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1 | INTRODUCTION

The well-known Camassa-Holm (CH) equation was introduced by Camassa and Holm" to model the shallow water waves.
Later, the Degasperis-Procesi (DP) equation was discovered by Degasperis and Procesi” when they were searching for integrable
systems in similar forms as the CH equation. These equations possess many common properties such as integrability and the
existence of Lax pair and explicit solutions, including the classical soliton, cuspon, and peakon solutions.

It is well-known that the CH equation is completely integrable and has many useful properties, such as conservation laws®*
About the physical relevance of the CH and DP equations, we suggest the reference book written by Constantin and Lannes"”. For
the CH equation, the local well-posedness in H* space with s > % was proved®? and the blow-up scenario was obtained 575%™
The global existence of solution was proved =-"*"=, orbital stability of peakon solution was proved in Constanin et al*®. The
persistence and unique continuity of the solution were obtained in™"®. The large-time behavior of the support of momentum
density was studied in the same paper. Meanwhile, for the DP equation, there are a large number of studies on the well-posedness,
global existence, and blow-up phenomena, see for example ™ ™.P0.7.02.05

Finding integrable models is an important task in the theory of 1ntegrable systems and solitons. There are several ways to
generalize the peakon models and obtain new integrable systems. One way to do that is by increasing the order of nonlinearity.
For example, the CH and DP equations are typical peakon models with quadratic nonlinearities and the Fokas-Olver-Rosenau-
Qiao (FORQ) equation®®**® with cubic nonlinearities. Another way is by introducing new potential functions to form the
so-called multi-component CH systems with quadratic or cubic nonlinearities ™

The standard CH models were generalized to fifth-order equations:

m; +um, + bu.m =0, t>0,xeR,
m=4(1-0>)(1 - idi)u, 1>0,x €R,

by Holm and Hone™ . They obtained a conservation law: (m% ), = —(m% u),.. For the same model, the infinite propagation speed
and asymptotic behavior were obtained in Han rt al*”. Liu and Qiao™" studied the peakon system with fifth-order derivatives

{m,+umx+buxm:O, t>0,x€eR, (1)

m=(1-a’?)(1 - f*Mu, 1>0,x€R.
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They obtained some interesting solutions of () including single pseudo-peakon solutions, two-peakon, and N-peakon inter-
actional solutions. There are extensive studies on high-order CH type equations (*"*****) Zhu, Cao, Jiang et al** established
the local well-posedness and blow-up scenario for equation (1), then they proved global existence under different conditions
and studied large time behavior of the support of momentum density. For another fifth-order CH equation

m=u—oau, +u t>0,x eR,

XXXX?

{mt+umx+2uxm=0, t>0,x eR,

the local well-posedness for @ = 1 was proved in Sobolev space H* with s > g by Kato’s theory in Tian et al®. The stationary
solution and general mild traveling solution for « = 1 were considered in Ding et al*". The global existence and convergence
of conservative solutions were studied**®, respectively. With @ = 2, Tang and Liu® proved the local well-posedness in the
critical Besov space B;/lz, as well as the existence of peakon-like solution and ill-posedness in Bz/i

In this paper, we consider the fifth-order Camassa-Holm type (FOCHT) equation with high-order nonlinearities:

m, + m uk + bmu*~'u, =0, t>0,x €ER,
m= (1 - a??)(1 - fPu, 1>0,x €R, (1.2)
u(x,0) = ug,mg 1= (1 - a?2)(1 — 0Py, 1> 0,x €R,

where b € R, k € Z* a, p > 0 are constants. Without loss of generality, we always assume a > f > 0. To our knowledge, this
paper is the first work that considers the fifth-order CH equation of degree k.

The organization of this paper is as follows. In section 2, the local well-posedness (Theorem Z8), blow-up scenario (Theorem
B), and the global existence under different conditions (Theorem B=4) are established. In section 3, we analyze the large-time
behavior of the support of momentum density (Theorem B3, Theorem B4). Persistence property in Sobolev spaces (Theorem
B) is presented in section 4.

2 | LOCAL WELL-POSEDNESS

In this section, we present the local well-posedness of problem (I2). In order to apply Kato’s theory™ to our problem, we prove
some lemmas, which ensure that the conditions in Kato’s theorem are satisfied.
Consider the abstract quasi-linear evolution equation:
dv _
E+A(U)U—f(1)), t>0,x eR, 1)
0(0, x) = vy(x), x € R.
Let X and Y be two Hilbert spaces such that Y is continuously and densely embedded in X. Suppose O : X — Y be atopological
isomorphism. We use L(Y, X)) to denote the space of all bounded linear operators from Y to X and let L(X) = L(X, X) be the
space of linear operators from X to itself. We introduce the following assumptions.
(i) Suppose A(y) € L(Y, X) forall y € X and

I1(A() — A@)olly < pilly—zlix - llolly, foranyy z,weY.
We further assume that A(y) € G(X ,1L,p ), where G(X ,1,p ), f € R, denotes the set of all linear operators A in X such that
—A generates a Cy-semigroup e~ satisfying ||e~"4|| < Me”" for some constant M and ¢ > 0.
(ii) Let B(») = QA(»)Q~' — A(»). Suppose that B(y) € L(X) is uniformly bounded for y belongs to any bounded sets in Y,
and
(B = B@)wlly < mlly = zllylwlly, y.z€Y,0€X.
(iii) Suppose f is X-Lipschitz continuous as an operator from X to X, and Y-Lipschitz continuous as an operator from Y to
itself, i.e.
lf ) = f@Dlly <mpslly—zlly, »z€Y,
1FW) = F@lx < mally =z, yz€X.
Here p, 4y, 43 and p, are constants depending only on max{||y||y, ||z]ly }-
Theorem 2.1 (Kato™). Assume that (i), (ii) and (iii) hold. For any given v, € Y, there exists a unique solution v(:,v,) €

C([O, T); Y) ncC! ([O, T);X) to () for some T > 0, which depends only on ||vy||y. Moreover, the map v, = v(-,v,) is
continuous from Y to C([O, T), Y) ncC! ([0, T); X).
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Problem () can be transformed into

U, + uku, = —((1 — 2021 — p20%)) "
(mxuk + bmuk_lux - - aZaf)(l - ﬂzai)(ukux)), t>0,x eR, (2.2)
u(x,0) = up(x), x € R.

1
Let A(u) 1= u*d,, 0 := ((1-a?3?)(1-$%9?))*. The operator 0~* = ((1-a?0>)(1 - f*9?))~! can be expressed by its associated
Green’s function where

a® p?
g - 08 a#p,
Gy =@ =7 =2 2.3)
1 _m |x|
-—e « (1 + _)9 = ﬂ’
da a
x| |x|
with g, 1= ie_%, g =5 7.
Then the right hand side of () can be reformulated as
f@ :==G = (ma* + bmu*~u, — (1 = a?32)(1 - f20))(u*u,)) 24

=—G* fi(u) — 0,G = f,(u) — 02G * f3(w),
where
f1w) =buFu, + Bk — b)(@® + W e, + k(k — 1(a® + fHut2u?
—k(k— D(k — 2)(k = 3)a® B4u*~*u> + (b — 5k)(k — D(k — 2)a* f2u* du,,
+ = (k— D(b — k)a? f2u*2u u?

fz(u) = a”f (uk)xx Uyx -+ Sk)azﬁz(uk_l)xuxuxx - 2 Ui
f3(u) ﬁ (uk)x xx

Note that f,, f, and f; have at most second-order derivatives of u. Let Y = H®, X = H*™!, and Q = [(1 — a?0?)(1 — f*0?)]'/*.
Obviously, Q is an isomorphism from H* onto H*~!. In order to apply Theorem I to obtain local well-posedness of (Z2), we
only need to verify that A(u) and f(u) satisfy conditions (i)-(iii). The following four lemmas aims to verify these conditions.

bSk2

Lemma 2.2. The operator A(u) = u¥0_ withu € H*, > 3/2, belongs to G(H*~!, 1, ) for some # > 0.

Proof. Note that H* is a Banach algebra for any s > 1/2. Sou* € H* foranyu € H*, s > 1/2, k € N*. This lemma is a direct
consequence of Lemma 2.7 in Li et al®. O

Lemma 2.3. Let A(u) = u*0_,u € H*,s > 3/2 be given. Then A(u) € L(H*, H*~") and for any u, y,w € H*, we have
I(A@w) — Aol g1 < Cllu = yll ot o]l g
Proof. Note that H*~! is a Banach algebra for s > 3/2 and
(Aw) — Ao = W - y)o,0.
Then we have
I(A@W) = AWD@ll gt = 1@ = ¥)0,0ll gt < Cllu* = Y]l o @l o

Due to the fact that for any k, k, € N, [[uk1y2 || oot < |tk || oo [|1752 || et < ”””m ]||y|| we can get

Hs-1?
= Y Nl =@ = W@+ 62y 4+ YD e
<Cllu = Yl geer (1 g I+ N 2yl s + o+ 1 o) < Cllu= Yl e
So we have
(AW — A)@|l o1 < Cllu = Yl -t |0l -
Taking y = 0 in the above inequality, we obtain that A(u) € L(H®, H*~!). This completes the proof of this lemma. O
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Lemma 2.4. Let B) := QAWQ™! — A(u) where A(w) = 1k, 0 = ((1 — a?0®)(1 — p20%))"*, u € H*, s > 3/2. Then
B(u) e L(H*™"),and forany u,y € H,w € H*™', we have

I(Bw) = By)oll g1 < Cllu = yll s lol] g1+
Proof. By definition of B, we know
(B) — B(y))w = 0" — y)0™'0,0 — (u* = y")o,0 = [0,u* - y107'0,0.
Then we have
I(B@) = Bl =N1Q.u* =y 107 0,0l v = 10°7'[Q, 4 = Y1000, 0]l 2
<CIO* MO, u* = Y10 2 10 @ll 12 < Clldt = Yol el e
<Cllu = yll g lloll -1

where we applied Lemma 2.2 in Yin®. Taking z = 0 in the above inequality, we obtain B(u) € L(H*~!). This completes the
proof of Lemma 274, O

Lemma 2.5. Let f(u) be given by (), u € HS,s > 7/2, then we have
@ 1f @ = fOl -1 < Cllu = 0|l gs-1
1) | f @) = fOl s < Cllu— 0|l gs-

Proof. From the expression of f, we have

@) = f(0) = =G * (fi() = £1(0) = 0,G * (f2(w) = [2(0)) = 926G * (f3u) = f5(1))

We only prove (i), since the method to obtain (ii) is similar. We only estimate the last term 0)%G * (f3(u) — f5(v)) since other
estimates can be obtained similarly.

103G 3 (f3) = f3@D]l -
<C|102G * (W)t — W) 0 ) 1ot < CNWE) it — OVl s
SCNE) oty = Ve rems + Cllvg (@) = @) ) s
<Cllullyy ol = 0ll grees + CllOl oo 16 = 0F | ez
<Cllu = vll g1
Here we have used the fact that H*~3 is a Banach algebra for s > 7/2. This completes the proof of this lemma. O

By Kato’s theory, we obtain the following local well-posedness results.

Theorem 2.6. Let uy € H*(R) with s > 7/2. Then there exists a constant T > 0 depending only on [|u|| 5, such that the
FOCHT model (I2) has a unique solution

u € C([0,T); H'(R)) n C'([0,T); H*'(R)).
Moreover, the map uy € H* » u € C([0,T); H'(R)) n Cl([0, T); H"'(R)) is continuous.

3 | BLOW-UP SCENARIO AND GLOBAL EXISTENCE

Now we prove the blow-up scenario for solutions of ().

Theorem 3.1. Let u be a solution of equation (I"2) with initial data u, € H*(R). Suppose T be the maximal existence time of u.
(i) When k < 2b, then solution u blows up in finite time if and only if
liminf inf (W*~'u ) = —co.
t—->T- xeR
(i) When k > 2b, then solution u blows up in finite time if and only if
lim sup sup(uk_lux) = +00.
t-T- xeR

(iii) When k = 2b, then T' = +o00. Namely, solution u does not blow up within finite time.
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Proof. From the second equation of (),

/mzdx = '/u2 +2(a* + [32)u)2C + (@ + p*)? - 2a2ﬁ2)uix +2(a* + ﬂ2)a2ﬁ2uixx + (aZﬂz)zuixxxdx.
R R

There exist constants ¢; and c,, depending only on a and f, such that
2 2 2
ellullZe < llmli2, < esllull,..

Since u, € H 4(R), we know my € L?(R). Multiply (I2) by m, and integrate over R, we obtain
% / m*dx = (k — 2b) / m*u"~'u_dx. (3.1
R R

In the case k < 2b, we use contradiction argument to prove result (i).
On one hand, suppose for any ¢ € (0, T].
: k=1, V> _
800 2 =M.
for some M > 0. Then we have
4| ax < (k = 2b) inf *'u,) / m?dx < —(k = 2b)M / m*dx.
dt xeR
R R R
By Gronwall’s inequality, we have
lImll7, < e M img |3,
Therefore, the L2 norm of m, as well as H* norm of u, is bounded for finite T and ¢ € (0, T']. This contradicts the fact that T is
the maximal time of existence.

On the other hand, the solution u does not blow up, that is ||u|| ;4 is bounded, by Morrey’s inequality, we have
k-1 k-1 k
™ ull e < Mlullps llugll s < Cllully, < +oo.

The result for k > 2b can be proved by similar argument.
In the case k = 2b, ||m||;2 is conserved by (B). Then ||u|| z+ and ||u*~'u, ||, are uniformly bounded for any ¢ > 0. Hence
T = +oc0. O

Before presenting global existence, we first show some conservation laws.

Lemma 3.2. Assume that 4, € H*(R) and u is a solution of equation (I2) in its lifespan. Then for any nonzero b, it holds that

/mk/bdx:/mg/bdx, /lmlk/bdx=/|m0|k/bdx. (3.2)
R R R

R
Moreover, when k = b — 1, we have

2 2 92y, 2 4 20922 _ 2 2, g2y 2 2022
/u + (" + pu +a fu dx = /u0+(a + f)ug, + a By dx. 3.3)
R R
Proof. We first prove (B2). Let g be the particle trajectory satisfying
=uk(q,1 0<t<T R
q, = u(g,1), <T,xeR, (3.4)
9(x,0) = x, xR,

where T is the lifespan of solution u. Take derivative of (B=d) with respect to x, we obtain

i — 0,7
E - qxt = KU (q’ t)ux(qs t)qx9 re ( s )

Therefore,

q, =exp ( fot ku*=1(q, s)u,(q, s)ds), 0<t<T, x€eR,
q,(x,0) =1, x €R.
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Since g, is always positive before blow-up, g(x, t) is increasing with respect to x and trajectories never coincide before blow-up.
In fact, direct calculation yields

% (m(q(x. 006" (x,1)) = (m(g. 1) + u*(q. OYm(g. ) + bu*"u,(q. OYm(g, 1)) g!/* = 0.

Hence,

m(q(x, 1), )g""" (x, 1) = my(x), 0<t<T,xeR. (3.5)
It follows for any nonzero b that

/ m dx = / m* /P ((q(x, 1), g, (x, dx = / m/bdx,

R R R
/ |mg|*/bdx = / |m|*/*((q(x, 1), g, (x, )dx = / |m|*/*dx.
R R R

Hence equation (32) holds.
Now we prove (B3) for k = b — 1. Take derivative of the left hand side of (B33) with respect to ¢, use integration by parts
twice, then we have
d

dt u? + (a? +ﬁ)u + a?fu

- (a + ﬁ )uxxt ta ﬁ uxxxxt)dx

mudx = —2/ (m Ut 4 bmukux>dx

=2(k+1—b)/muudx—
R

B %\

This completes the proof of Lemma B72. O
Remark 3.3. The proof of conservation law (B) can also be achieved through direct computation:

i(/ k/bdx /lmlk/bdx
dt

R
Our proof of (B22) in the lemma illustrates pointwise relations along trajectories.

Since u(x,t) = G * m, G is given in (I3), u and u,, can be presented as

( a _lx=gl i et
ﬂme " X P )mEnds,  a#p,
ux 1) =1 lR1 lx=¢l |x — &|
e (1T menae, .=,
L R
f X +o00
04 ¢ x e
2a? - ﬁ2)< /e“’”(f’t)d“e“/e Fm(& 0de)
B X ’ +o00
= z(azﬁ ﬂZ)( /e%m(f,t)d§+e§/e_%m(g,;)dé:), a#p, (3.6)
X e oo X
ﬁ/ _X;<1+—€>m(§ t)d.§+i/e_fx<1+577x>m(§’t)d§’ o= p.
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and

-

1 x T _¢ _x r £
m(ea/e Sm(EDdE — e u/eam(f,t)d§>
) X e +00
u,(x,1) = 1 2(a21 ﬁz)( / e m(E, NdE —ei / e‘%m(g,r)dg), o (3.7
pY -~ +o00 )
1 _xtx—¢& 1 _ex€—x _
by e « " m(é,t)d§+4762/e T m(&, )dé, a=f.

Theorem 3.4. Assume that uy(x) € H*(R), b, k and the initial momentum density satisfy one of the following three conditions:
(i) k = 2b,

(i) k=b-1,

(iii) 0 < b < k and m, € L*/®,

Then equation () possesses at least one global in time solution.

Proof. In order to prove global existence, we only need to establish the boundedness of u*~!
(1) When k = 2b, global existence is a direct consequence of local existence and the blow-up scenario (iii) of Theorem Bl
(i1) Suppose k = b — 1. By conservation law (B3) and Sobolev embedding, we have

k/2
e < Nl < Ca, O / 2+ @+ P+ @l dx
R
2 2 2y, .2 2p2. 2 k/2
= C(a,ﬂ)(/u0+(a + P2+ P quxdx> .
R

(iii) Suppose 0 < b < k and m;, € L¥/"_The proof will be divided into two parts: a > f# > 0and a = f > 0.
a) We first consider the case @ > f > 0. When b = k, we have from (E2J) that

/lmldx:/|m0|dx. (3.8)
R R

From (Bf) and (BR), it is easy to see that

x +00 x +oo
= =t B ex e
L |_—ﬂz)(/ew |m|d§+/€ﬂ |m|d«:)+m(/eﬁ |m|d§+/eﬂ mlde )

« P
S<2<o:2 —» " 2w ﬂ2>> / Imlde
R

1
Sm HR/ |m0|dx.

Similarly, we have by (BZ2) and (BER) that

When 0 < b < k, we first notice that
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Hence by (B2), (B6) and Holder’s inequality, we know that

X +o0 X +o00

a =1 x=£ p =3 x=£
lu] < m(_/e « |m|d§+/e « |m|d§> a2 ﬂ2)</ 7 |m|d§+/e G |m|d§>

k=b
a

a(k—b) % k/b b/k B Bk — b) T / k/b
SZ(az—ﬂ2)< a /|m| dx +2(a2—ﬂ2)< A |m| dx

1 kb, \P
< 2((1—[3) k /lm | dx . (3.9

Similarly, it can be proved by (B2), (32) and Holder’s inequality that

_ B\ k=b/k b/k
quls( : 1 ﬂ2)<akkb) </|m0|k/bdx>
2 —
R

Local existence result together with boundedness of u and u, implies that the global solution exists.
b) Now we consider the case @ = # > 0. When b = k, note that sup, . e~*!|x| = % We have by (B8)-(BR) that

1 1 1
< —(1+- dy, < — dy.
s+ d) [imar wd< 2 [imiay
R R

When 0 < b < k, we have by (B8) that

1 _x 1 _x
= z dy+ —
" 4a/e my)dy 4a/e

1 _rxy—
+— /e «
da

~ m(y)dy

= m(y)dy

X

= L+ L+ 1L+,

For I, and I, by similar argument as in (B9), it is easy to derive that

k—b
|11|+|I3|<4_(a( - )kb/k /l |k/bdx>

It remains to prove the boundedness of I, and I,. We first obtain the following equality by changing of variables. Let s = ? p

forany 1 < p < +c0. Then

x +oo +0oc0
~2 XV 8 s Sypgg = 9 [ gsggs= @
/(e = )dy—p/e (p) ds pp+1/e sPds pp+1F(p+1).
—00 0 0

Lets = %p, 1 < p < +o0. Then we have

+00 +o00 +o00

SV TXN L 8 s (Sypgs = & —sgPds = &
/(e - )dy—p/e (p) ds—pp+1/e sds—pp+1F(p+1).
0 0

Note that I'(p + 1) is bounded for any fixed p € (1, +o0). Hence we obtain by Holder’s inequality that

kb
L1+ 11 < = («E2D BT EDD) (/ |/

Combining the above estimates on I;,i = 1,2, 3,4, we obtain

b/k
|u|§C(a,k,b)(/|mo|"/”) :
R
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where C is a constant depending only on k, b and a. By similar argument as above, we can also obtain
b/k
Ju,| < Ca k. b)( / o “/*dy )
R

So we obtain the boundedness of u and u,, which yields the global existence result. O

4 | LARGE TIME BEHAVIOR FOR THE SUPPORT OF THE MOMENTUM DENSITY

Let
E(t) := / ei|mE. Dlde,  F() = / ¢~ s |m(€.D)|de, 4.1)
R R
E(t) := / e mE nldE,  F.(1) i= / e 4.2)
R R

Lemma 4.1. Assume (u, m) is a solution of (), and q are trajectories given by (B4)). Suppose initial data m, # 0 has compact
support in [a, c], and m, does not change sign on R.
(D) If @ > p > 0, then u satisfies the following properties for any ¢ > 0 in its lifespan:

1 a
~YE(f) < Nl < ————e"E(t), fi > g(c,t 4.3
ai )’ () < u(x, )] 2w )° ®), for x> q(c,0), (4.3)
1 a
x/a x/a
Xt ﬁ)e F@) < |u(x,t)| < @ ) F(), for x<gq(a,t). 4.4
2) If a = p > 0, then u satisfies the following properties for any 0 < € < 1 and ¢ > 0 in its lifespan:
1 e E®) < |u(x,1)] < ——= C(g) e =Yg (1), for x> q(c,1), 4.5)
a
L o) < Juge.n) < 2 ( ) I/ F (1), for x < q(a,t), (4.6)
a

where E(t), F(t), E_(t), F.(¢) given by (E) and (E2) denote continuous non-vanishing functions, and C(e) is a positive constant
depending only on €.

Proof. Since m, # 0 has compact support set in [a, c], we know from (B3) that m # 0, m does not change sign, and supp
m(x,t) C [g(a, 1), q(c,1)] for any fixed r > 0.
(1) We first consider the case a > f > 0. By (B8), we have
q(c.t)

_ a _ g p _ =2l
u(x,t) = / (m@ a —me 4 )m(é)df
q(a.t)

It is easy to see that

< 1 o |x;:\ @ o _ |x;:\ ﬁ \X;il c_x a _%
2a+p) 2@ - 2@ - 2@ -
Since m does not change sign, we have
q(c.t) q(c,t)
1 / -
2a+p) ﬂ2)

q(a.n) q(a.n)
Hence inequalities (B3) and (E4) holds.
(2) In the case a = f > 0, we have by (B-f)

‘Xf‘(1+

X =2l e e,
a
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Note that for any € > 0, there exists a constant C(g) such that

lx—¢l
a

1+ < C(e)eg%.

Hence

Ix=¢l ) < Cle)e 9"
a

Since m does not change sign, we have
q(c.0) q(c.0)

1 ( ) ol
@/ /e |m(&. D) dE.

q(a,n) q(aJ)

Therefore (E3) and (E8) holds. O

Then we discuss the large time behavior for the support of momentum density of equation (). The main idea comes from
Jiang et al.™ which solved the same problem for the Camassa-Holm equation.

Lemma 4.2. Let (u, m) be a solution of ('), and ¢q be trajectories given by (B-). Suppose that the initial data m, # 0, supp
uy C [a, c] and m does not change sign.
(1) If my > 0, then
lim F(t)=0

=+

(2) Suppose my < 0. Then lim,_, |  E(¢) = 0 for k odd, lim,_,, F(¢) = O for k even.

Proof. Easy to see that my # 0, supp m, C [a, c]. We first consider the case a > f > 0.
When m(x) > 0, we have from (B3) that m(x,¢) > 0. Hence u = G * m > 0. Use contradiction argument, we assume that

lim F(¢) # 0.

t—>+00
Since F(t) > 0, there exists a constant €, > 0, such that for any T > 0, there exists t > T, satisfying F(¢) > €.
For x < a, from (B4) and the first inequality in (&4) we have

d k 1 —, 1 _" k
_q(xs t) =u (q(xs t), t) Z €« F (t) Z €«
dr 2% (a + p)f Xt pr
It follows that .
_ka k € _kx
e« <——-——f+4e «
a 2K(a+ p)k

It is obvious that the right hand side becomes negative for sufficiently large ¢. This leads to a contradiction. Therefore
lim, , F(t) =0 when m, > 0.
Suppose m, < 0, we have from (B3) that m(x,7) < 0. Hence u = G * m < 0 for any + > 0. Assume k is odd and use
contradiction argument, we assume that
,Hf,r},o E(t) #0.
Since E(f) > 0, there exists a constant ¢, > 0, such that for any T > 0, there exists t > T, satisfying E(t) > ¢,.
For x > ¢, from (B4 and the first inequality in (E3) we have

i o ——1 EX —1 _74 k
dtq(x, H=u(q(x,0),) < 2k + Pk Ews 2k(a + Pk o

k -1 e
<Z.— M+
=2 @+ pr 0T

It is obvious that the right hand side becomes negative for sufficiently large ¢. This leads to a contradiction. Therefore
—+00 E(®) = 0 when m, < 0 and k is odd.
When £k is even, assume that lim,_  F(¢) # 0. There exists a constant €, > 0, such that for any T" > 0, there exists t > T,
satisfying F () > €,. For x > ¢, from (B4) and the first inequality in (84 we have
L gty = (g, 11y 2 —— e Py > ——e¥e
dt 2k (a + Y 2k (a + p)*
Similar argument will leads to a contradiction. Hence lim,_, , ., F(f) = 0 when m; < 0 and k is even.
The case @ = f > 0 can be proved by similar argument as above, and we only make use of the first inequalities of (E3) and

(&E9). O

It follows that

=¥

e

lim

k
O
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Theorem 4.3. Assume that (1, m) is a solution of (I2), and q are trajectories given by (B4). Suppose k < b, m; has compact
support in [a, c], m, does not change sign and belongs to L*/?.
(1) If my(x) > 0 or my(x) < 0 and k is even, then

lim g(c,?) = +c0.

=+
(2) If my(x) < 0 and k is odd, then
tliin q(a,t) = —

Proof. (1) We first consider the case k < b. By conservation law (B824), we have

c q(c.t)

/|m0|k/bdx: / Im(&,0)|/bde

a q(a,t)
q(c.t) q(c.t)

kx b—k/b
< / |m|e_§/ad€.</ea(b—k)dx)

q(a.n) qa.n)
— b—k/b
=F(@)- <W(8 a(b- k)q(c L — eab- k)q(a 0)) / .

By Lemma B2, we know that lim,_,, ., F(¥) = 0 when m > 0, or m;, < 0 and k is even. Hence

lim ea®- wm i _ ealb- e — +00.

t—+o00
Therefore, lim,_, , , g(c,t) = +o00 when m(, > 0, or m; < 0 and k is even.
Similarly, when my < 0 and k is odd, we have

q(c,t)

/ (ol /*dx = / im(&, e

q(at)
q(c.t) q(c,t)

bk /k
/ |m|e§/ad§ / T - k)dx)

gq(ar) q(a,r)

b—k/k
=E@)- <a(b k) (e prm k)q(a 1) _ o k)q(c [))> / ‘
We know from Lemma B2 that lim,_, ,  E(f) = 0 when m, < 0 and k is odd, hence
Iim e a(b—k) w0 4@ — o - k)‘I(C 1) - too.
t—>+oco

Therefore, lim,_, ,  g(a,t) = —co when m, < 0 and k is odd. Theorem holds for k < b.
(2) When k = b, by conservation law (B22), we have

q(c.t) qlc,t)

c
/|mo|dx= / |m<¢t>|d§§e‘“i'”-/|m|e‘fds=e"(§”
a

q(a.t) q(a.r)
By Lemma B2, we know lim,_, |  F(¢) = 0 when m, > 0, or m; < 0 and k is even. Hence lim,_, ,  q(c,?) = +co when m;, > 0,
or my < 0 and k is even.
On the other hand, when m; < 0 and k is odd, we have

CF().

q(c.t) q(c.t)

/Imoldx—/lm(f DIdE < o™ /Imleadf—e

q(a,t) q(a.n)

We know from Lemma B2 that lim,_,,  E() = 0 when m; < 0 and k is odd, hence lim,_, ,  g(a,f) = —oo in present case.
Theorem holds for k = b. O

« - E®).

Theorem 4.4. Assume (u, m) is a solution of (I2), and g are trajectories given by (B). Suppose 0 < b < k, m; has compact
support in [a, c], m, does not change sign and belongs to L*/%.
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(1) If my > 0 or my < 0 and k is even, then

hm q(c,t) — 2a(k — b)/ u _luxds = +o00.

xelq(a 1), q(c Dl

(2) If my <0 and k is odd, then

hm —q(a,t) — 2a(k — b) / Uy ds = +oo.

xe[q(a t) q(c, t)]

Proof. From the proof of Theorem B4, we know that # and u, are bounded for 0 < b < k. Multiply sign(m) to the first line of
(), integrate with respect to x over R, we obtain

—/lm(x t)|a’x——/<(|m|) uk+b|m|uk_1ux)dx
= (k- b)/lmlu" lud

>k=5b) inf W lu / m(x,1)|dx.
x€lq(a..qlc.n)] x | |
R

Thus,
r. -
/ |m(x, H)|dx > e*=DJo M retawnaen v~ uds . / |my|dx. 4.7
R

By Holder’s inequality and conservation law (B22), we have

/lm(x,t)ldx:/|m(x,t)|1/2|m(x,t)|1/2e'x/2"ex/2”‘dx
R

k—b/2k
/lm(x t)|k/bdx /lm(x Dle” x/z"‘dx /eu<k b>dx (4.8)

R
/2k _ k—b/2k
=</ |m0|k/bdx> -F(t)l/2 . (—a(kk )(e P LG b)‘I(at))> / .
R
Meanwhile, similar argument leads to
/Im(x t)Idx—/ |m(x t)|1/2|m(x t)|1/2 x/2a —x/2adx
_ k—b/2k
m(x, 1) k/bdx m(x, 1) ex/adx e = ”>dx
4.9)
R
/2k _ k—b/2k
/|m0|k/bdx .E(t)l/z . (a(k b) (e—m““ﬁ B e_mq(c,,))> / '
k

When m;, > 0 or m; < 0 and k is even, we know F(¢) converges to zero as t goes to infinity from Lemma B2. Therefore, from
(EZD) and (ER), we obtain

rs k-1
(ea(k b)q( c.t) — el b)q(a 1)) —Zkfo mfxelq(u',)'q(cv,)]u u.ds - 400, as t — 4oo.

Hence,

q(c,t) —2a(k — b)/ u _luxds — +00, as t — +oo.
xE[q(a t) q(c.1)]

When m; < 0 and k is odd, we know E(¢) converges to zero as t goes to infinity from Lemma EZ1. By similar argument as
above, we obtain from (E-4) and (E9) that

Kk ' k-1
(e a(kfb)tl(at)_e prr b)q(CI)) —2kf01nfx€[q(a_t)vq(c',)]u ugds _ +00, as - +oo.
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Hence,

t
—q(a,t) = 2a(k — b)/ inf  u"'uds - +oo, as t— +oo.
x€lg(a,n),q(c.0)]
0

The proof of theorem is finished. O

S | PERSISTENCE PROPERTY

In this section, we build the persistence property for the solutions of (I2) in weighted Sobolev spaces.
Definition 5.1. A non-negative function v : R” — R is called sub-multiplicative if v(x + y) < v(x)v(y) holds for all x, y € R".

Definition 5.2. Given a sub-multiplicative function v. A positive function ¢ : R"” — R is called v-moderate if there exists a
constant C;, > 0 such that ¢(x + y) < Cyuv(x)@(y) holds for all x, y € R".

It is proved in Brandolese™ that ¢ is v-moderate if and only if the weighted Young’s inequality
1Cf1 * )@l < Coll fivllp il e 5.1
holds for any two measurable functions f, f, and 1 < p < .

Definition 5.3. We say that ¢ : R — (0, +o0) is an admissible weight for (I2) if the following properties hold:
i) ¢ is locally absolutely continuous,
ii) there exists a constant A such that |¢'(x)| < A|@(x)| for almost all x € R,
iii) ¢ is v-moderate for a sub-multiplicative function v, which satisfies infy v > 6, > 0 and
/ U(x)e_ﬁdx <M, (5.2)
R
for some constants 6, and M,,.

Remark 5.4. The examples for admissible weight functions can be found in Tian et al.*, such as
GO = By 5(0) = e (1 + |x])7 logle + [x]°),
where we require thata > 0,0 < g <1, af < 1.
Now we state the main result of this section.

Theorem 5.5. Letu, € H*(R) with s > 4,andu € C([0,T); H*(R))nC([0, T); H*~!(R)) be a strong solution to (I2) starting
from u,. Suppose that ¢uy, ¢puy, € L*(R) for an admissible weight function ¢. Then the following estimate holds

lpu-, Dll oo + Nty Ol oo < M5 (gl oo + Nl prig ()l 10 ) - 1€1[0,7),
where constant C depends on a, 3, b, k, functions v, ¢, and M = sup,c(o 7 |[ullysc0-

This theorem asserts that if the initial data possesses some exponential decay as | x| goes to infinity, then for any fixedt € [0, T")
the solution u also possesses an exponential decay at infinity.

Proof. Rewrite (I2) as
u, +uku_+G * F(u) = 0. (5.3)
where G is given by (3) and
Fu) :=mu* + bmu*u, — (1 - o?03)(1 — p20D) W u,).

has (k + 1) degree of nonlinearities on u, and up to fourth-order derivatives of u with respect to x. The coefficients of F(u)
depend only on «, f#, k and b.

For any N € R*, we define the N-truncation of ¢ as ¢y (x) := min{¢(x), N}. It is easy to check that ¢, : R > R
is a locally absolutely continuous function satisfying [|¢ ||« < N and |¢/,| < Alpy| for almost every x € R. Since ¢ is
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v-moderate with infg v > 0, there exists a constant C;, > 0 such that
d(x +y) < Cu(x)P(y), x,y €R.
Hence it yields by choosing C,, := max{C,, 5y '} that
dn(x+y) =min{p(x +y), N} < min{Cou(x)¢p(y), N}

< max{C,, mfl o) min($(3), N
R

Séoy(x)¢N(Y), X,y € R.

The N-truncation function ¢ is also v-moderate. Therefore, ¢, is an admissible weight.
From the definition of F(u), it is easy to check for any p € [1, +oo] that

4
lenF @l <Colas pok, (X 0llse ) - (bwall + it )

i=0
<Cy(a pk YM* (Il s + it )- (5.4)

Now we derive differential inequalities for ¢y u and ¢ yu, respectively. Multiplying (B3) by |¢ Nul”‘zdﬁvu, 2 < p < oo,
integrating over R, we have

-1 d - _
||¢Nu||ip1E||¢Nu||L,, = —/uk YepyulPu dx —/d)N(G * FW))|pyulP>pyudx =2 Jy + J,. (5.5
R R
It is easy to check that
1l < 1l bl < G (Iallse + it ) - bl (5.6)

By Holder’s inequality, we know

112 <l (G * F@)ll o - llwull ],
Since ¢, is an admissible weight, we have by using (B1) and (52) that

”d’N(G * 73(“))”1) < éollGU”Ll : ”d’NF(”)”Lp < CQ(C07505 MO,(Z, p) - ”d’]\/r(u)”uw

Thus, we have

| 1,] < Cy(Cy. 8- Mo, . B) - llpy F@)ll 1 - llpyull”, (5.7
Put (856) and (B2) into (B3), we obtain for any 2 < p < +oo that
d
Tlgnullzs < €00l + el )il + Co(Cor e My . DI F @l (58)

In order to derive a differential inequality for ¢ u,, we first take derivatives of (B3) with respect to x. It is derived that

uy, + k"' +ufu +0.(G * F(u) = 0.

X

Multiplying the above equation by [¢yu, |”‘2¢§Vu p € [2,+0), and integrating over the real line, one has

X

-1 d
”(I)Nux”ip E”‘ﬁN”x”LP
= —k/uk_1|¢Nux|”_2q§?Vuidx - / ukuxxlqﬁNuxI”_zd)%vuxdx - / 0,(G * F(u)) - |¢Nux|”_2q§?vuxdx
R R R

= L+, + Js. (5.9)
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Note that |¢’N| < A|¢y| almost everywhere over R. Direct computation gives

1= | [ (@nte0, = @ i b2y
R
- / ukax<W)dx_ / it 7 )
R R
k

< I e, + Al e I,
< Cytk, Al + Nt )bl (5.10)

51 <l e by I, < Col)(Talls + Nyl ) - v I (5.11)
By Holder’s inequality, we have
1J5] < lgn 0, (G * F@) Il - lpnully,'
By (&), (B2) and the fact 9,G = ——sign(x)g, + #sign(x)gz in weak sense, we have

2=

én0, (G * Fw)ll» < Coll@0.D0llpillpnF @l < C5(Coo 89 Mos @, ) - by F @)l -

Hence
5| < C5(Cp. 89, My, . B) - py F@l 1o - by ll?,". (5.12)
Put (B10), (BTT) and (B12) into (59), we obtain for any 2 < p < +oo that
d
EIId)NuxIILp < Cy(k, A)(Ilull"w + IIuXIIkw) Ndyuellpr + C5(Co, 89, Mo, @, Dl Gy F @)l 15 (5.13)

Add (A=) and (B13) together. By making use of inequality (54)), we obtain
d
T (Nwallr + Nbpis . )
<Gyt Al + Nl ) - (vl + it ) + Ca(Cos B Mot Dllbn F @l

<C(@, Bk, b, A, Co, 0, MOM* - (Ilbyull o + byl )
By Gronwall’s inequality, we have

cM*
lonullpy + lldyull, <e r(”d’j\/”o”Lp + @ nugyll 20)-

Note that C and M are independent of p € [2, ) and N € R™. Letting p — +o0, it implies that

cM*
lpnullpeo + oyt ll e < e r(”d’N”o”Lm + o nuoxll poo)-

Finally, letting N — 400 completes the proof of this theorem. O
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