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1 Introduction

The equivalence problem, [6], for the fifth-order operator means that two fifth-order differential opera-

tors on a real line can be transformed into each other by an appropriate change of variables, [2, 3, 4, 5].

We will treat both versions of equivalence problems that include the direct equivalence problem and

an equivalence problem to determine conditions on two differential operators such that there exists

a fiber-preserving transformation mapping one to the other according to gauge equivalence. We as-

sociate a collection of one-forms to an object under investigation in the original coordinates; the

the corresponding object in the new coordinates will have its own collection of one-forms. Once an

equivalence problem has been reformulated in the proper Cartan form, in terms of a coframe ω on

the m-dimensional base manifold M , along with a structured group G ⊂ GL(m), we can apply the

Cartan equivalence method. The goal is to normalize the structure group valued coefficients in a

suitably invariant manner, and this is accomplished through the determination of a sufficient number

of invariant combinations thereof, [10].

The classification of linear differential equations is a special case of the general problem of classifying

differential operators, which has a variety of important applications, including quantum mechanics

∗Corresponding Author
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and the projective geometry of curves, [10]. In the last section, applications of this method for fifth-

order differential operators are presented. S. S. Chern turned his attention to the problem under

contact transformations [5] and Hajime Sato et all [11], but are specialized by linearity. Niky Kamran

and Peter J. Olver have solved the equivalence problem for the second-order differential operator

with two versions of the equivalence problem [7] and recently some papers have been written about

the equivalence of differential operators [1, 9]. The fifth-order operators have different geometry and

equivalence problem for fifth-order differential operators is a different challenge. In the end, we apply

the equivalence problem for an illustrative example for a boundary value problem for the fifth-order

differential operator with integrable potential.

2 The Cartan equivalence method

We first review Cartan’s equivalence problem as an algorithmic method that include the structure

equations, normalization, and absorption. The standard reference is [10].

Let G ⊂ GL(m) be a lie group and ω and ω denote coframes defined on the m-dimensional

manifolds M and M . The G-valued equivalence problem for these coframes is to determine whether

or not there exists a local diffeomorphism Φ : M → M and a G-valued function g : M → G with the

property that

Φ∗(ω) = g(x)ω. (1)

In full detail, the equivalence condition(1) has the form

Φ∗(ωi) =

m∑
j=1

gij(x)ωj , (2)

for i = 1, · · · ,m where the functions gij(x) are the entries of the matrix g(x), which is constrained

to belong to the structure group G at each pointx ∈ M . In view of the group property of G, it will

be satisfied if and only if we can find a pair of G-valued functions g(x) and g(x) such that omitting

pull-back for clarity

g(x)ω = g(x)ω. (3)

Our goal is to reduce a given G-equivalence problem to a standard equivalence problem for coframes,

and the way to do that is to specify the matrix entries of g = g(x) and g(x) as functions of their

respective coordinate. The new coframes defined by

θi =

m∑
j=1

gijω
j , θ

i
=

m∑
j=1

gijω
j , (4)

which will be invariant: Φ∗(θ
i
) = θi. This motivates the preliminary step in the Cartan solution to

the equivalence problem, which is to introduce the lifted coframe

θ = g.ω, (5)

or, in full detail,

θi =

m∑
j=1

gij(x)ωj . (6)
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We compute the differentials of the lifted coframe elements:

dθi = d
( m∑

j=1

gijω
j
)

=

m∑
j=1

{dgij ∧ ωj + gijdω
j}. (7)

Since the ω forms a coframe on M , one can rewrite the 2-forms dωj in terms of sums of wedge products

of the ωi’s. Moreover, viewing (5), these can be rewritten as wedge products of the θk’s, so that

dθi =

m∑
j=1

γij ∧ θj +

m∑
j,k=1
j<k

T i
jk(x, g)θj ∧ θk, i = 1, . . . ,m. (8)

The functions T i
jk are called torsion coefficients. The torsion coefficients are constant, or depend on

the base variables x or the group parameters g. Some of torsion coefficients may be invariants but

they are typically not invariants for the problem. The γijs in (8) are the 1-forms

γij =

m∑
k=1

dgik(g−1)kj , (9)

which have the following matrix notation

γ = dg · g−1. (10)

The γ forms the matrix of Maurer-Cartan forms on the structure groupG. Assume the set {α1, . . . , αr}
is a basis for the space of Maurer-Cartan forms then each γij is a linear combination of the Maurer-

Cartan basis:

γij =

r∑
l=1

Ai
jlα

l, i, j = 1, . . . ,m. (11)

Thus the final structure equations for our lifted coframe, in terms of the Maurer-Cartan forms, have

the following general form

dθi =

r∑
l=1

m∑
j=1

Ai
jlα

l ∧ θj +

m∑
j,k=1
j<k

T i
jk(x, g)θj ∧ θk, i = 1, . . . ,m. (12)

Now one can reduce the Maurer-Cartan forms αl back to the base manifold M by replacing them by

general linear combinations of coframe elements

αl 7→
r∑

l=1

zljθ
j , (13)

where the zlj are as yet unspecified coefficients, whose explicit dependence on x. By substituting (13)

into the structure equations (12), one can obtain a system of 2-forms

Θi =

m∑
j,k=1
j<k

{Bi
jk[z] + T i

jk(x, g)}θj ∧ θk, i, j = 1, . . . ,m, (14)

where

Bi
jk[z] =

r∑
l=1

(Ai
klz

l
j −Ai

jlz
l
k), (15)

are linear functions of the coefficients z = (zlk), whose constant coefficients are determined by the

specific representation of the structure group G ⊂ GL(m), and so do not depend on the coordinate

system.
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The general process of determining the unknown coefficients z from the full torsion coefficients is

known as absorption of torsion and the other being normalization of the resulting invariant torsion

coefficients, as described above. Replacing each Maurer-Cartan form αl by the modified 1-form

πl = αl −
p∑

i=1

zliθ
i, l = 1, . . . , r, (16)

leads to absorb the inessential torsion in the structure equation (12). Here the zli = zli(x, g) are the

solutions to the absorption equations. Thus the structure equations change to the simpler absorbed

form

dθi =

r∑
l=1

m∑
j=1

Ai
jlπ

l ∧ θj +

m∑
j,k=1
j<k

U i
jkθ

j ∧ θk, i, j = 1, . . . ,m. (17)

where the remaining nonzero coefficients U i
jk consist only of essential torsion. We write the linear

system of absorption equations

r∑
l=1

(Ai
jlz

l
k −Ai

klz
l
j) = −T i

jk. (18)

and solve for the unknowns z using the standard Gaussian elimination method.

3 Equivalence of fifth order differential operators

Consider the fifth order differential operator applied on a scalar-valued function u(x)

D[u] =

5∑
i=0

fi(x)Diu (19)

and another fifth order differential operator applied on a scalar-valued function ū(x̄)

D̄[ū] =

5∑
i=0

f̄i(x̄) D̄iū. (20)

where fi and f̄i, i = 1, 2, 3, 4, 5, are analytic functions of the real variable x and x̄ respectively. For

simplicity we let f5 = f̄5 = 1. Further, Di = d/dxi, D̄i = d/dx̄i and D0 = D̄0 = Id are the identity

operators.

The appropriate space to work in will be the fifth jet space J5, which has local coordinates

Υ = {(x, u, p, q, r, s, t) ∈ J5 : p = ux, q = uxx, r = uxxx, s = uxxxx, t = uxxxxx}

and the goal is to know whether there exists a suitable transformation of variables (x, u, p, q, r, s, t) −→
(x̄, ū, p̄, q̄, r̄, s̄, t̄) which brings (19) to (20). Several types of such transformations are of particular

importance. Here we consider fiber preserving transformations, which are of the form

x̄ = ξ(x), ū = ϕ(x)u, (21)

where ϕ(x) 6= 0. Using the chain rule formula we find following relation between the total derivative

operators

D̄ =
d

dx̄
=

1

ξ′(x)

d

dx
=

1

ξ′(x)
D. (22)
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First we consider the direct equivalence problem, which identifies the two linear differential functions

D[u] = D̄[ū]. (23)

under change of variables (21). This induces the transformation rule

D̄ = D · 1

ϕ(x)
when x̄ = ξ(x), (24)

on the differential operators themselves, and solving local direct equivalence problem is to find explicit

conditions on the coefficients of the two differential operators that guarantee they satisfy (23) for some

change of variables of the form (21).

The transformation rule (24) doesn’t preserve either the eigenvalue problem D[u] = λu or the

Schrödinger equation iut = D[u], since we are missing a factor of ϕ(x). To solve the problem, we

consider the gauge equivalence with the following transformation rule

D̄ = ϕ(x) · D · 1

ϕ(x)
when x̄ = ξ(x). (25)

Proposition 1 Let D and D̄ denote fifth-order differential operators. There are two coframes Ω =

{ω1, ω2, ω3, ω4, ω5, ω6, ω7} and Ω̄ = {ω̄1, ω̄2, ω̄3, ω̄4, ω̄5, ω̄6, ω̄7} on open subsets Γ and Γ̄ of the fifth jet

space, respectively, such that the differential operators are equivalent under the pseudogroup (21) ac-

cording to the respective transformation rules (24) and (25) that coframes Ω and Ω̄ satisfy in following

relation 

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

ω̄7


=



a1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 a2 a3 0 0 0 0

0 a4 a5 a6 0 0 0

0 a7 a8 a9 a10 0 0

0 a11 a12 a13 a14 a15 0

0 0 0 0 0 0 1





ω1

ω2

ω3

ω4

ω5

ω6

ω7


(26)

where ai ∈ R for i = 1, · · · , 15 and a1a3a6a10a15 6= 0.

Proof: Note that a point transformation will be in the desired linear form (21) if and only if, for pair

of functions α = ξx and β = ϕx/ϕ, one-form equations

dx̄ = α dx, (27)

dū

ū
=

du

u
+ β dx. (28)

hold on the subset of J5 where u 6= 0. In order that the derivative variables p, q, r, s and t transform

correctly, we need to preserve the contact ideal I on J5, which is

I = 〈du− p dx, dp− q dx, dq − r dx, dr − s dx, ds− t dx〉. (29)

Generally, a diffeomorphism Φ : J5 → J5 determines a contact transformation if and only if

dū− p̄ dx̄ = a1(du− p dx), (30)

dp̄− q̄ dx̄ = a2(du− p dx) + a3(dp− q dx), (31)

dq̄ − r̄ dx̄ = a4(du− p dx) + a5(dp− q dx) + a6(dq − r dx), (32)

dr̄ − s̄ dx̄ = a7(du− p dx) + a8(dp− q dx) + a9(dq − r dx) + a10(dr − s dx), (33)

ds̄− t̄ dx̄ = a11(du− p dx) + a12(dp− q dx) + a13(dq − r dx) + a14(dr − s dx) (34)

+a15(ds− t dx),
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where ai are functions on J5. The combination of the first contact condition (30) with the linearity

conditions (27) and (28) constitutes part of an overdetermined equivalence problem. Taking β =

−p/u, a1 = 1/u, in (28) and (30), it is found the one-form

dū− p̄ dx̄
ū

=
du− p dx

u
, (35)

which is invariant, and (35) can replace both (28) and (30). Therefore, we may choose five elements

of our coframe the one-forms

ω1 = dx, ω2 =
du− p dx

u
, ω3 = dp− q dx, ω4 = dq − r dx, ω5 = dr − s dx, ω6 = ds− t dx, (36)

which are defined on the fourth jet space J4 locally parameterized by (x, u, p, q, r, s, t), with the

transformation rules

ω̄1 = a1ω
1,

ω̄2 = ω2,

ω̄3 = a2ω
2 + a3ω

3,

ω̄4 = a4ω
2 + a5ω

3 + a6ω
4,

ω̄5 = a7ω
2 + a8ω

3 + a9ω
4 + a10ω

5,

ω̄6 = a11ω
2 + a12ω

3 + a13ω
4 + a14ω

5 + a15ω
6. (37)

According to (23), the function I(x, u, p, q, r, s, t) = D[u] = t+f4(x)s+f3(x)r+f2(x)q+f1(x)p+f0(x)u

is an invariant for the problem, and thus its differential

ω7 = dI = dt+ f4ds+ f3dr + f2dq + f1dp+ f0du+ (f ′4s+ f ′3r + f ′2q + f ′1p+ f ′0u)dx, (38)

is an invariant one-form, thus one can take it as a final element of our coframe.

In the second problem (25), for the extra factor of ϕ, the invariant is

I(x, u, p, q, r, s, t) =
D[u]

u
=
f5(x)dt+ f4(x)ds+ f3(x)r + f2(x)q + f1(x)p

u
+ f0(x). (39)

Thus, it is found

ω7 = dI =
1

u
dt+

f4
u
ds+

f3
u
dr +

f2
u
dq +

f1
u
dp− t+ f4s+ f3r + f2q + f1p

u2
du (40)

+
{f ′4s+ f ′3r + f ′2q + f ′1p

u
+ f ′0

}
dx, (41)

as a final element of coframe for the equivalence problem (25). The set of one-forms

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7}

is a coframe on the subset

Γ∗ =
{

(x, u, p, q, r, s, t) ∈ J5
∣∣∣u 6= 0 and f5(x) 6= 0

}
. (42)

All of attention is restricted to a connected component Γ ⊂ Γ∗ of the subset (42) that the signs of

f0(x) and u are fixed. It means, the last coframe elements agree up to contact

ω̄7 = ω7. (43)

Viewing (37) and (43) relations, one can find the structure group associated with the equivalence

problems (24) and (25) that is a 15-dimensional matrix group G such that Ω̄ = GΩ which leads to
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(26) and then the lifted coframe on the space J5 ×G has the form

θ1 = a1ω
1,

θ2 = ω2,

θ3 = a2ω
2 + a3ω

3, (44)

θ4 = a4ω
2 + a5ω

3 + a6ω
4,

θ5 = a7ω
2 + a8ω

3 + a9ω
4 + a10ω

5,

θ6 = a11ω
2 + a12ω

3 + a13ω
4 + a14ω

5 + a15ω
6,

θ7 = ω7.

In the following, two important results will be presented in the form of two theorems:

Theorem 1 The final structure equations for direct equivalence with (36) and (38) coframes are

dθ1 =
1

5
θ1 ∧ θ2,

dθ2 = θ1 ∧ θ3,

dθ3 = θ1 ∧ θ4 +
1

5
θ2 ∧ θ3, (45)

dθ4 = I1θ
1 ∧ θ4 + θ1 ∧ θ5 +

2

5
θ2 ∧ θ4,

dθ5 = I2θ
1 ∧ θ4 + θ1 ∧ θ6 +

3

5
θ2 ∧ θ5 +

17

5
θ3 ∧ θ4,

dθ6 = I3θ
1 ∧ θ2 + I4θ

1 ∧ θ3 + I5θ
1 ∧ θ4 + θ1 ∧ θ7 +

4

5
θ2 ∧ θ6 + I6θ

3 ∧ θ4 + 4θ3 ∧ θ5,

dθ7 = 0,

where the coefficients I1, I2, I3, I4, I5 and I6 are

I1 = − 1
5
√
u4

[f4u+ 3p] , (46)

I2 =
1

5
5
√
u8

[
(10ḟ4u

2 − 12f4pu− 5f3u
2 − 9p2 − 10qu

]
,

I3 = −(f0u+ f1p+ f2q + f3r + f4s+ t),

I4 = − 1

625
5
√
u16

[
625u4f1 − 800u2f4pq + 2375u3f4r + 1770p2qu− 1275pru2 + 3000su3

+270f4p
3u− 225u2f3p

2 + 1750u3f3q + 1125u3f2p− 594p4 − 800q2u2
]
, (47)

I5 = 7− 1

25
5
√
u12

[
25u3f2 + 6up2f4 + 65u2qf4 − 55pu2ḟ4 + 50f3pu

2 − 25u3ḟ3 (48)

+25u3ḟ4 + 33p3 − 45pqu+ 100ru2
]
,

I6 = − 1
5
√
u4

(f4u+ 3p).

Theorem 2 The final structure equations for gauge equivalence with (36) and (40) coframes are

dθ1 = 0,

dθ2 = θ1 ∧ θ3,

dθ3 = θ1 ∧ θ4,

dθ4 = L1θ
1 ∧ θ4 + θ1 ∧ θ5, (49)

dθ5 = L2θ
1 ∧ θ4 + θ1 ∧ θ6 + 5θ3 ∧ θ4,

dθ6 = L3θ
1 ∧ θ3 + L4θ

1 ∧ θ4 + θ1 ∧ θ7 + L5θ
3 ∧ θ4 + 5θ3 ∧ θ5,

dθ7 = 0,
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where the coefficients L1, . . . , L5 are

L1 = − 1

u
[f4u+ 5p] ,

L2 =
1

u2

[
2ḟ4u

2 − f3u2 − 4f4pu− 10p2
]
,

L3 = − 1

u
[2pf2 + 3f3q + 4f4r + f1u+ 5s] ,

L4 =
1

u3
[
4ḟ4pu

2 − f2u3 + ḟ3u
3 − 3f3pu

2 − 4f4p
2u− 2u2f4q − f̈4u3 − 10p3 + 5pqu− 5ru2

]
,(50)

L5 = − 1

u
(f4u+ 5p),

4 The proof of Theorem 1

We start with the help of the initial six one-forms (36) and (38) are taken as our final coframe

constituent. So equivalence problem turns into G-equivalence problem. We normalize the problem

then (44) are obtained. We use (44) instead of six one-forms (36) and (38). The goal is the basis

manifold M × G turns into M × G′ which dim G′ < dim G and finally G′ turns into e. F or the

problem, this algorithm is done in five stage. We compute right-invariant Maurer-Cartan on lie group

G. Thus we calculate dg · g−1. To calculate structure equations differential of (44) and write the

result based on right-invariant Maurer-Cartan and (44). Then we use absorption algorithm and find

coefficient of (44) which does not depend on z. The corresponding torsion coefficient will be invariant.

Now we calculate the differentials of lifted coframe elements (44). An explicit computation leads to

the structure equations

dθ1 = α1 ∧ θ1,

dθ2 = T 2
12θ

1 ∧ θ2 + T 2
13θ

1 ∧ θ3,

dθ3 = α2 ∧ θ2 + α3 ∧ θ3 + T 3
12θ

1 ∧ θ2 + T 3
13θ

1 ∧ θ3 + T 3
14θ

1 ∧ θ4, (51)

dθ4 = α4 ∧ θ2 + α5 ∧ θ3 + α6 ∧ θ4 + T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4 + T 4
15θ

1 ∧ θ5,

dθ5 = α7 ∧ θ2 + α8 ∧ θ3 + α9 ∧ θ4 + α10 ∧ θ5 + T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + T 5
15θ

1 ∧ θ5

+T 5
16θ

1 ∧ θ6,

dθ6 = α11 ∧ θ2 + α12 ∧ θ3 + α13 ∧ θ4 + α14 ∧ θ5 + α15 ∧ θ6 + T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
14θ

1 ∧ θ4

+T 6
15θ

1 ∧ θ5 + T 6
16θ

1 ∧ θ6 + T 6
17θ

1 ∧ θ7,

dθ7 = 0,
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which αi i = 1, · · · , 15 are forming a basis for the right-invariant Maurer-Cartan forms on the Lie

group G:

α1 =
da1
a1

,

α2 =
a3da2 − a2da3

a3
,

α3 =
da3
a3

,

α4 =
a3a6da4 − a2a6da5 + (a2a5 − a3a4)da6

a3a6
,

α5 =
a6da5 − a5da6

a3a6
,

α6 =
da6
a6

,

α7 =
a3a6a10da7 − a2a6a10da8 + a10(a2a5 − a3a4)da9 − (a3a6a7 − a3a4a9 − a2a6a8 + a2a5a9)da10

a3a6a10
,

α8 =
a6a10da8 − a5a10da9 + (a5a9 − a6a8)da10

a3a6a10
,

α9 =
a10da9 − a9da10

a6a10
,

α10 =
da10
a10

,

α11 =
1

a3a6a10a15

[
a3a6a10a15da11 − a2a6a10a15da12 + a10a15(a2a5 − a3a4)da13 − a15(a2a5a9 − a2a6a8

−a3a4a9 + a3a6a7)da14 − (a3a6a10a11 − a2a6a10a12 + a2a5a10a13 − a3a4a10a13
−a2a5a9a14 + a2a6a8a14 + a3a4a9a14 − a3a6a7a14)da15

]
,

α12 =
1

a3a6a10a15

[
a6a10a15da12 − a5a10a15da13 + a15(a5a9 − a6a8)da14 − (a6a10a12 − a5a10a13

+a5a9a14 − a6a8a14)
]
,

α13 =
a10a15da13 − a9a15da14 − (a10a13 − a9a14)da15

a6a10a15
,

α14 =
a15da14 − a14da15

a10a15
,

α15 =
da15
a15

,

In first loop the essential torsion coefficients are

T 2
12 = −a2 + a3p

a1a3u
, T 2

13 =
1

a1a3u
, T 3

14 =
a3
a1a6

, T 4
15 =

a6
a1a10

, T 5
16 =

a10
a1a15

, T 6
17 =

a15
a1
. (52)

One can normalize the group parameters by setting

a1 =
1
5
√
u
, a2 = − p

5
√
u4
, a3 =

1
5
√
u4
, a6 =

1
5
√
u3
, a10 =

1
5
√
u2
, a15 =

1
5
√
u
. (53)

In the second loop, the normalization (53) is substituted in the lifted coframe (44) and calculate the

differentials of new invariant coframe to obtain revised structure equations. Now, the essential torsion

components (52) are normalized by the parameters

a4 = − q
5
√
u3
, a5 = − 9p

5
5
√
u4
, a9 =

5f4u+ 3p

5
5
√
u4

, a14 =
5f4u+ p

5
5
√
u4

. (54)
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In third loop, substituting the normalization (54) in the lifted coframe (44) and determine parameters

a4, a7, a8. we recalculate the differentials. Therefore, the new structure equations are

dθ1 =
1

5
θ1 ∧ θ2,

dθ2 = θ1 ∧ θ3,

dθ3 = θ1 ∧ θ4 +
1

5
θ2 ∧ θ3, (55)

dθ4 = T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4 + θ1 ∧ θ5 +
2

5
θ2 ∧ θ4,

dθ5 = T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + θ1 ∧ θ6 + T 5
23θ

2 ∧ θ3 − 2

5
θ2 ∧ θ5 +

3

5
θ3 ∧ θ4 + α7 ∧ θ2 + α8 ∧ θ3

dθ6 = T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
14θ

1 ∧ θ4 + T 6
15θ

1 ∧ θ5 + θ1 ∧ θ7 + T 6
23θ

2 ∧ θ3 +
3

5
α13θ2 ∧ θ4

−1

5
θ2 ∧ θ6 + T 6

34θ
3 ∧ θ4 +

1

5
θ3 ∧ θ5 + α11 ∧ θ2 + α12 ∧ θ3 + α13 ∧ θ4,

dθ7 = 0.

where α7, α8, α11, α12 and α13 are the Maurer-Cartan forms on G and the essential torsion coefficients

are

T 4
12 = −5a7u

27/5 + 5u5f4q + 3pqu4 + 5u5r

5u27/5
, (56)

T 4
13 = −25a8u

13/5 + 45u2f4p+ 18p2u+ 70qu2

25u13/5
,

T 6
15 =

−25f3u
2 + 25ḟ4u

2 + 25a13u
8/5 − 5f4pu− 6p2 + 5qu

25u8/5
.

We find the following parameters:

a7 = −5f4qu+ 3pq + 5ru

5
5
√
u7

,

a8 = −45f4pu+ 18p2 + 70qu

25
5
√
u8

, (57)

a13 =
5f4pu+ 25f3u

2 − 25ḟ4u
2 + 6p2 − 5qu

25
5
√
u8

.

Substituting (57) in (44) and recomputing the differentials leads to

dθ1 =
1

5
θ1 ∧ θ2,

dθ2 = θ1 ∧ θ3,

dθ3 =
1

5
θ2 ∧ θ3 + θ1 ∧ θ4, (58)

dθ4 = T 4
14θ

1 ∧ θ4 + θ1 ∧ θ5 +
2

5
θ2 ∧ θ4,

dθ5 = T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + θ1 ∧ θ6 +
3

5
θ2 ∧ θ5 +

17

5
θ3 ∧ θ4,

dθ6 = T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
14θ

1 ∧ θ4

+θ1 ∧ θ7 + T 6
23θ

2 ∧ θ3 + T 6
24θ

2 ∧ θ4 − 1

5
θ2 ∧ θ6 +

1

5
θ3 ∧ θ5 + α11 ∧ θ2 + α12 ∧ θ3,

dθ7 = 0.

In final loop, we find the remaining parameters a11, a12 which is as follows

a11 = −5f4ru+ pr + 5su

5u6/5
,

a12 =
9f4p

2u− 70u2f4q − 9p3 + 18pqu− 95u2r

25u12/5
,

(59)
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and then it leads to final structure equations (45).

5 The proof of Theorem 2

The calculations of this problem are similar to the previous section except that we use the initial six

coframes (36) and the 1-form element is (40). In the first loop through the second equivalence problem

procedure, according to Proposition 1, the structure group G in (26) relation is exactly the structure

group of direct equivalence, and then the equivalence method has the same intrinsic structure (51) by

the essential torsion coefficients

T 2
12 = −a2 + a3p

a1a3u
, T 2

13 =
1

a1a3u
, T 3

14 =
a3
a1a6

, T 4
15 =

a6
a1a10

, T 5
16 =

a10
a1a15

, T 6
17 =

a15u

a1
. (60)

We can normalize the group parameters by setting

a1 = 1, a2 = − p
u
, a3 = a6 = a10 = a15 =

1

u
. (61)

In the second loop of the equivalence problem, we substitute the normalization (61) in lifted coframe

(44) and calculate differentials of new invariant coframe to determining following revised structure

equations:

dθ1 = 0,

dθ2 = θ1 ∧ θ3,

dθ3 = T 3
12θ

1 ∧ θ2 + T 3
13θ

1 ∧ θ3 + θ1 ∧ θ4,

dθ4 = α4 ∧ θ2 + α5 ∧ θ3 + T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4 + θ1 ∧ θ5 (62)

+α5θ2 ∧ θ3 − θ2 ∧ θ4,

dθ5 = α7 ∧ θ2 + α8 ∧ θ3 + α9 ∧ θ4 + T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4

+T 5
15θ

1 ∧ θ5 + T 5
23θ

2 ∧ θ3 − θ2 ∧ θ5 + θ1 ∧ θ6,

dθ6 = 0,

where α4, α5, α7, α8 and α9 are the Maurer-Cartan forms and the essential torsion components of

structure equations (62) are

T 3
12 = −a4u+ q

u
,

T 3
13 = −a5u+ 2p

u
,

T 5
15 = −a14u− a9u+ p

u
,

T 6
16 =

a14u− f4u− p
u

.

(63)

and so the normalization is

a4 = − q
u
, a5 = −2p

u
, a9 =

f4u+ 2p

u
, a14 =

f4u+ p

u
. (64)
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Putting (64) into (44) and then recomputing the differential of new 1-forms leads to

dθ1 = 0,

dθ2 = θ1 ∧ θ3,

dθ3 = θ1 ∧ θ4,

dθ4 = T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4 + θ1 ∧ θ5,

dθ5 = α7 ∧ θ2 + α8 ∧ θ3 + T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + T 5
23θ

2 ∧ θ3 − θ2 ∧ θ5

+2θ3 ∧ θ4 + θ1 ∧ θ6, (65)

dθ6 = α11 ∧ θ2 + α12 ∧ θ3 + α13 ∧ θ4 + T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
14θ

1 ∧ θ4 + T 6
15θ

1 ∧ θ5 + θ1 ∧ θ7

+T 6
23θ

2 ∧ θ3 + T 6
34θ

3 ∧ θ4 + θ3 ∧ θ5 + α13θ2 ∧ θ4 − θ2 ∧ θ6,

dθ7 = 0.

This immediately implies following normalization

a7 = −f4qu+ 2pq + ru

u2
,

a8 = −2f4pu+ 4p2 + 3qu

u2
,

a11 = −f4ru+ pr + su

u2
, (66)

a12 = −3f4qu+ 3pq + 4ru

u2
,

a13 = − ḟ4u
2 − f4pu− f3u2 − 2p2 + qu

u2
.

Thus the final invariant coframe is now given by

θ1 =
dx
4
√
f4
,

θ2 =
du− p dx

u
,

θ3 =
4
√
f4
u2

[
(p2 − qu) dx− p du+ u dp

]
,

θ4 = − 1

4
√
f4 u3

[
(4f4u

2r + ḟ4u
2q − ḟ4up2 − 12f4upq + 8f4p

3) dx

+(ḟ4up+ 4f4uq − 8f4p
2) du+ (8f4p− ḟ3u)u dp− 4f4u

2 dq
]
, (67)

θ5 =
1

4
√
f4 u3

[
(8f4p

2q − 4f4uq
2 − 4f4u

2s+ 4f3u
2r(4f3 − 3ḟ4)upq + 3ḟ4u

2r) dx

+(8f4pq + 4f4ur + (4f3 − 3ḟ4)uq) du+ (4f4uq) dp+ (4f4p+ (4f3 − ḟ4)u)u dq

−4f4u
2 dr

]
,

θ6 =
f ′4s+ f ′3r + f ′2q + f1p+ f ′0u

u
dx− f4r + f3r + f2q + f1p

u2
du+

f1
u
dp

+
f2
u
dq +

f3
u
dr +

f4
u
ds.

Then the final structure equations (49) with fundamental invariant coefficients (50) are obtained.

6 An example

Consider boundary value problem for the fifth-order differential operator, [8],

D5u(x) + (Q(x)− λa5)u(x) = 0, 0 ≤ x ≤ π, a > 0, (68)
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with separated boundary conditions

y(m1)(0) = y(m2)(0) = y(m3)(0) = y(m4)(0) = y(n1)(π) = 0,

m1 < m2 < m3 < m4, mk, n1 ∈ {0, 1, 2, 3, 4}, k = 1, 2, 3, 4,
(69)

where potential Q(x) is a integrable function in interval [0, π] and λ is spectral parameter. We

are accomplishing Cartan equivalence method on the fifth-order differential operator (68). In direct

method, consider one-forms (36) and the following one-form

ω7 = Q′udx = (Q− λa5)du+ dt (70)

as a coframe. The final structure equations are

dθ1 =
1

5
θ1 ∧ θ2,

dθ2 = θ1 ∧ θ3,

dθ3 = θ1 ∧ θ4 +
1

5
θ2 ∧ θ3, (71)

dθ4 = I1θ
1 ∧ θ4 + θ1 ∧ θ5 +

2

5
θ2 ∧ θ4,

dθ5 = I2θ
1 ∧ θ4 + θ1 ∧ θ6 +

3

5
θ2 ∧ θ5 +

17

5
θ3 ∧ θ4,

dθ6 = I3θ
1 ∧ θ2 + I4θ

1 ∧ θ3 + I5θ
1 ∧ θ4

+θ1 ∧ θ7 +
4

5
θ2 ∧ θ6 + I6θ

3 ∧ θ4 + 4θ3 ∧ θ5,

dθ7 = 0,

where the coefficients I1, I2, I3, I4, I5 and I6 are

I1 = − 3p
5
√
u4
, (72)

I2 =
1

5
5
√
u8

[
− 9p2 − 10qu

]
, (73)

I3 = a5λu−Q(x)u− t, (74)

I4 = − 1

625
5
√
u16

[
1770p2qu− 1275pru2 + 3000su3 − 594p4 − 800q2u2

]
, (75)

I5 = − 1

25
5
√
u12

[
33p3 − 45pqu+ 100ru2

]
, (76)

I6 = − 3p
5
√
u4
. (77)

Now we solve this example by gauge equivalence method. The one-forms (36) and

ω7 = Q′dx− tdu

u2
+
dt

u
, (78)

are chosen as element of coframes and the final structure equations with above coframes are

dθ1 = 0,

dθ2 = θ1 ∧ θ3,

dθ3 = θ1 ∧ θ4,

dθ4 = L1θ
1 ∧ θ4 + θ1 ∧ θ5,

dθ5 = L2θ
1 ∧ θ4 + θ1 ∧ θ6 + 5θ3 ∧ θ4,

dθ6 = L3θ
1 ∧ θ3 + L4θ

1 ∧ θ4 + θ1 ∧ θ7 + L5θ
3 ∧ θ4 + 5θ3 ∧ θ5,

dθ7 = 0,
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where the coefficients L1, . . . , L5 are

L1 = −5p

u
,

L2 = −10p2

u2
,

L3 = −5s

u
,

L4 =
1

u3
[
−10p3 + 5pqu− 5ru2

]
,

L5 = −5p

u
.

(79)
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