L4(t) =
1

2
(S − S∗ + I − I∗)2 +

2(µ+m) + δ1 + γ

α

(
I − I∗ − I∗ ln

I

I∗

)
+ C3 (A− A∗)2 .

With

C3 =
(µ+m+ δ2)(µ+m+ δ1 + γ)2(µ+m)

αγ2(Λ + σM)
.

By using lemma 1 in [2], and lemma 3.1 in [33] we have
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CDρ
tL4(t) ≤ (S − S∗ + I − I∗)

(
CDρ

t S + CDρ
t I
)

+
2(µ+m) + δ1 + γ

α

(
1− I∗

I

)
CDρ

t I

+ 2C1 (A−A∗) CDρ
tA,

= (S − S∗ + I − I∗) [σM + pM + Λ− (µ+m)S − (µ+m+ δ1 + γ)I]

+
2(µ+m) + δ1 + γ

α

(
1− I∗

I

)
[pM + αSI − (µ+m+ δ1 + γ)I]

+ 2C1 (A−A∗) [γ I − (µ+m+ δ2)A],

= (S − S∗ + I − I∗) [ (µ+m)(S∗ − S) + (µ+m+ δ1 + γ)(I∗ − I)]

+ 2C1 (A−A∗) [γ I − γ I∗ + (µ+m+ δ2)A
∗ − (µ+m+ δ2)A]

+
2(µ+m) + δ1 + γ

α
(I − I∗) (αS − αS∗)− pM 2(µ+m) + δ1 + γ

αI I∗
(I − I∗)2 ,

≤− (µ+m) (S − S∗)2 − (µ+m+ δ1 + γ) (I − I∗)2 − pM 2(µ+m) + δ1 + γ

αI I∗
(I − I∗)2

+ 2× C1γ (A−A∗) (I − I∗)− 2× C1(µ+m+ δ2) (A−A∗)2 ,
≤− (µ+m) (S − S∗)2 − (µ+m+ δ1 + γ) (I − I∗)2 − 2× C1(µ+m+ δ2) (A−A∗)2

− pM 2(µ+m) + δ1 + γ

αI I∗
(I − I∗)2

+ C1(µ+m+ δ2) (A−A∗)2 +
C1γ

2

(µ+m+ δ2)
( I − I∗)2 ,

≤− (µ+m) (S − S∗)2 − C1(µ+m+ δ2) (A−A∗)2

− (µ+m+ δ1 + γ)
α(Λ + σM)− (µ+ δ1 +m+ γ)(µ+m)

α(Λ + σM)
(I − I∗)2 .

Since α(Λ + σM)− (µ+ δ1 +m+ γ)(µ+m) ≥ 0, then

CDρ
tL4(t) < 0.

Therefore, E∗ is globally asymptotically stabe .

5. Numerical resolution of FDEs using the Adams-Bashforth-Moulton
fractional technique.

In this section, we are interested in the fractional Adams-Bashforth-
Moulton numerical technique that we will use when simulating fractional
order equations of the Caputo type. This technique was introduced and
discussed by K.Diethelm and A. D. Freed [8].

To be specific, we first consider the fractional differential equation.{
CDρ

t (y(t)) = h(t, y(t)), 0 < ρ < 1

y(0)(0) = y0,
(19)
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Equation (19) is equivalent to the Volterra integral equation in the Caputo
sense.

y(x) =

dρe−1∑
k=0

y
(k)
0

xk

k!
+

1

Γ(ρ)

∫ x

0

(x− t)ρ−1 h(t, y(t))dt. (20)

The method is explained in the manner below.

Let h =
T

m̂
, tn = nh, n = 0, 1, 2, . . . , m̂.

The formula for the Adams Bashforth fractional method corrector is given
as follows

yn+1 =

dρe−1∑
k=0

tkn+1

k!
y
(k)
0 +

hρ

Γ(ρ+ 2)

n∑
j=0

aj,k+1 h (xj, yj)+
hρ

Γ(ρ+ 2)
h
(
xk+1, y

p
k+1

)
,

(21)
Predictor formulae for yPh (tn+1) is given by the Adams Bashforth fractional
method

yPn+1 =

dαe−1∑
k=0

tkn+1

k!
y
(k)
0 +

1

Γ(ρ)

n∑
j=0

bj,n+1 h (xj, yj) , (22)

where

aj,n+1 =


nρ+1 − (n− ρ)(n+ 1)ρ, if j = 0

(n− j + 2)ρ+1 + (n− j)ρ+1 − 2(n− j + 1)ρ+1, if 0 < j < n,

1, if j = n

and

bj,n+1 =
hρ

ρ
[(n+ 1− j)ρ − (n− j)ρ] , 0 ≤ j ≤ n.

5.1. Numerical method for model without migration

In this subsection, we study the numerical solution of a fractional order
SIA model without migration using the Adam-Bashforth-Moulton predictor-
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corrector scheme. We obtain the following scheme;

Sn+1 =S0 +
hρ

Γ(ρ+ 2)

(
Λ− αSpn+1I

p
n+1 − µS

p
n+1

)
+

hρ

Γ(ρ+ 2)

n∑
j=0

αj,n+1 (Λ− αSjIj − µSj) ,

In+1 =I0 +
hρ

Γ(ρ+ 2)

(
αSpn+1I

p
n+1 − (µ+ δ1 + γ) Ipn+1

)
+

hρ

Γ(ρ+ 2)

n∑
j=0

αj,n+1 (αSjIj − (µ+ δ1 + γ) Ij) ,

An+1 =A0 +
hρ

Γ(ρ+ 2)

(
γIpn+1 − (µ+ δ2)A

p
n+1

)
+

hρ

Γ(ρ+ 2)

n∑
j=0

αj,n+1 (γIj − (µ+ δ2)Aj) ,

(23)
Where

Spn+1 = S0 +
1

Γ(ρ)

n∑
j=0

bj,n+1 (Λ− αSjIj − µSj) ,

Ipn+1 = I0 +
1

Γ(ρ)

n∑
j=0

bj,n+1 (αSjIj − (µ+ δ1 + γ) Ij) ,

Apn+1 = A0 +
1

Γ(ρ)

n∑
j=0

bj,n+1 (γIj − (µ+ δ2)Aj) ,

(24)

5.2. Numerical method for model with migration

We use the Adam-Bashforth-Moulton predictor-corrector scheme and with
the same notations of the previous section we find the numerical scheme of
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the SIA model with migration

Sn+1 =S0 +
hρ

Γ(ρ+ 2)

(
Λ + σM − αSpn+1I

p
n+1 − (µ+m)Spn+1

)
+

hρ

Γ(ρ+ 2)

n∑
j=0

αj,n+1 (Λ + σM − αSjIj − (µ+m)Sj) ,

In+1 =I0 +
hρ

Γ(ρ+ 2)

(
pM + αSpn+1I

p
n+1 − (µ+m+ δ1 + γ) Ipn+1

)
+

hρ

Γ(ρ+ 2)

n∑
j=0

αj,n+1 (pM + αSjIj − (µ+m+ δ1 + γ) Ij) ,

An+1 =A0 +
hρ

Γ(ρ+ 2)

(
qM + γIpn+1 − (µ+m+ δ2)A

p
n+1

)
+

hρ

Γ(ρ+ 2)

n∑
j=0

αj,n+1 (qM + γIj − (µ+m+ δ2)Aj) ,

(25)

With

Spn+1 = S0 +
1

Γ(ρ)

n∑
j=0

bj,n+1 (Λ + σM − αSjIj − (µ+m)Sj) ,

Ipn+1 = I0 +
1

Γ(ρ)

n∑
j=0

bj,n+1 (pM + αSjIj − (µ+m+ δ1 + γ) Ij) ,

Apn+1 = A0 +
1

Γ(ρ)

n∑
j=0

bj,n+1 (qM + γIj − (µ+m+ δ2)Aj) ,

(26)

5.3. Numerical sumulations and discussions

In this section, we perform numerical simulations to evaluate and validate
the theoretical results of the two models presented in (2) and (9). We used
the schemes obtained in (23) and (25), to show the influence of the fractional
order. We took the initial values N = 16329400, S(0) = 16329396, I(0) = 3,
A(0) = 1, M = 435408 [3], and the parameters values indicated in Tables
1 and 2.The graphs presented in Figures 3a,3b and 3c, show the curves of
model solutions S(t), I(t), and A(t) taking different values of fractional order.
We can see from Figures 3a and 3c, that when ρ is close to 1, the number of
the people susceptible and those infected with AIDS increases.
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Figure 3: Dynamics behavior of model without migration 2 as a function of time (years)
for different ρ via Adams-Bashforth-Moulton fractional method.

We notice through Figure 3b that the increase of the fractional order
allows to make the peak of the disease larger and takes a maximum value
higher than those in the cases where the fractional order ρislessthan1.

The graphical representations of Figure 3b lead us to conclude that it
is crucial to use fractional derivatives since, contrary to the cases where
ρ = 0.99, 0.85, 0.75, convergence is rapid when classical derivatives are used.
Therfore differential equations with fractional order derivative exhibit rich
dynamics and reflect bilogical systems more accurately than conventional
integer order models.

In model (2), we have R0 < 1, and the equilibrium point is E0 =
(1.0816×10−09, 0, 0). Figure 3 shows that the solution of model (2) converge
to its equilibrium point for all orders derivatives. However, the disease-free
equilibrium E0 is golobally asymptotically stable, which verifies the theoret-
ical results.
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Parameters Value Source
α 5.9921e-08 [3]
γ 7.7416e-02 [3]
µ 0.0069 [3]
Λ 4.2249e-10 [3]
δ1 1.7396e-12 [3]
δ2 4.8233e-07 [3]

Table 1: The parameters values used in the model without migration.

Parameters Value Source
α 9.7847e-01 [3]
γ 7.7416e-02 [3]
µ 3.9060e-01 [3]
Λ 4.2249e-10 [3]
δ1 1.7396e-12 [3]
δ2 4.8233e-07 [3]
σ 1.5572 e-01 [3]
p 6.3773 e-04 [3]
q 1.6611 e-08 [3]
m 3.0110 e-02 [3]

Table 2: The parameters values used in the model with migration

In Figure 4, the sub-plots show the population of susceptible individuals,
HIV-infected individuals, and individuals with AIDS with migration. By
reducing the value of ρ, the population of HIV-infected and AIDS-infected
individuals increases effectively while the population of susceptible individ-
uals decreases.

We calculate the condition of stability indicated in Theorem 7 for the
model with migration, we find that α(Λ + σM) − (µ + δ1 + m + γ)(µ +
m) = −0.1355 < 0 which shows the instability of the endemic equilibrium.
In Figures (4a), (4c) and (4b), we see that model (9) does not converge
toward the equilibrium that validates the previous theory. The illustrations
above show that for different values of ρ, the curves converge to other points
Em = (2.0248 × 105, 675.9010, 156.2623) than the equilibrium point, which
confirms our analytical results.
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Figure 4: Dynamics behavior of model with migration (9) as a function of time (years) for
different ρ via Adams-Bashforth-Moulton fractional method.

6. Sensitivity analysis

To identify the variables that have the most significant impact on the
reproduction number R0 , we computed the sensitivity indices of the repro-
duction number R0 for the model (2). To decrease the prevalence of the
disease, we utilize the sensitivity index, which is defined as described in [6].

Definition 6.1. [6] The normalized forward sensitivity index of a variable,
R0, that depends differentiably on a parameter p is defined as:

ΥR0
p :=

∂R0

∂p
× p

R0

With respect to the parameters α, Λ, µ, δ1 and γ , we calculate the
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sensitivity index for R0 obtained in (6).

ΥR0
α :=

∂R0

∂α
× α

R0

=
Λα

µ (µ+ δ1 + γ)
× 1

R0

= 1,

ΥR0
λ :=

∂R0

∂Λ
× Λ

R0

=
Λα

µ (µ+ δ1 + γ)
× 1

R0

= 1,

ΥR0
µ :=

∂R0

∂µ
× µ

R0

= −2µ+ δ1 + γ

µ+ δ1 + γ
,

ΥR0
δ1

:=
∂R0

∂δ1
× δ1
R0

= − δ1
µ+ δ1 + γ

,

ΥR0
γ :=

∂R0

∂γ
× γ

R0

= − γ

µ+ δ1 + γ
.

Table 3: Sensitivity anlysis of R0 of the parameters described in table 1

Parameters Sensitivity index
α +1
γ -0.9182
µ -1.0818
Λ +1
δ1 -2.0632e-11
δ2 0

Based on the information presented in Table 1, the most sensitive parameters
are the HIV transmission rate α, and the birth rate Λ. Specifically, since
ΥR0
α = 1, a slight increase in α or Λ will lead to a decrease of 10% in R0.

Similarly, a small decrease in α or Λ will result in an increase of 10% in R0.
The situation is the same when the HIV mortality rate δ1, the rate at which
HIV progresses to AIDS γ, or the rate at which people die naturally µ are
high; consequently, the reproduction rate is low. Our analysis shows that the
γ, δ2, δ1 and µ parameters do not affect the transmission of HIV, whereas
the α and Λ parameters have a more significant effect.

Conclusion

In this work, we have proposed two fractional models of HIV/AIDS. We
have proved that the fractional models are well posed by using the generalized
mean value theorem. In addition, we have studied the local stability of each
equilibrium for the two proposed models. We have also computed the basic
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reproduction number. Furthermore, we have proved the global stability of
the models by using adequate Lyapunov functions. Finally, the theoretical
results have been confirmed by numerical simulations. We observed that the
variation of the fractional order derivative ρ does not affect the stability of
the equilibrium but has an impact on the time needed to reach the stable
states, as we found that the convergence toward stable states takes longer
with fractional values. This results perfectly simulates the nature of the HIV
disease.
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