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Summary

This paper is concerned with the exact delay range making input-delay systems un-
stabilizable. The exact range means that the systems are unstabilizable if and only
if the delay is within this range. Contributions of this paper are to characterize the
exact range and to present a computation method to derive this range. It is shown
that the above range is related to unstable eigenvalues of the system matrix. In the
discrete-time case, if none of the eigenvalues of the system matrix is a unit root, then
the above range is a finite set. If there exist some eigenvalues which are unit roots,
this range may be a finite set or may be composed of several arithmetic progressions.
When this range contains finite elements, the number of these elements is bounded
by the geometric multiplicities of eigenvalues. When this range contains arithmetic
progressions, the number of such progressions is bounded by the above multiplici-
ties. On the other hand, our results can provide an upper bound for the well-known
delay margin, which is the maximal delay value achievable by a robust controller to
stabilize systems.
KEYWORDS:
Input-delay systems, stabilization, exact delay range, delay effects

1 INTRODUCTION

Delay phenomenon exists widely in many areas, such as neuroscience1, transportation2, medicine3, and communication4. Its
appearance brings essential influences to practical processes and we have to study delay systems to deal with real situations.
Various kinds of problems in control theory have been considered for delay systems. These problems contain stability5, stabi-
lization6, optimal control7, consensus control8, formation control9, estimation10 and so on. On stability and stabilization, aims
of the existing literature include establishment of stability and stabilization criteria and designing feedback control to stabilize
systems. For examples, stability of linear systems with incommensurate delays was concerned in 11, which proposed necessary
stability conditions in terms of the Lyapunov matrix; nonlinear systems with a large input delay were considered by 12 and
memoryless state and/or output feedback control was presented to achieve local asymptotic stabilization; stochastic systems with
input delays were studied in 13 and a necessary and sufficient stabilization condition was established via Riccati-type equations.

Different from the above-mentioned problems, delay effects or robustness problems concern influences of delay on stability
or stabilization. The aim of these problems is to determine the range of delay within which systems are stable or stabilizable.
Existing literature can be divided into three classes on the basis of specific problems.

†This work was supported by Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022MF239, ZR2021MA002)
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• Class I studies delay systems without control and focuses on the delay range within which the systems are stable14,15,16,17.
For example, consider

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐴1𝑥(𝑡 − ℎ), (1)
where 𝐴 and 𝐴1 are constant matrices and 𝜏 ∈ [0,+∞) is a delay. Suppose (1) is stable at 𝜏 = 0, then it will remain stable
in a neighbourhood ℎ ∈ [0, ℎ1). 17 discussed the delay margin, which is the maximal ℎ1.

• Class II investigates systems with control and is concerned with the maximal range of delay values within which the
system can be robustly stabilized by a single controller18,19,20,21,22. In this class, most of the literature use frequency domain
method. To compare with the other two classes, we translate the frequency-domain framework, which has been discussed
in 23, to time-domain framework and replace infinite-dimensional controllers by static feedback controllers as follows:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − ℎ), (2)
𝑦(𝑡) = 𝐶𝑥(𝑡), (3)
𝑢(𝑡) = −𝐾𝑦(𝑡). (4)

A controller 𝑢(𝑡) = −𝐾𝑦(𝑡) is robust if it can stabilize (2)-(3) for every ℎ ∈ [0, ℎ1]. The delay margin of a robust controller
is

𝐷𝑀(𝐾) ≜ sup{ℎ1 ∶ 𝑢(𝑡) = −𝐾𝑦(𝑡) stabilize (2)-(3) for every ℎ ∈ [0, ℎ1]}, (5)
and the achievable delay margin for (2)-(3) is

𝐷𝑀 ≜ sup{𝐷𝑀(𝐾) ∶ 𝑢(𝑡) = −𝐾𝑦(𝑡) is a robust controller}. (6)
• Class III is concerned with systems with input delay and concentrates on the delay range within which systems are

stabilizable24,25. This paper belongs to this class. In the continuous-time case, we consider
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵0𝑢(𝑡) + 𝐵1𝑢(𝑡 − ℎ), 𝑡 ≥ 0, (7)

where 𝑥(𝑡) ∈ ℝ𝑝 and 𝑢(𝑡) ∈ ℝ𝑞 are the state and control input, respectively, 𝑥(0) ∈ ℝ𝑝 and 𝑢(𝜃), 𝜃 ∈ [−ℎ, 0), are
initial values, and 𝐴 ∈ ℝ𝑝×𝑝, 𝐵0 ∈ ℝ𝑝×𝑞 and 𝐵1 ∈ ℝ𝑝×𝑞 , are constant matrices. 𝐶𝑇𝑆(ℎ) is used to represent the above
system. Simply speaking, if there exists a control, which stabilizes 𝐶𝑇𝑆(ℎ), it is said that 𝐶𝑇𝑆(ℎ) is stabilizable (Detailed
definition of stabilization will be given in Section 3). This paper focuses on the following delay range

{ℎ ∈ [0,+∞) ∶ 𝐶𝑇𝑆(ℎ) is stabilizable}. (8)
Relations among the three classes are as follows.

(1) The delay margin of a robust controller 𝐷𝑀(𝐾), i.e., (5), in class II is essentially the same as the delay margin in class I.
This is because the closed-loop system consisting of (2)-(4) is

𝑥̇(𝑡) = 𝐴𝑥(𝑡) − 𝐵𝐾𝐶𝑥(𝑡 − ℎ),

which is a type of system (1).
(2) Both class II and class III consider stabilization problems. The main difference is as follows. Class II emphasizes the

robustness of controllers with respect to the delay. Class III does not concern such robustness but emphasizes whether or
not systems are stabilizable when delay varies.

(3) The exact delay range studied in class III provides an upper bound for the delay margin discussed in class II. For example,
this paper shows that the complement set of (8) is a countable set and proposes a computation method to derive this set.
Suppose this set is derived as {𝜏1,⋯ , 𝜏𝑛,⋯} where 𝜏1 < ⋯ < 𝜏𝑛 < ⋯. This means that (7) is unstabilizable if and only
if ℎ ∈ {𝜏1,⋯ , 𝜏𝑛,⋯}. If a robust controller 𝑢(𝑡) = 𝐾𝑥(𝑡) stabilizes (7) for ℎ ∈ [0, ℎ1], it can be known that ℎ1 < 𝜏1.
Naturally it holds that 𝐷𝑀(𝐾) ≤ 𝜏1 and 𝐷𝑀 ≤ 𝜏1.

In summary, problems under consideration in this paper are different from the usual delay margin problems and they can provide
upper bounds for the usual delay margin.

Our contribution is summarized as follows. In the discrete-time case in which delays are nonnegative integers, this paper shows
that the unstable eigenvalues of the system matrix determine the exact delay range within which the systems are unstabilizable
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to some extent. It proves that this range is finite or is composed of several arithmetic progressions. It also proposes a method to
derive the above range via computation of matrix minors and roots of polynomials. In the continuous-time case in which delays
belong to the interval [0,+∞), this paper shows that if all the eigenvalues of the system matrix lie on the open right half plane,
then the exact delay range within which the systems are unstabilizable is a finite set, and otherwise, this range is a finite set or a
countable set. Similar to the discrete-time case, a computation method is presented to derive this range.

Notation: ℤ, ℕ, ℝ, and ℂ are the sets of integers, nonnegative integers, real numbers, and complex numbers, respec-
tively. ℝ𝑛(ℂ𝑛) is the set of 𝑛−dimensional column vectors with elements in ℝ(ℂ). ℝ𝑛×𝑚(ℂ𝑛×𝑚) is the set of 𝑛 × 𝑚 matrices
with elements in ℝ(ℂ). For 𝑧 ∈ ℂ, 𝑧, |𝑧|, Re(𝑧) and Im(𝑧) denote the conjugate, the molule, the real part and the
imaginary part of 𝑧, respectively. √

−1 denotes the imaginary unit. 𝕌 is the set of unit roots, i.e., 𝕌 ≜ {𝛽 ∈ ℂ ∶
there exists a positive integer 𝑘, such that 𝛽𝑘 = 1}. For any 𝛽 ∈ 𝕌, define 𝑜(𝛽) to be the smallest positive integer 𝑘 such that
𝛽𝑘 = 1 and call 𝑜(𝛽) the order of 𝛽. For a vector 𝜉 =

(

𝜉1 ⋯ 𝜉𝑛
)′ ∈ ℂ𝑛, ‖𝜉‖ denotes its 2-norm, i.e., ‖𝜉‖ =

√

∑𝑛
𝑖=1 |𝜉𝑖|2.

For a matrix 𝑋 = [𝑋𝑖𝑗] ∈ ℂ𝑛×𝑚, rank(𝑋), 𝑋′, and (𝑋)𝑖 stand for the rank of 𝑋, the transpose of 𝑋, and the 𝑖-th row vec-
tor of 𝑋, respectively. 𝑋 represents the matrix [𝑋𝑖𝑗]𝑛×𝑚. For a square matrix 𝑋, 𝜌(𝑋) denotes its spectral radius. 𝐼 stands for
a unit matrix with suitable dimension. 𝐿2

𝑙𝑜𝑐 is the set of functions which are locally square-integrable. 𝐿1(0,+∞) stands for
{𝑓 (𝑡) ∈ ℝ𝑛, 𝑡 ∈ (0,+∞) ∶ ∫ +∞

0 ‖𝑓 (𝑡)‖𝑑𝑡 < +∞}. For a set 𝑆, |𝑆| represents the number of elements in 𝑆.

2 EXACT DELAY RANGE FOR DISCRETE-TIME SYSTEMS WITH INPUT DELAYS

2.1 Characterization of the exact delay range
In this section, we consider the following discrete-time systems with input delays

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵0𝑢𝑘 + 𝐵1𝑢𝑘−𝑑 , 𝑘 ≥ 0, (9)
where 𝑥𝑘 ∈ ℝ𝑝 and 𝑢𝑘 ∈ ℝ𝑞 are the state and input control, respectively, 𝐴 ∈ ℝ𝑝×𝑝, 𝐵0 ∈ ℝ𝑝×𝑞 , and 𝐵1 ∈ ℝ𝑝×𝑞 , are constant
matrices, 𝑑 ∈ ℕ is the delay, and 𝑥0, 𝑢−𝑑 , ⋯, 𝑢−1 are initial values. 𝐷𝑇𝑆(𝑑) will be used to represent system (9). Two kinds of
stabilization definitions are given.
Definition 1. 𝐷𝑇𝑆(𝑑) is open-loop stabilizable if for any initial values 𝑥0, 𝑢−𝑑 , ⋯, 𝑢−1, there exists 𝑢𝑘, 𝑘 ≥ 0, such that
∑+∞

𝑘=0 ‖𝑢𝑘‖ < +∞ and ∑+∞
𝑘=0 ‖𝑥𝑘‖ < +∞.

Definition 2. 𝐷𝑇𝑆(𝑑) is feedback stabilizable if there exists a feedback control

𝑢𝑘 = 𝐾𝑥𝑘 +
𝑑
∑

𝑖=1
𝐾𝑖𝑢𝑘−𝑖, 𝑘 ≥ 0,

where 𝐾 and 𝐾𝑖, 𝑖 = 1,⋯ , 𝑑, are constant matrices, such that for any initial values 𝑥0, 𝑢−𝑑 , ⋯, 𝑢−1, it holds that lim𝑘→+∞ 𝑢𝑘 = 0
and lim𝑘→+∞ 𝑥𝑘 = 0.

It is known that the above two definitions are equivalent. In the rest of the paper, it will be said that 𝐷𝑇𝑆(𝑑) is stabilizable
if it is open-loop stabilizable or feedback stabilizable. Otherwise, it will be said that 𝐷𝑇𝑆(𝑑) is unstabilizable. Now the exact
delay range is explained.
Definition 3. The exact delay range rendering 𝐷𝑇𝑆(𝑑) unstabilizable is defined to be

𝐷𝑅𝐷 ≜ {𝑑 ∈ ℕ ∶ 𝐷𝑇𝑆(𝑑) is unstabilizable}.
The complementary set of 𝐷𝑅𝐷 is

𝐷𝑅𝐷 = {𝑑 ∈ ℕ ∶ 𝐷𝑇𝑆(𝑑) is stabilizable}.
Obviously, determining 𝐷𝑅𝐷 is equivalent to determining 𝐷𝑅𝐷.The reason for discussing 𝐷𝑅𝐷 but not 𝐷𝑅𝐷 is that 𝐷𝑅𝐷 is
much more convenient to characterize (This point will be seen in the future results). A necessary and sufficient condition for
𝐷𝑇𝑆(𝑑) to be unstabilizable is presented below.
Lemma 1. 𝐷𝑇𝑆(𝑑) is unstabilizable if and only if there exists a 𝛽 ∈ ℂ, which is an unstable eigenvalue of 𝐴, such that

rank ( 𝛽𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝐵1
)

< 𝑝. (10)
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Proof. Detailed proof is omitted due to length limit. □
Lemma 1 shows that the stabilization of 𝐷𝑇𝑆(𝑑) only depends on unstable eigenvalues of 𝐴. Naturally, the following

assumption is made.
Assumption 1. Each eigenvalue of 𝐴 lies on or outside the unit circle.

In this section,
𝛽1,⋯ , 𝛽𝑟, 𝛽𝑟+1,⋯ , 𝛽𝑟+𝑚, 𝛽𝑟+𝑚+1,⋯ , 𝛽𝑟+2𝑚, (11)

which all lie on or outside the unit circle, denote all the distinct eigenvalues of 𝐴. Here 𝛽1,⋯ , 𝛽𝑟 are real and 𝛽𝑟+1,⋯ , 𝛽𝑟+𝑚,
𝛽𝑟+𝑚+1, ⋯ , 𝛽𝑟+2𝑚 are pairs of complex conjugate eigenvalues with 𝛽𝑟+𝑗 = 𝛽𝑟+𝑚+𝑗 , 𝑗 = 1,⋯ , 𝑚. For 𝑖 = 1,⋯ , 𝑟 + 𝑚, denote

𝑠𝑖 ≜ the geometric multiplicity of 𝛽𝑖, (12)
and 𝑡 ≜ 𝑟 + 2𝑚. Then there are 𝑠𝑖 Jordan blocks associated with 𝛽𝑖 in a Jordan canonical form of 𝐴. Let 𝑃 be a nonsingular
matrix making 𝐴 to be the Jordan canonical form Λ, i.e.,

𝑃 −1𝐴𝑃 = Λ, (13)
where

Λ =
⎛

⎜

⎜

⎝

𝑄1
⋱

𝑄𝑡

⎞

⎟

⎟

⎠

, (14)

𝑄𝑖 =
⎛

⎜

⎜

⎝

𝐽1(𝛽𝑖)
⋱

𝐽𝑠𝑖(𝛽𝑖)

⎞

⎟

⎟

⎠

, 𝑖 = 1,⋯ , 𝑡, (15)

𝐽𝑗(𝛽𝑖) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛽𝑖 1
⋱ ⋱

⋱ 1
𝛽𝑖

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑗 = 1,⋯ , 𝑠𝑖. (16)

Define
𝐶0 ≜ 𝑃 −1𝐵0, 𝐶1 ≜ 𝑃 −1𝐵1, (17)
𝑛𝑖,𝑗 ≜ the row number of 𝐽𝑗(𝛽𝑖)’s last row in Λ, 𝑖 = 1,⋯ , 𝑡, 𝑗 = 1,⋯ , 𝑠𝑖, (18)

Γ(𝛽𝑖, 𝑑) ≜
⎛

⎜

⎜

⎜

⎝

(𝐶0)𝑛𝑖,1
⋮

(𝐶0)𝑛𝑖,𝑠𝑖

⎞

⎟

⎟

⎟

⎠

+ 𝛽−𝑑𝑖

⎛

⎜

⎜

⎜

⎝

(𝐶1)𝑛𝑖,1
⋮

(𝐶1)𝑛𝑖,𝑠𝑖

⎞

⎟

⎟

⎟

⎠

, (19)

where (𝐶0)𝑛𝑖,𝑗 and (𝐶1)𝑛𝑖,𝑗 represent the 𝑛𝑖,𝑗−row of the matrix 𝐶0 and that of 𝐶1, respectively.
Theorem 1. (1) The exact delay range rendering 𝐷𝑇𝑆(𝑑) unstabilizable is given by

𝐷𝑅𝐷 = ∪𝑟+𝑚
𝑖=1 𝑆(𝛽𝑖), (20)

where for 𝑖 = 1,⋯ , 𝑟 + 𝑚,
𝑆(𝛽𝑖)≜{𝑑 ∈ ℕ ∶ rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1

)

<𝑝}. (21)
(2) If 𝑞 < 𝑠𝑖 (𝑞 and 𝑠𝑖 are the dimension of control input and the geometric multiplicity of 𝛽𝑖, respectively), then 𝑆(𝛽𝑖) = ℕ.

If 𝑞 ≥ 𝑠𝑖, then
𝑆(𝛽𝑖) = {𝑑 ∈ ℕ ∶ all the 𝑠𝑖 − order minors of Γ(𝛽𝑖, 𝑑) are zero}, (22)

where Γ(𝛽𝑖, 𝑑) is defined by (19).
(3) After excluding trivial cases of 𝑆(𝛽𝑖) = ℕ and 𝑆(𝛽𝑖) = ∅ (for example, if 𝛽𝑖 = 1, then 𝑆(𝛽𝑖) = ℕ or 𝑆(𝛽𝑖) = ∅), one and

only one of the following two cases will happen.
• If 𝛽𝑖 ∉ 𝕌 (𝕌 is the set of unit roots, see Notation), then 𝑆(𝛽𝑖) has finite elements and |𝑆(𝛽𝑖)| ≤ 𝑠𝑖 ( |𝑆(𝛽𝑖)| is the number

of elements of 𝑆(𝛽𝑖)).
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• If 𝛽𝑖 ∈ 𝕌, then
𝑆(𝛽𝑖) = ∪𝜏

𝑗=1{𝑑𝑗 + 𝑜(𝛽𝑖)𝑘 ∶ 𝑘 ∈ ℤ, 𝑘 ≥ −
𝑑𝑗
𝑜(𝛽𝑖)

}. (23)
Here 𝑑𝑗 ∈ ℕ is a solution to some equation 𝛽−𝑑𝑖 = 𝑧𝑗 , 𝑗 = 1,⋯ , 𝜏, and 𝑜(𝛽𝑖) is the order of 𝛽𝑖, which has been defined in
Notation. Also, 𝜏 satisfies 𝜏 ≤ 𝑠𝑖.

Proof. See Appendix A. □
Theorem 1 uncovers the following laws for the exact delay range making 𝐷𝑆𝑇 (𝑑) unstabilizable. An eigenvalue of 𝐴, which

is not a unit root, will render 𝐷𝑆𝑇 (𝑑) unstabilizable at finite delays. An eigenvalue of 𝐴, which is a unit root, may render
𝐷𝑆𝑇 (𝑑) unstabilizable at several sequences of delays. Each sequence is an arithmetic progression and the common difference
of this progression is equal to the order of this eigenvalue (see (23)). In addition, Theorem 1 yields the following corollary.
Corollary 1. If there exists an eigenvalue of 𝐴, such that the geometric multiplicity of this eigenvalue exceeds the dimension
of the control input, then 𝐷𝑅𝐷 = ℕ.

2.2 Procedures for computing 𝐷𝑅𝐷

The proof of Theorem 1 gives a hand computation method to derive 𝐷𝑅𝐷. This method is formulated as follows.
Step 1: Find a nonsingular matrix 𝑃 to transform 𝐴 to its canonical form Λ (see (13)-(16)). Compute 𝐶0 and 𝐶1 by (17).
Step 2: Based on Λ, derive 𝑛1,𝑗 , 𝑗 = 1,⋯ , 𝑠1 for the eigenvalue 𝛽1 via (18). Obtain Γ(𝛽1, 𝑑) according to (19).
Step 3: In Γ(𝛽1, 𝑑), do the variable transformation 𝑧 = 𝛽−𝑑1 . Calculate all the 𝑠1−order minors of Γ(𝛽1, 𝑑). Denote these minors

by 𝑓𝑖(𝑧), 𝑖 = 1,⋯ , 𝑣. Solve polynomial equations 0 = 𝑓𝑖(𝑧) and derive the set Ω = {𝑧 ∈ ℂ ∶ 0 = 𝑓𝑖(𝑧), 𝑖 = 1,⋯ , 𝑣}. Denote
elements of Ω by 𝑧1,⋯ , 𝑧𝜏 .

Step 4: Compute 𝑆(𝛽1) as 𝑆(𝛽1) = ∪𝜏
𝑖=1{𝑑 ∈ ℕ ∶ 𝛽−𝑑1 = 𝑧𝑖}.

Step 5: In a similar line to steps 2-4, derive 𝑆(𝛽𝑖) for 𝑖 = 2,⋯ , 𝑟 + 𝑚.
Step 6: Compute 𝐷𝑅𝐷 as 𝐷𝑅𝐷 = ∪𝑟+𝑚

𝑖=1 𝑆(𝛽𝑖).Examples will be given in the next subsection to illustrate the above procedures.

2.3 Examples
Example 1: Consider 𝐷𝑇𝑆(𝑑) with

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 0 0
0 −1 1 0
0 0 −1 0
0 0 0 3

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵0 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 −2
11 −7 3
1 1 −3
1.5 −4 1

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵1 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 3
2 5 −9
0 1 2
1 −4.5 6

⎞

⎟

⎟

⎟

⎟

⎠

.

The matrix 𝐴 is a Jordan canonical form, so 𝑃 = 𝐼,Λ = 𝐴,𝐶0 = 𝐵0, and 𝐶1 = 𝐵1. The two eigenvalues are −1 and 2. For −1,
there are two Jordan blocks, 𝐽1(−1) = −1 and 𝐽2(−1) =

(

−1 1
0 −1

)

. The row number of the last row of 𝐽1(−1) in 𝐴 is 𝑛1,1 = 1.
The row number of the last row of 𝐽2(−1) in 𝐴 is 𝑛1,2 = 3. Thus

Γ(−1, 𝑑) =
(

(𝐵0)1
(𝐵0)3

)

+ (−1)−𝑑
(

(𝐵1)1
(𝐵1)3

)

=
(

1 0 −2 + 3𝑧
1 1 + 𝑧 −3 + 2𝑧

)

,

where 𝑧 ≜ (−1)−𝑑 . The 2-order minors of Γ(−1, 𝑑) are
𝑓1(𝑧) =

|

|

|

|

|

1 0
1 1 + 𝑧

|

|

|

|

|

= 1 + 𝑧, 𝑓2(𝑧) =
|

|

|

|

|

1 −2 + 3𝑧
1 −3 + 2𝑧

|

|

|

|

|

= −𝑧 − 1,

𝑓3(𝑧) =
|

|

|

|

|

0 −2 + 3𝑧
1 + 𝑧 −3 + 2𝑧

|

|

|

|

|

= −(1 + 𝑧)(−2 + 3𝑧).
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Then one obtains
Ω1 = {𝑧 ∶1 + 𝑧 = 0,−𝑧 − 1 = 0,−(1 + 𝑧)(−2 + 3𝑧) = 0} = {−1},
𝑆(−1) = {𝑑 ∈ ℕ ∶ (−1)−𝑑 = −1} = {2𝑘 + 1 ∶ 𝑘 ∈ ℤ, 𝑘 ≥ 0}.

The eigenvalue 3 corresponds a 1−order Jordan block, which is in the fourth row of 𝐴. Thus one has 𝑛2,1 = 4 and
Γ(3, 𝑑) = (𝐵0)4 + (𝐵1)43−𝑑 =

(

1.5 + 𝑧 −4 − 4.5𝑧 1 + 6𝑧
)

,

where 𝑧 ≜ 3−𝑑 . The 1-order minors of Γ(3, 𝑑) are 1.5 + 𝑧,−4 − 4.5𝑧, and 1 + 6𝑧. So
Ω2 = {𝑧 ∶ 1.5 + 𝑧 = 0,−4 − 4.5𝑧 = 0, 1 + 6𝑧 = 0} = ∅,

and 𝑆(3) = ∅. Finally, one has 𝐷𝑅𝐷 = 𝑆(−1) ∪ 𝑆(3) = {2𝑘 + 1 ∶ 𝑘 ∈ ℤ, 𝑘 ≥ 0}.
Example 2: Consider 𝐷𝑇𝑆(𝑑) with

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

2 0 0 0
0 −3 0 0
0 0 − 1

2
− 1

4

√

3
0 0

√

3 − 1
2

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵0 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0
−5 7
√

3 2
√

3
2 4

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵1 =

⎛

⎜

⎜

⎜

⎜

⎝

−32 0
6 8
0 0
4 8

⎞

⎟

⎟

⎟

⎟

⎠

.

Choose 𝑃 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0

√

−1 −
√

−1
0 0 2 2

⎞

⎟

⎟

⎟

⎟

⎠

, then one has

Λ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 0
0 −3 0 0

0 0 − 1
2
+

√

3
2

√

−1 0

0 0 0 − 1
2
−

√

3
2

√

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐶0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0
−5 7

1
2
−

√

3
2

√

−1 1 −
√

3
√

−1
1
2
+

√

3
2

√

−1 1 +
√

3
√

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐶1 =

⎛

⎜

⎜

⎜

⎜

⎝

−32 0
6 8
1 2
1 2

⎞

⎟

⎟

⎟

⎟

⎠

.

The eigenvalue 2 corresponds to a 1−order Jordan block, which is in the first row of Λ. So one obtains 𝑛1,1 = 1, and
Γ(2, 𝑑) = (𝐶0)1 + 2−𝑑(𝐶1)1 =

(

1 − 2−𝑑32 0
)

. Let 𝑧 = 2−𝑑 . Note that Γ(2, 𝑑) has two 1-order minors, 1 − 32𝑧 and 0. Thus
Ω1 = {𝑧 ∶ 1 − 32𝑧 = 0} = { 1

32
},

𝑆(2) = {𝑑 ∈ ℕ ∶ 2−𝑑 = 1
32

} = {5}.

For the eigenvalue −3, one has 𝑛2,1 = 2, and
Γ(−3, 𝑑) =

(

−5 + 6(−3)−𝑑 7 + 8(−3)−𝑑
)

.

Set 𝑧 = (−3)−𝑑 . Γ(−3, 𝑑) has two 1-order minors, −5 + 6𝑧 and 7 + 8𝑧. Then Ω2 = {𝑧 ∶ −5 + 6𝑧 = 0, 7 + 8𝑧 = 0} = ∅, and
𝑆(−3) = ∅. For the eigenvalue 𝛽 ≜ − 1

2
+

√

3
2

√

−1, one has 𝑛3,1 = 3, and
Γ(𝛽, 𝑑) = (𝐶0)3 + 𝛽−𝑑(𝐶1)3 =

(

1
2
−

√

3
2

√

−1 + 𝛽−𝑑 1 −
√

3
√

−1 + 2𝛽−𝑑
)

.

Let 𝑧 = 𝛽−𝑑 . Γ(𝛽, 𝑑) has two 1-order minors, 1
2
−

√

3
2

√

−1 + 𝑧 and 1 +
√

3
√

−1 + 2𝑧. Then

Ω3 = {𝑧 ∶ 1
2
−

√

3
2

√

−1 + 𝑧 = 0, 1 −
√

3
√

−1 + 2𝑧 = 0} = {𝛽},

𝑆(𝛽) = {𝑑 ∈ ℕ ∶ 𝛽−𝑑 = 𝛽}.

Note that 𝛽 ∈ 𝕌 and 𝑜(𝛽) = 3, so 𝑆(𝛽) = {2+3𝑘 ∶ 𝑘 ∈ ℕ}. Finally, one has 𝐷𝑅𝐷 = 𝑆(2)∪𝑆(−3)∪𝑆(𝛽) = {2+3𝑘 ∶ 𝑘 ∈ ℕ}.
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Example 3: Consider 𝐷𝑇𝑆(𝑑) with

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 0 0
0 −1 1 0
0 0 −1 0
0 0 0

√

2

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵0 =

⎛

⎜

⎜

⎜

⎜

⎝

11 −7
1 0
1 1
1.5 −4

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵1 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0
2 5
0 1
−3 8

⎞

⎟

⎟

⎟

⎟

⎠

.

The matrix 𝐴 has been a Jordan canonical form. For the eigenvalue −1, one has 𝑛1,1 = 1, 𝑛1,2 = 3, and
Γ(−1, 𝑑) =

(

(𝐵0)1
(𝐵0)3

)

+ (−1)−𝑑
(

(𝐵1)1
(𝐵1)3

)

=
(

11 −7
1 1 + 𝑧

)

,

where 𝑧 ≜ (−1)−𝑑 . The unique 2-order minor of Γ(−1, 𝑑) is 𝑓 (𝑧) =
|

|

|

|

|

11 −7
1 1 + 𝑧

|

|

|

|

|

= 11𝑧 + 18. Then one obtains Ω1 = {𝑧 ∶

11𝑧 + 18 = 0} = {− 18
11
}, and 𝑆(−1) = {𝑑 ∈ ℕ ∶ (−1)−𝑑 = − 18

11
} = ∅. For the eigenvalue √

2, one has 𝑛2,1 = 4, and
Γ(
√

2, 𝑑) = (𝐵0)4 + (𝐵1)4
√

2
−𝑑

=
(

1.5 − 3𝑧 −4 + 8𝑧
)

,

where 𝑧 ≜
√

2
−𝑑 . The 1-order minors of Γ(√2, 𝑑) are 1.5 − 3𝑧 and −4 + 8𝑧. So

Ω2 = {𝑧 ∶ 1.5 − 3𝑧 = 0,−4 + 8𝑧 = 0} = {0.5},

and 𝑆(
√

2) = {𝑑 ∈ ℕ ∶
√

2
−𝑑

= 0.5} = {2}. Finally, one has 𝐷𝑅𝐷 = 𝑆(−1) ∪ 𝑆(
√

2) = {2}.

3 EXACT DELAY RANGE FOR CONTINUOUS-TIME SYSTEMS WITH INPUT DELAYS

3.1 Characterization of the exact delay range
Consider the continuous-time input-delay system (7). We use 𝐶𝑇𝑆(ℎ) to represent this system.
Definition 4. 26 𝐶𝑇𝑆(ℎ) is open-loop stabilizable if for any 𝑥(0) and 𝑢(𝜃), 𝜃 ∈ [−ℎ, 0) satisfying 𝑢(𝜃) ∈ 𝐿2

𝑙𝑜𝑐 , there exists a
control 𝑢(𝑡), 𝑡 ≥ 0, such that the functions 𝑥(𝑡) and 𝑢(𝑡) are in 𝐿1(0,+∞).
Definition 5. 27 𝐶𝑇𝑆(ℎ) is feedback stabilizable if there exists a feedback control

𝑢(𝑡) = 𝐾𝑥(𝑡) +

0

∫
−ℎ

𝐾(𝜃)𝑢(𝑡 + 𝜃)𝑑𝜃, (24)

where 𝐾 ∈ ℝ𝑝×𝑞 is a constant matrix and 𝐾(𝜃) ∶ [−ℎ, 0] → ℝ𝑞×𝑞 is a continuous function, such that for any initial values 𝑥(0)
and 𝑢(𝜃), 𝜃 ∈ [−ℎ, 0) satisfying 𝑢(𝜃) ∈ 𝐿2

𝑙𝑜𝑐 , 𝑥(𝑡) and 𝑢(𝑡) are in 𝐿1(0,+∞).
The above two definions are equivalent. In the rest of our paper, it will be said that 𝐶𝑇𝑆(ℎ) is stabilizable if it is open-loop

stabilizable or feedback stabilizable. Otherwise, it will be said that 𝐶𝑇𝑆(ℎ) is unstabilizable.
Definition 6. The exact delay range rendering 𝐶𝑇𝑆(ℎ) unstabilizable is defined to be

𝐷𝑅𝐶 ≜ {ℎ ∈ [0,+∞) ∶ 𝐶𝑇𝑆(ℎ) is ustabilizable}.
Lemma 2. 𝐶𝑇𝑆(ℎ) is unstabilizable if and only if there exists a 𝛽 ∈ ℂ, which is an unstable eigenvalue of 𝐴, such that

rank ( 𝛽𝐼 − 𝐴 𝐵0 + 𝑒−𝛽ℎ𝐵1
)

< 𝑝. (25)
Proof. Details are omitted here. □
From Lemma 2, it can be seen that the stabilization of 𝐶𝑇𝑆(ℎ) is independent of stable eigenvalues of 𝐴. Hence, the following

assumption is made throughout this section.
Assumption 2. All the eigenvalues of 𝐴 are on the closed right half plane.
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The setting (11)-(19), will still be used in this section. Two differences are as follows. The first one is that each 𝛽𝑖, 𝑖 = 1,⋯ , 𝑡,
is on the closed right half plane. The second one is the definition of Γ(𝛽𝑖, 𝑑). In this section, Γ(𝛽𝑖, ℎ) is defined to be

Γ(𝛽𝑖, ℎ) ≜
⎛

⎜

⎜

⎜

⎝

(𝐶0)𝑛𝑖,1
⋮

(𝐶0)𝑛𝑖,𝑠𝑖

⎞

⎟

⎟

⎟

⎠

+ 𝑒−𝛽𝑖ℎ
⎛

⎜

⎜

⎜

⎝

(𝐶1)𝑛𝑖,1
⋮

(𝐶1)𝑛𝑖,𝑠𝑖

⎞

⎟

⎟

⎟

⎠

. (26)

Theorem 2. (1) The exact delay range rendering 𝐶𝑇𝑆(ℎ) unstabilizable is given by
𝐷𝑅𝐶 = ∪𝑟+𝑚

𝑖=1 𝑆(𝛽𝑖), (27)
where

𝑆(𝛽𝑖) ≜ {ℎ∈[0,+∞) ∶ rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝑒−𝛽𝑖ℎ𝐵1
)

<𝑝}, 𝑖 = 1,⋯ , 𝑟 + 𝑚.

(2) If 𝑞 < 𝑠𝑖 (𝑞 and 𝑠𝑖 are the dimension of control input and the geometric multiplicity of 𝛽𝑖, respectively), then 𝑆(𝛽𝑖) =
[0,+∞). If 𝑞 ≥ 𝑠𝑖, then

𝑆(𝛽𝑖) = {ℎ ∈ [0,+∞) ∶ all the 𝑠𝑖 − order minors of Γ(𝛽𝑖, ℎ) are zero}, (28)
where Γ(𝛽𝑖, ℎ) is given by (26).

(3) By excluding trivial cases of 𝑆(𝛽𝑖) = [0,+∞) and 𝑆(𝛽𝑖) = ∅ (for example, if 𝛽𝑖 = 0, then 𝑆(𝛽𝑖) = [0,+∞) or 𝑆(𝛽𝑖) = ∅),
one and only one of the following two cases will happen.

• If Re(𝛽𝑖) ≠ 0, then 𝑆(𝛽𝑖) has finite elements and |𝑆(𝛽𝑖)| ≤ 𝑠𝑖. Here, |𝑆(𝛽𝑖)| is the number of elements in 𝑆(𝛽𝑖).
• If Re(𝛽𝑖) = 0, then

𝑆(𝛽𝑖) = ∪𝜏
𝑗=1{ℎ𝑗 +

2𝑘𝜋
𝐼𝑚(𝛽𝑖)

∶ 𝑘 ∈ ℤ, 𝑘 ≥ −
ℎ𝑗Im(𝛽𝑖)

2𝜋
}, (29)

where ℎ𝑗 ∈ [0,+∞) is a solution to some equation 𝑒−𝛽𝑖ℎ = 𝑧𝑗 , 𝑗 = 1,⋯ , 𝜏, and 𝜏 ≤ 𝑠𝑖.
Proof. See Appendix B. □
From Theorem 2, it is known that 𝐷𝑅𝐶 has at most countable elements (excluding the trivial case of 𝐷𝑅𝐶 = [0,+∞)).

Specifically, an eigenvalue of 𝐴, which is not on the imaginary axis, will make 𝐶𝑇𝑆(ℎ) unstabilizable at finite delays. While an
eigenvalue of𝐴, which is on the imaginary axis, may make𝐶𝑇𝑆(ℎ) unstabilizable at some sequences of delays. Each sequence is
an arithmetic progression and the common difference of this progression is 2𝜋

Im(𝛽𝑖)
(see (29)). In addition, the following corollary

can be obtained directly.
Corollary 2. If there exists an eigenvalue of 𝐴, such that the geometric multiplicity of this eigenvalue exceeds the dimension
of the control input, then 𝐷𝑅𝐶 = [0,+∞).

3.2 Procedures for computing 𝐷𝑅𝐶

A way of obtaining 𝐷𝑅𝐶 is presented as follows.
Step 1: Find a nonsingular matrix 𝑃 to convert 𝐴 to its canonical form Λ (see (13)-(16)). Calculate 𝐶0 and 𝐶1 via (17).
Step 2: Based on Λ, derive 𝑛1,𝑗 , 𝑗 = 1,⋯ , 𝑠1 for the eigenvalue 𝛽1 via (18). Obtain Γ(𝛽1, ℎ) according to (26).
Step 3: InΓ(𝛽1, ℎ), do the variable transformation 𝑧 = 𝑒−𝛽1ℎ. Calculate all the 𝑠1−order minors ofΓ(𝛽1, ℎ). Denote these minors

by 𝑓𝑖(𝑧), 𝑖 = 1,⋯ , 𝑣. By solving polynomial equations 0 = 𝑓𝑖(𝑧), derive the solution set Ω = {𝑧 ∈ ℂ ∶ 0 = 𝑓𝑖(𝑧), 𝑖 = 1,⋯ , 𝑣}.
Suppose all the elements of Ω are 𝑧1,⋯ , 𝑧𝜏 .

Step 4: Compute 𝑆(𝛽1) as 𝑆(𝛽1) = ∪𝜏
𝑖=1{ℎ ∈ [0,+∞) ∶ 𝑒−𝛽1ℎ = 𝑧𝑖}.

Step 5: In a similar line to steps 2-4, calculate 𝑆(𝛽𝑖), for 𝑖 = 2,⋯ , 𝑟 + 𝑚.
Step 6: Derive 𝐷𝑅𝐶 as 𝐷𝑅𝐶 = ∪𝑟+𝑚

𝑖=1 𝑆(𝛽𝑖).Examples will be presented below to illustrate the above procedures.
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3.3 Examples
Example 1: Consider 𝐶𝑇𝑆(ℎ) with

𝐴 = 1
7

⎛

⎜

⎜

⎜

⎜

⎝

27 11 −8 −15
2 20 2 16
−4 2 31 −4
6 −17 6 55

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵0 =

⎛

⎜

⎜

⎜

⎜

⎝

3 8
8 10
2.5 9.5
5.5 1.5

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵1 =

⎛

⎜

⎜

⎜

⎜

⎝

−5 −12
−11 −18
−4 −11
−7 −7

⎞

⎟

⎟

⎟

⎟

⎠

.

Select 𝑃 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 −1 2
−2 0 0 3
0 1 1 2
−2 −1 0 1

⎞

⎟

⎟

⎟

⎟

⎠

, then Λ =

⎛

⎜

⎜

⎜

⎜

⎝

5 1 0 0
0 5 0 0
0 0 5 0
0 0 0 4

⎞

⎟

⎟

⎟

⎟

⎠

,𝐶0 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 1
−1.5 0.5
0 1
2 4

⎞

⎟

⎟

⎟

⎟

⎠

, and 𝐶1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0
2 1
0 0
−3 −6

⎞

⎟

⎟

⎟

⎟

⎠

. For the eigenvalue 5, there are

two Jordan blocks. The last row of the first Jordan block is in the second row of Λ and the last row of the second Jordan block
is in the third row of Λ. So 𝑠1 = 2, 𝑛1,1 = 2, 𝑛1,2 = 3, and

Γ(5, ℎ) =
(

(𝐶0)2
(𝐶0)3

)

+ 𝑒−5ℎ
(

(𝐶1)2
(𝐶1)3

)

=
(

−1.5 + 2𝑒−5ℎ 0.5 + 𝑒−5ℎ

0 1

)

.

The unique 2−order minor of Γ(5, ℎ) is 𝑑𝑒𝑡(Γ(5, ℎ)) = −1.5 + 2𝑧, where 𝑧 = 𝑒−5ℎ. Then one has that Ω1 = {𝑧 ∶ −1.5 + 2𝑧 =
0} = {0.75}, and

𝑆(5) = {ℎ ∈ [0,+∞) ∶ 𝑒−5ℎ = 0.75} = {0.0575}.

For the eigenvalue 4, there is a Jordan block and the row number of the last row of this block in Λ is 4, so 𝑠2 = 1, 𝑛2,1 = 4, and
Γ(4, ℎ) = (𝐶0+𝑒−4ℎ𝐶1)4 =

(

2 − 3𝑒−4ℎ 4 − 6𝑒−4ℎ
)

. The 1−order minors of Γ(4, ℎ) are 2−3𝑧, and 4−6𝑧, where 𝑧 = 𝑒−4ℎ. Thus
Ω2 = {𝑧 ∶ 2 − 3𝑧 = 0, 4 − 6𝑧 = 0} = {2

3
},

𝑆(4) = {ℎ ∈ [0,+∞) ∶ 𝑒−4ℎ = 2
3
} = {0.1014}.

Finally, one has 𝐷𝑅𝐶 = 𝑆(5) ∪ 𝑆(4) = {0.0575, 0.1014}.
Example 2: Consider 𝐶𝑇𝑆(ℎ) with 𝐴 = 𝛽𝐼, 𝐵0 =

(

2 1
1 1

)

, and 𝐵1 =
(

1 0
16 5

)

. Set 𝑧 ≜ 𝑒−𝛽ℎ. Direct computation leads to

𝑑𝑒𝑡(𝐵0 + 𝑧𝐵1) = 5𝑧2 − 5𝑧 + 1,

Ω = {𝑧 ∶ 0 = 5𝑧2 − 5𝑧 + 1} = {
5 +

√

5
10

,
5 −

√

5
10

},

𝐷𝑅𝐶 = {ℎ ∈ [0,+∞) ∶ 𝑒−𝛽ℎ ∈ Ω} = {1
𝛽
ln( 10

5 +
√

5
), 1
𝛽
ln( 10

5 −
√

5
)}.

Example 3: Consider 𝐶𝑇𝑆(ℎ) with

𝐴 =
(

1 5
−1∕4 −1

)

, 𝐵0 =

(

4
√

3 + 8
−2

)

, 𝐵1 =
(

16
−4

)

.

Choose 𝑃 =

(

4 + 2
√

−1 4 − 2
√

−1
−1 −1

)

, then Λ =

(

1
2

√

−1 0
0 − 1

2

√

−1

)

, 𝐶0 =

(

−
√

3
√

−1 + 1
√

3
√

−1 + 1

)

, and 𝐶1 =
(

2
2

)

. Since
𝐴 has two conjugate eigenvalues, one has that 𝐷𝑅𝐶 = 𝑆(𝛽) where 𝛽 = 1

2

√

−1. Then
Γ(𝛽, ℎ) = (𝐶0)1 + 𝑒−𝛽ℎ(𝐶1)1 = −

√

3
√

−1 + 1 + 2𝑒−𝛽ℎ,

Ω = {𝑧 ∈ ℂ ∶ −
√

3
√

−1 + 1 + 2𝑧} = {−1
2
+

√

3
2

√

−1},

𝐷𝑅𝐶 = {ℎ ∈ [0,+∞) ∶ 𝑒−𝛽ℎ = −1
2
+

√

3
2

√

−1} = {8𝜋
3

+ 4𝑘𝜋, 𝑘 ∈ ℤ, 𝑘 ≥ 0}.
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4 CONCLUSIONS

This paper presents the exact delay range for input-delay systems to be unstabilizable. Both discrete-time and continuous-time
systems are investigated. The results show that this range is closely connected with the unstable eigenvalues of the system matrix.
Computation methods to derive the exact range are presented. On the other hand, the range can provide a upper bound for the
well-known delay margin achievable by a robust stabilizing controller.

APPENDIX

A PROOF OF THEOREM 1

Before showing Theorem 1, a useful lemma will be stated.
Lemma 3. Let 𝛽 ∈ ℂ, |𝛽| ≥ 1, and 𝛿 ∈ ℂ be fixed. Consider the solution set

Φ(𝛽, 𝛿) ≜ {𝑑 ∈ ℕ ∶ 𝛽−𝑑 = 𝛿}. (A1)
(1) Suppose 𝛽 = 1. If 𝛿 = 1, then Φ(𝛽, 𝛿) = ℕ. If 𝛿 ≠ 1, then Φ(𝛽, 𝛿) = ∅.
(2) Suppose 𝛽 ≠ 1. Assume that Φ(𝛽, 𝛿) is nonempty and denote one element in Φ(𝛽, 𝛿) by 𝑑0. Then one and only one of the

two cases will happen.
• If 𝛽 ∈ 𝕌, then

Φ(𝛽, 𝛿) = {𝑑0 + 𝑜(𝛽)𝑘 ∶ 𝑘 ∈ ℤ, 𝑑0 + 𝑜(𝛽)𝑘 ≥ 0}.

• If 𝛽 ∉ 𝕌, then Φ(𝛽, 𝛿) = {𝑑0}.

For definitions of 𝕌 and 𝑜(𝛽), see Notation.
Proof. Detailed proof is omitted here. □
Now the proof of Theorem 1 is presented.
Proof. (1) According to Lemma 1, 𝑑 ∈ 𝐷𝑅𝐷, i.e., 𝐷𝑇𝑆(𝑑) is unstabilizable, if and only if there exists an unstable eigenvalue

of 𝐴, 𝛽, such that (10) holds. Recall that all the unstable eigenvalues of 𝐴 are 𝛽1,⋯ , 𝛽𝑡. Therefore, 𝑑 ∈ 𝐷𝑅𝐷 if and only if for
some 𝛽𝑖, it holds that rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1

)

< 𝑝. This means that
𝐷𝑅𝐷 = ∪𝑡

𝑖=1{𝑑 ∈ ℕ ∶ rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1
)

< 𝑝}. (A2)
For 𝑖 = 𝑟 + 1,⋯ , 𝑟 + 𝑚, one has that (

𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1
)

=
(

𝛽𝑖+𝑚𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖+𝑚𝐵1
)

, which implies that
rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1

)

= rank ( 𝛽𝑖+𝑚𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖+𝑚𝐵1
). Therefore, it holds that

{𝑑 ∈ ℕ ∶ rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1
)

< 𝑝} = {𝑑 ∈ ℕ ∶ rank ( 𝛽𝑖+𝑚𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖+𝑚𝐵1
)

< 𝑝}.

So (A2) leads to (20).
(2) By the elementary transformation

𝑃 −1 ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1
)

(

𝑃 0
0 𝐼

)

=
(

𝛽𝑖𝐼 − Λ 𝐶0 + 𝛽−𝑑𝑖 𝐶1
)

,

it is known that rank ( 𝛽𝑖𝐼 − 𝐴 𝐵0 + 𝛽−𝑑𝑖 𝐵1
)

= rank ( 𝛽𝑖𝐼 − Λ 𝐶0 + 𝛽−𝑑𝑖 𝐶1
)

. Thus (21) becomes
𝑆(𝛽𝑖)={𝑑 ∈ ℕ ∶ rank ( 𝛽𝑖𝐼 − Λ 𝐶0 + 𝛽−𝑑𝑖 𝐶1

)

<𝑝}. (A3)
For simplicity, denote 𝐹 ≜ 𝐶0 + 𝛽−𝑑1 𝐶1. From (19), it is seen that Γ(𝛽1, 𝑑) is

Γ(𝛽1, 𝑑) =

⎛

⎜

⎜

⎜

⎝

(𝐹 )𝑛1,1
⋮

(𝐹 )𝑛1,𝑠1

⎞

⎟

⎟

⎟

⎠

.
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Here 𝑠1 is the geometric multiplicity of the eigenvalue 𝛽1, 𝑛1,𝑗 is the row number of the last row of 𝐽𝑗(𝛽1) in the matrix Λ, and
(𝐹 )𝑖 denotes the 𝑖−th row vector of 𝐹 . It will be shown that rank ( 𝛽1𝐼 − Λ 𝐹

)

< 𝑝 if and only if Γ(𝛽1, 𝑑) does not have full
row rank. Without loss of generality, the following proof will concern the case of 𝑠1 = 2. Partition the rows of 𝐹 according to
those of Λ (see (14)) as 𝐹 =

⎛

⎜

⎜

⎝

𝐹1
⋮
𝐹𝑡

⎞

⎟

⎟

⎠

, then

(

𝛽1𝐼−Λ 𝐹
)

=

⎛

⎜

⎜

⎜

⎜

⎝

𝛽1𝐼−𝑄1 𝐹1
𝛽1𝐼−𝑄2 𝐹2

⋱ ⋮
𝛽1𝐼−𝑄𝑡 𝐹𝑡

⎞

⎟

⎟

⎟

⎟

⎠

.

For 𝑖 ≠ 1, all the diagonal elements of the upper triangular matrix 𝛽1𝐼 −𝑄𝑖 are all nonzero, so 𝛽1𝐼 −𝑄𝑖 is nonsingular. Hence,
by elementary column transformations, ( 𝛽1𝐼 − Λ 𝐹

) can be converted to
⎛

⎜

⎜

⎜

⎜

⎝

𝛽1𝐼 −𝑄1 𝐹1
𝐼 0
⋱ ⋮

𝐼 0

⎞

⎟

⎟

⎟

⎟

⎠

.

Thus ( 𝛽1𝐼 − Λ 𝐹
) does not have full row rank if and only if ( 𝛽1𝐼 −𝑄1 𝐹1

) does not have full row rank. Recalling 𝑠1 = 2,
(

𝛽1𝐼 −𝑄1 𝐹1
) has the following form as

(

𝛽1𝐼 −𝑄1 𝐹1
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 (𝐹 )1
0 −1 (𝐹 )2

⋱ ⋱ ⋮
0 −1 (𝐹 )𝑛1,1−1

0 (𝐹 )𝑛1,1
0 −1 (𝐹 )𝑛1,1+1

0 −1 (𝐹 )𝑛1,1+2
⋱ ⋱ ⋮

0 −1 (𝐹 )𝑛1,2−1
0 (𝐹 )𝑛1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where the fact that the 𝑚-th row of 𝐹1 is just the 𝑚-th row of 𝐹 has been applied. By elementary row transformations,
(

𝛽1𝐼 −𝑄1 𝐹1
) becomes

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0
0 1 0
⋱ ⋱ ⋮

0 1 0
0 (𝐹 )𝑛1,1
0 1 0
0 1 0
⋱ ⋱ ⋮

0 1 0
0 (𝐹 )𝑛1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The above matrix does not have full row rank if and only if the matrix
(

(𝐹 )𝑛1,1
(𝐹 )𝑛1,2

)

does not have full row rank.
In a similar line to the above proof, it can be shown that rank ( 𝛽𝑖𝐼 − Λ 𝐶0 + 𝛽−𝑑𝑖 𝐶1

)

< 𝑝 if and only if Γ(𝛽𝑖, 𝑑) does not have
full row rank. Note that the order of Γ(𝛽𝑖, 𝑑) is 𝑠𝑖 × 𝑞. Hence, Γ(𝛽𝑖, 𝑑) does not have full row rank if and only if one and only one
of the following two cases happens.

• 𝑞 ≥ 𝑠𝑖 and all the 𝑠𝑖−order minors of Γ(𝛽𝑖, 𝑑) are zero.
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• 𝑞 < 𝑠𝑖.
If 𝑞 ≥ 𝑠𝑖, then (A3) implies (22). If 𝑞 < 𝑠𝑖, then Γ(𝛽𝑖, 𝑑) does not have full row rank for any 𝑑 and 𝑆(𝛽𝑖) = ℕ, which means that
𝐷𝑅𝐷 = ℕ.

(3) To show the third statement in Theorem 1, it is enough to consider general 𝑆(𝛽) as
𝑆(𝛽) = {𝑑 ∈ ℕ ∶ all the 𝛾 − order minors of Γ(𝛽, 𝑑) are zero}, (A4)

where Γ(𝛽, 𝑑) is given by

Γ(𝛽, 𝑑) =
⎛

⎜

⎜

⎝

𝑔11 + 𝛽−𝑑ℎ11 ⋯ 𝑔1𝑞 + 𝛽−𝑑ℎ1𝑞
⋮ ⋮ ⋮

𝑔𝛾1 + 𝛽−𝑑ℎ𝛾1 ⋯ 𝑔𝛾𝑞 + 𝛽−𝑑ℎ𝛾𝑞

⎞

⎟

⎟

⎠

.

Here 𝑔𝑖𝑗 , ℎ𝑖𝑗 ∈ ℂ. Since 𝑑 appears in Γ(𝛽, 𝑑) in the form of 𝑦(𝑑) ≜ 𝛽−𝑑 , Γ(𝛽, 𝑑) can be viewed as a function of 𝑦(𝑑) and all the
𝛾−order minors of Γ(𝛽, 𝑑) are functions of 𝑦(𝑑). Denote these 𝛾−order minors by 𝑓1(𝑦(𝑑)),⋯ , 𝑓𝑣(𝑦(𝑑)), where 𝑣 ≜ 𝑞!

𝛾!(𝑞−𝛾)!
is

the number of 𝛾−order minors. Obviously, each 𝑓𝑗(𝑦(𝑑)) is like
|

|

|

|

|

|

|

𝑔1𝑖1 + 𝑦(𝑑)ℎ1𝑖1 ⋯ 𝑔1𝑖𝛾 + 𝑦(𝑑)ℎ1𝑖𝛾
⋮ ⋮ ⋮

𝑔𝛾𝑖1 + 𝑦(𝑑)ℎ𝛾𝑖1 ⋯ 𝑔𝛾𝑖𝛾 + 𝑦(𝑑)ℎ𝛾𝑖𝛾

|

|

|

|

|

|

|

,

with {𝑖1,⋯ , 𝑖𝛾} being chosen from {1,⋯ , 𝑞}, and 𝑓𝑖(𝑦(𝑑)) is a polynomial of 𝑦(𝑑), with degree less than or equal to 𝛾 . Then
(A4) can be written as 𝑆(𝛽) = {𝑑 ∈ ℕ ∶ 𝑓𝑖(𝑦(𝑑)) = 0, 𝑖 = 1,⋯ , 𝑣}. To obtain 𝑆(𝛽), the first step is to derive solution sets
Ω𝑖 ≜ {𝑧 ∈ ℂ ∶ 𝑓𝑖(𝑧) = 0}, 𝑖 = 1,⋯ , 𝑣, and Ω = ∩𝑣

𝑖=1Ω𝑖. The second step is to compute 𝑆(𝛽) = {𝑑 ∈ ℕ ∶ 𝛽−𝑑 ∈ Ω}.
Obviously, if Ω = ∅(ℂ), then 𝑆(𝛽) = ∅(ℕ). By excluding 𝑆(𝛽) = ∅ and 𝑆(𝛽) = ℕ and observing that the degree of polynomial
𝑓𝑖(𝑧) does not exceed 𝛾 , it is known that |Ω| ≤ |Ω𝑖| ≤ 𝛾 . Let Ω = {𝑧1,⋯ , 𝑧𝜏} with 𝜏 ≤ 𝛾 . Then 𝑆(𝛽) = ∪𝜏

𝑗=1Φ(𝛽, 𝑧𝑗), where
Φ(𝛽, 𝑧𝑗) is defined via (A1). If Φ(𝛽, 𝑧𝑗0) = ℕ, then 𝑆(𝛽) = ℕ. Also, note that 𝑆(𝛽) = ∪𝑗,Φ(𝛽,𝑧𝑗 )≠∅Φ(𝛽, 𝑧𝑗). Consequently, it is
reasonable to assume that for any 𝑗, Φ(𝛽, 𝑧𝑗) ≠ ℕ and Φ(𝛽, 𝑧𝑗) ≠ ∅. By Lemma 3, if 𝛽 ∉ 𝕌, then each Φ(𝛽, 𝑧𝑗) has exact one
element and then 𝑆(𝛽) has at most 𝜏 elements with 𝜏 ≤ 𝛾 . If 𝛽 ∈ 𝕌, then Φ(𝛽, 𝑧𝑗) = {𝑑𝑗 + 𝑜(𝛽)𝑘 ∶ 𝑘 ∈ ℤ, 𝑑𝑗 + 𝑜(𝛽)𝑘 ≥ 0},
where 𝑑𝑗 satisfies 𝛽−𝑑𝑗 = 𝑧𝑗 . Therefore, 𝑆(𝛽) is as (23). This ends the proof. □

B PROOF OF THEOREM 2

The proof of Theorem 2 is similar to that of Theorem 1. Main differences lie in the following lemma, which corresponds to
Lemma 3. Detailed proof will be omitted.
Lemma 4. Let 𝛽 ∈ ℂ and 𝛿 ∈ ℂ be fixed. Consider Φ(𝛽, 𝛿) ≜ {ℎ ∈ [0,+∞) ∶ 𝑒−𝛽ℎ = 𝛿}.

(1) Suppose 𝛽 = 0. If 𝛿 = 1, then Φ(𝛽, 𝛿) = [0,+∞). If 𝛿 ≠ 1, then Φ(𝛽, 𝛿) = ∅.
(2) Suppose 𝛽 ≠ 0. Assume that Φ(𝛽, 𝛿) is nonempty and denote one element in Φ(𝛽, 𝛿) by ℎ0. Then one and only of the two

cases will happen.
• If Re(𝛽) = 0, then

Φ(𝛽, 𝛿) = {ℎ0 +
2𝑘𝜋
𝐼𝑚(𝛽)

∶ 𝑘 ∈ ℤ, ℎ0 +
2𝑘𝜋
𝐼𝑚(𝛽)

≥ 0}.

• If Re(𝛽) ≠ 0, then Φ(𝛽, 𝛿) = {ℎ0}.
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