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Abstract

Economic model predictive control (EMPC) has received increasing attention in the wind energy community due to its ability

to trade off economic objectives with ease. However, for wind turbine applications, inherent nonlinearities, such as from

aerodynamics, pose difficulties in attaining a convex optimal control problem (OCP), by which real-time deployment is not

only possible but also a globally optimal solution is guaranteed. A variable transformation can be utilized to obtain a convex

OCP, where nominal variables, such as rotational speed, pitch angle, and torque, are exchanged with an alternative set in

terms of power and energy. The ensuing convex EMPC (CEMPC) possesses linear dynamics, convex constraints, and concave

economic objectives and has been successfully employed to address power control and tower fatigue alleviation. This work

focuses on extending the blade loads mitigation aspect of the CEMPC framework by exploiting its individual pitch control

(IPC) capabilities, resulting in a novel CEMPC-IPC technique. This extension is made possible by reformulating static blade

and rotor moments in terms of individual blade aerodynamic powers and rotational kinetic energy of the drivetrain. The

effectiveness of the proposed method is showcased in a mid-fidelity wind turbine simulation environment in various wind cases,

in which comparisons with a basic CEMPC without load mitigation capability and a baseline IPC are made. Results indicate

that CEMPC-IPC can achieve better reduction in rotating blade loads, as well as similar performance in the mitigation of shaft

and yaw bearing loads, with the added advantage of convenient economic objectives trade-off tuning.
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Abstract
Economic model predictive control (EMPC) has received increasing attention in the wind energy

community due to its ability to trade off economic objectives with ease. However, for wind tur-

bine applications, inherent nonlinearities, such as from aerodynamics, pose difficulties in attaining

a convex optimal control problem (OCP), by which real-time deployment is not only possible

but also a globally optimal solution is guaranteed. A variable transformation can be utilized to

obtain a convex OCP, where nominal variables, such as rotational speed, pitch angle, and torque,

are exchanged with an alternative set in terms of power and energy. The ensuing convex EMPC

(CEMPC) possesses linear dynamics, convex constraints, and concave economic objectives and

has been successfully employed to address power control and tower fatigue alleviation. This work

focuses on extending the blade loads mitigation aspect of the CEMPC framework by exploit-

ing its individual pitch control (IPC) capabilities, resulting in a novel CEMPC-IPC technique. This

extension is made possible by reformulating static blade and rotor moments in terms of individ-

ual blade aerodynamic powers and rotational kinetic energy of the drivetrain. The effectiveness

of the proposed method is showcased in a mid-fidelity wind turbine simulation environment in

various wind cases, in which comparisons with a basic CEMPC without load mitigation capabil-

ity and a baseline IPC are made. Results indicate that CEMPC-IPC can achieve better reduction

in rotating blade loads, as well as similar performance in the mitigation of shaft and yaw bearing

loads, with the added advantage of convenient economic objectives trade-off tuning.

KEYWORDS:
convex economic model predictive control, individual pitch control, blade loads mitigation,

economic objectives trade-off
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1 INTRODUCTION

Horizontal axis wind turbine rotor sizes have been consistently increased to improve nameplate power ratings 1. However, being ever longer and

more flexible, wind turbine blades experience exacerbated asymmetric loadings due to the greater influence of turbulence, wind shear, tower

shadow, and yaw misalignment 2. Such wind spatio-temporal variability gives rise to the spectral contents of the blade loads at once-per-rotation

(1P) frequency and its higher harmonics (2P, 3P, etc.), which are reflected as 0P, 3P, 6P, etc. at the fixed support structure for three-bladed turbines 3.

These fatigue loadings, accumulated over time, may eventually lead to irreversible damage—impeding economic benefits of power generation from

being attained as wind turbine lifetime becomes shorter. Hence, the importance of advanced control strategies with the capabilities to handle

fatigue load minimization alongside power production maximization becomes higher than ever.

Individual pitch control (IPC), by which wind turbine blades are individually actuated in response to measured out-of-plane (OoP) blade root

bending moments, has played a pivotal role in alleviating the aforementioned asymmetric loads. In conventional IPC, these blade load signals in

the rotating frame, containing dominant 1P frequency, are projected by an azimuth-dependent Coleman transformation 3 onto tilt and yaw axes

in the fixed frame. On these orthogonal axes, a pair of identical single-input single-output (SISO) controllers, such as proportional-integral (PI)

compensators 2 or simple integrators 4, are then designed for canceling the static (0P) tilt and yaw loads to create blade pitch commands on each

axis. A reverse Coleman transformation subsequently projects the blade pitch signals back into the rotating frame to obtain 1P individual pitch

actions, thus reducing the 1P and 0P load components in the respective rotating and fixed parts of the turbine 2,4.

Aside from PI and other loop-shaping methods alike, different approaches to realize blade loads mitigation are also present in the literature.

Optimal state-feedback methods, such as linear quadratic regulator 5 and linear quadratic Gaussian 2,6,7 were considered, in which state regulation

and control input penalization trade-off tuning are accommodated. Others investigated H∞-based approaches 8,9,10, which are capable of han-

dling multivariable systems as well as accounting for uncertainties in the model and measurements. In spite of their advantages, these classes of

controllers are not able to altogether: (1) take into account system constraints, (2) address multivariable systems with ease, (3) provide convenient

trade-offs between different control objectives, and (4) predict the future behavior of the system given current (or preview) information, several

properties of which are inherent in model predictive control (MPC) designs 11.

MPC is a model-based control algorithm that optimizes a system’s inputs to attain certain control objectives over a finite prediction horizon

in the future while adhering to the system’s constraints 12. In the vast majority of MPC implementations, tracking objectives are employed within

its optimization control problem (OCP) formulation to steer a system to certain precalculated steady-state references, known as the tracking

MPC (TMPC). Several studies have demonstrated the potential of TMPC for wind turbine applications, such as for power control, tower damping,

blade loads mitigation, and combinations thereof 13,14,15,16,17,18. Regardless of the demonstrated good performance, TMPC is somewhat lacking

in terms of the straightforward connection between its tracking objective and the actual objective of wind turbine operation, namely economic

performance 19. On top of that, a common assumption that tracking steady-state references bring the most profit may not necessarily be true,
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particularly during transients 20. Fortunately, these predicaments can be tackled by the incorporation of economic objectives in place of reference

tracking ones, resulting in the economic MPC (EMPC).

Early work on EMPC for wind turbine control focused on the power maximization aspect and development of ‘turnpike’† correction, which

has hindered short time horizon implementation of EMPC 19, with an extension followed, in which tower fatigue mitigation and trade-off tuning

by Pareto front are accounted for 21. Nevertheless, in these studies, the formulated OCPs necessitate rather complex nonconvex programming

to be employed with no global optimality guarantee 22. A number of studies incorporating convex EMPC (CEMPC) methods, by which a globally

optimal solution is ensured and real-time implementation is made possible, have been investigated. As an instance, CEMPC has been employed

for preventing soft-soft tower resonance in the presence of rotor imbalance at the below-rated region by frequency-skipping 23. The convexity

of the OCP in this framework owes to the property of the wind turbine dynamics incorporated therein, cast as that of quasi-linear parameter-

varying by a model demodulation transformation technique. Another OCP convexification strategy in the literature is realized by transforming

nominal wind turbine variables into power and energy terms such as rotational kinetic energy, aerodynamic power, and generator power to obtain

concave objectives (to be maximized), linear dynamics, and convex constraints. The optimal control inputs resulting from the optimization routine

then undergo a reverse variable transformation to obtain implementable wind turbine signals in the nominal variables, such as blade pitch and

generator torque demands. Such a CEMPC concept was initially introduced with the goal of ensuring the smoothness of grid power delivery with

an integrated local storage system 24.

Some research efforts followed afterward, extending the latter CEMPC framework to account for fore-aft 25,26 and side-side 27 tower fatigue

loads mitigation. Of particular interest is the latter extension since an individual pitching strategy was favored over the more conventional approach

by generator torque control in order to lessen the variation of the generated power as a by-product of the damping activities. The decomposition of

a single aerodynamic power acting on the rotor into multiple components, referring to those of the blades, has become a key to realizing individual

pitching within the framework. By reformulation of the side-side blade forces in terms of these aerodynamic powers and rotational kinetic energy,

a tower-top force counteracting tower vibrations can be created by CEMPC. Yet, little to no attention is paid to the augmentation of a blade loads

mitigation objective, exploiting further the IPC potential of the CEMPC framework.

This paper thus aimed to fill the knowledge gap by incorporating an individual pitching mechanism for blade loads alleviation into the CEMPC

framework by the authors 24,27. In detail, this extension includes OoP blade root bending moments and rotor tilt and yaw moments as parts of

the wind turbine model description. By recasting these moments, alongside drivetrain dynamics and relevant constraints, into their equivalence

in terms of individual aerodynamic powers and rotational kinetic energy, linear dynamics and convex constraints are obtained. On top of that,

employing concave objective functions (to be maximized) results in a convex OCP, by which not only globally optimal control inputs are guaranteed

but also real-time implementation is made possible. Furthermore, the benefit of EMPC, in terms of convenient trade-off tuning capability between

different economic objectives, can also be performed. For the remaining parts of this paper, this novel method is referred to as the ‘CEMPC-IPC.’

The contributions of this work are now in order:

†In this case, it is the total absorption of rotor kinetic energy for power generation, resulting in an entirely stopped rotor.
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1. Establishing linear wind turbine dynamics and convex constraints suitable for blade loads mitigation by individual pitching, by application

of a variable transformation in power and energy terms to a nominal wind turbine model description;

2. Formalizing a convex OCP by incorporation of concave economic objective functions (to be maximized), which cater for the penalization of

rotor tilt and yaw moments, on top of the linear dynamics and convex constraints;

3. Integrating the Coleman blade effective-wind speed estimator 28, as well as an unscented Kalman filter for rotor tilt and yawmoment biases

estimation, to supply the proposed CEMPC-IPC with unknown and unmeasurable quantities;

4. Showcasing the performance of the CEMPC-IPC in a mid-fidelity wind turbine simulation environment under artificial and realistic wind

profiles, including comparisons with a basic CEMPC and conventional IPC.

The remainder of this paper proceeds as follows. Section 2 describes a nonlinear reduced-order wind turbine dynamical model along with their

constraints in the nominal wind turbine variables. Section 3 elaborates on the derivation of the linear wind turbine dynamics and convex constraints

by a transformation of variables in power and energy terms. The formulation of the convex economic OCP of the proposed CEMPC-IPC is laid

out in Section 4, where the required estimator designs are also discussed. In Section 5, the effectiveness of the CEMPC-IPC is demonstrated in

a mid-fidelity computer-aided wind turbine simulation setup FAST (Fatigue, Aerodynamics, Structures, and Turbulence) 29 by National Renewable

Energy Laboratory (NREL). Finally, in Section 6, the concluding remarks of this work are given.

2 WIND TURBINE MODEL

In model-based control methods such asMPC, obtaining a system’s dynamic model is a critical first design step. To prevent a too high computational

burden, a reduced-order model with the ability to capture the most relevant dynamics according to the control objectives is preferable over high-

order ones. In this section, the first-principles derivation of the nominal wind turbine model comprising of drivetrain dynamics and static blade and

rotor moments are conducted in Section 2.1 and 2.2, respectively. In Section 2.3, several remarks regarding model nonlinearities, motivating the

adoption of variable transformation in the power and energy terms, are laid out.

2.1 Drivetrain Dynamics

A wind turbine drivetrain is generally modeled as interconnected masses representing the rotor-generator assembly. The rotation of such a

mechanical system is driven by the interaction between the developed aerodynamic torque on the rotor and the counterbalancing torque demand

commanded from the generator side. This rotating system accelerates or decelerates depending on whether the former exceeds the latter or vice

versa, the rate of which is influenced by its inertia. Although multiple rotating masses incorporating a flexible shaft may be modeled, this option

is omitted since shaft torsional dynamics serve little to no purpose in the development of the proposed control method. Henceforth, a single

mass representation of the drivetrain dynamics on the high-speed shaft (HSS) side is adopted for simplicity, which is governed by the following
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differential equation

Jhssω̇g(t) = Tr(t)/G− Tg(t) , (1)

with t being the continuous time notation. The HSS equivalent inertia is denoted by Jhss = Jg + Jr/G2, with Jg , Jr, and G ≥ 1 as the generator

inertia, rotor inertia, and gearbox ratio, respectively. The notation ωg represents the generator rotational speed, being a system’s state, operated

within the range

0 ≤ ωg(t) ≤ ωg,max , (2)

where ωg,max is the maximum allowable speed for the generator, chosen to be 130% of the rated value ωg,rated. The generator torque Tg is a

control input constrained by

0 ≤ Tg(t) ≤ Tg,rated , (3)

with Tg,rated defined as the rated generator torque producing wind turbine nameplate power rating Pg,rated at ωg,rated, taking into account the

generator efficiency.

The aerodynamic torque Tr is often modeled as a single quantity affecting the entire rotor disk, including in the original CEMPC work 24.

Nevertheless, it can also be thought of as the sum of multiple blade-effective quantities 6,27 Tr,i, with i ∈ {1, 2, 3} for three-bladed wind turbines,

which is especially beneficial for IPC formulations, as considered in this work. This accumulation of individual blade torques is expressed by the

following relation

Tr(t) =

3∑
i=1

Tr,i(t) . (4)

As the blades rotate under the same rotor speed ωr = ωg/G altogether, their extracted aerodynamic powers from the wind contribute to that of

the rotor disk Pr as

Pr(t) = ωr(t)

3∑
i=1

Tr,i(t) =

3∑
i=1

Pr,i(t) , (5)

in which

Pr,i(t) =
1

6
ρACp(ωr(t), βi(t), vi(t))vi(t)

3 . (6)

The air density, considered to be 1.225 kg/m3, and the rotor area are denoted respectively by ρ andA = πR2, withR being the radius of the rotor.

The notation Cp refers to the aerodynamic power coefficient, being a function of ωr, the blade-effective wind speed (BEWS) vi, and the individual

blade pitch βi, constrained by

βmin ≤ βi(t) ≤ βmax . (7)

Such a coefficient is commonly provided in the form of a look-up table, the data of which is collected from simulations at different operating points.

The main output of the drivetrain operation is the generated power, computed as follows

Pg(t) = ηgωg(t)Tg(t) , (8)
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with the efficiency factor ηg ∈ (0, 1] accounting for losses due to the mechano-electrical power conversion. The produced power is subjected to

the following constraints

0 ≤ Pg(t) ≤ Pg,max(t) , (9)

with the maximum generated power defined as 25

Pg,max(t) = min
(
ηgωg(t)Tg,rated, Pg,rated

)
, (10)

which varies based on the current ωg and holds Pg constant at Pg,rated when ωg excurses above ωg,rated to prevent generator overloading.

2.2 Static Blade and Rotor Moments Formulation

To incorporate blade loads mitigation aspects into the proposed CEMPC-IPC, additional differential equations may be employed to model the

dynamics of the blades 13,30 at the expense of increased model order and thus computational demand. An alternative path is to employ static blade

moments based on the blade-element momentum (BEM) theory 6,31 such as adopted in this paper.

As briefly mentioned in Section 1, the OoP blade root bending moment Mop,i suffers from severe 1P fatigue loading from the spatial and

temporal variations in the wind over the rotor disk and hence subject of mitigation by the proposed CEMPC-IPC. As illustrated in Figure 1, such a

moment is built by a thrust or normal force Ft,i acting on a particular distance from the rotor center

Mop,i(t) = scFt,i(t)R , (11)

where the scaling factor sc = 2/3 for a linearly increasing force distribution along the blade span 6. The individual blade thrust force in the above

expression is defined as

Ft,i(t) = Fdyn,i(t)Ct(ωr(t), βi(t), vi(t)) , (12)

with

Fdyn,i(t) =
1

6
ρAvi(t)

2 , (13)

being the dynamic force. The aerodynamic thrust coefficient Ct, similar to Cp, is a function dependent on ωr, βi, and vi.

As depicted in Figure 1, the loads experienced byMop,i are also transferred to the support structure in tilt and yaw (or horizontal and vertical)

directions, therefore designing controllers on these axes to mitigate both load components are of interest. This requires the projectionMop,i from

the rotating frame onto the nonrotating tilt and yaw axes,

Mtilt(t) =
2

3

3∑
i=1

Mop,i(t) cos(ψi(t)) , (14)

and

Myaw(t) =
2

3

3∑
i=1

Mop,i(t) sin(ψi(t)) , (15)
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Ft,1

Ft,2

scR

Ft,3
Mop,1

ψ1

Mtilt

Myaw

YR,1

ZR,1

XR,1XNR

ZNR

YNR

FIGURE 1 Individual blade thrust force Ft,i, i ∈ {1, 2, 3}, shown to act perpendicularly on the i-th blade at scR from the rotor center, with sc being
a scaling factor andR the rotor radius. Subsequently, the out-of-plane blade root bending momentMop,i is created in the rotating reference frame
(blue axes; shown only for blade 1). The projections ofMop,i in the non-rotating reference frame (indicated by the red axes), i.e., the tilt (Mtilt)
and yaw moments (Myaw), are obtained by means of the azimuth-dependent forward Coleman transformation, where the i-th blade azimuth is
indicated by ψi. Note that the origins of both reference frames are situated at the rotor apex with their X axes directing toward the downwind
direction.

respectively, which is known as the forward Coleman transformation. The azimuth angle of the i-th blade ψi =
∫
ωr dt+2π(i−1)/3 is considered

to be 0◦ at vertically upward position and increases in the clockwise direction. The original Coleman transformation also involves the computation

of the collective component ofMop,i; however, as this component serves little to no relevance for IPC designs, it is often disregarded.

2.3 Model Nonlinearities and Related Challenges for CEMPC-IPC Design

Several remarks need to be made regarding the formulated wind turbine model in Section 2.1-2.2, which can also be expressed as the following

general state space representation 
ẋ(t) = f(x(t),u(t),d(t))

y(t) = g(x(t),u(t),d(t))

, (16)
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with the respective state, inputs, disturbances, and outputs as follows

x(t) = ωg(t)

u(t) = [β1(t), β2(t), β3(t), Tg(t)]>

d(t) = [v1(t), v2(t), v3(t)]>

y(t) = [ωg(t), Pg(t),Mtilt(t),Myaw(t)]>

. (17)

In particular, the nonlinearities contained in (16) in the variables (17) may hinder the realization of a convex economic model predictive controller.

These nonlinearities are highlighted hereunder:

1. The coefficient Cp is a nonlinear function in the above-mentioned variables, particularly ωg , βi, and vi, which, combined with the cube

of the wind speed v3
i , renders Pr,i also nonlinear in these variables. As Tr,i carries over such nonlinearities through the relation (5), the

drivetrain dynamics (1) or, similarly, ẋ in (16), are thus nonlinear in nature;

2. The generated power Pg is bilinear in ωg and Tg as shown in (8), which is another form of nonlinearity contained in the model, in particular

in the output vector y;

3. Similar to Cp, the coefficient Ct contained in Ft,i is nonlinear in ωg , βi, and vi. Together with the squared wind speed v2
i , Ft,i becomes

nonlinear in the variables (17). This is carried over to Mop,i as expressed in (11) and subsequently to y by Mtilt and Myaw as shown in

relations (14)-(15).

The above existing nonlinearities may ensue in a nonconvex OCP formulation of EMPC. Such an OCP promotes the utilization of nonconvex

programming methodologies, in which a globally optimal solution is not guaranteed to be found, not to mention the resulting higher computational

complexities. A possible solution to this challenge is by applying first-order Taylor expansion to the nonlinear quantities so as to obtain their Jacobian

matrices, which are linear in their variables. Onemay also opt for variable transformation capable of rendering the dynamics and constraints suitable

for convex optimization algorithms 24,27. The latter approach is adopted in this study and discussed in the next section.

3 TRANSFORMEDWIND TURBINE MODEL

Being nonlinear in its variables, the wind turbine model derived in Section 2 needs to be recast into an alternative one suitable for CEMPC-IPC

deployment. The main idea is to substitute a number of variables in (17), specifically ωg , βi, and Tg with rotational kinetic energyKg , Pr,i, and Pg ,
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respectively, which results in the following new set of variables

xt(t) = Kg(t)

ut(t) = [Pr,1(t), Pr,2(t), Pr,3(t), Pg(t)]>

dt(t) = [v1(t), v2(t), v3(t)]>

yt(t) = [Kg(t), Pg(t),Mtilt(t),Myaw(t)]>

. (18)

Accordingly, the change of the system’s state from x to xt above necessitates the drivetrain dynamics (1) and the corresponding system con-

straints, namely (2), (3), (7), and (9), to be re-expressed in the new terms. Since such a dynamics reformulation has been treated in the previous

CEMPC works 24,27, only brief summary of its derivation is presented in Section 3.1. Moreover, despite being kept as outputs in (18), the rotor

momentsMtilt andMyaw are still functions of the nominal variables (17) such that their equivalence in power and energy variables is yet to be

established. This reformulation constitutes one of the main contributions of this study and is treated in Section 3.2.

3.1 Kinetic Energy Dynamics

Following the introduction of the new variables (18), the drivetrain dynamics previously described as a torque balance equation are now rewritten

as the rate-of-change (ROC) of the stored rotational kinetic energyKg = (Jhss/2)ω2
g , namely

K̇g(t) = Jhssω̇g(t)ωg(t) =

(
3∑
i=1

Tr,i(t)/G− Tg(t)

)
ωg(t) =

3∑
i=1

Pr,i(t)− Pg(t)/ηg . (19)

This expression enables a new perspective to see the drivetrain dynamics as a power balance equation and is linear in their inputs. It is thus subject

to the bounds onKg , which are readily obtained by calculating the kinetic energies of ωg,min and ωg,max in (2)

(Jhss/2)ω2
g,min ≤ Kg(t) ≤ (Jhss/2)ω2

g,max , (20)

and to the constraints of the inputs Pr,i and Pg explained in the following.

The ability provided by Pr,i to store energy in the rotating system (19) is limited by the rotor aerodynamic characteristics embodied inCp, which

is not only dependent on ωr =
√

2Kg/Jhss/G and vi, but also on the freedom in the pitching of the blades within the allowed range (7). Such a

limit is known as the ‘available wind power,’ which is formulated below

Pav,i(Kg(t), vi(t)) = max
βmin≤βi(t)≤βmax

1

6
ρACp

(√
2Kg(t)/Jhss/G, βi(t), vi(t)

)
vi(t)

3 . (21)

The above expression is still nonconcave ofKg , which motivates its concave approximation, in the form of piecewise linear (PWL) functions, to be

formulated 24 as follows

P̌av,i(Kg(t), vi(t)) = min{a1Kg(t) + b1, . . . , ajKg(t) + bj}vi(t)3 , (22)
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where am and bm, withm ∈ {1, . . . , j}, are the PWL functions’ coefficients. Therefore, the constraints for Pr,i is formalized as follows

0 ≤ Pr,i(t) ≤ P̌av,i(Kg(t), vi(t)) , (23)

which is concave inKg . The reader interested in the detailed derivation of the above constraints is referred to the work of Hovgaard et al. 24.

Remark 1. A note must be taken that in (21), βmin is considered the minimum pitch angle before reaching the stall region. As this minimum angle

differs for different combinations ofKg and vi, the coefficient table Cp is pre-processed accordingly before reformulated into Pav,i.

As for Pg , its bounds in (9) can be rewritten in terms ofKg as follows

0 ≤ Pg(t) ≤ min

(
ηg

√
2Kg(t)/JhssTg,rated, Pg,rated

)
, (24)

which are convex in Pg and concave in Kg . It is important to note the use of Pg directly as a variable is advantageous in that linearization of (9)

about Pg,rated (due to the bilinearity in ωg and Tg as pointed out in Section 2.3) is precluded. Such linearization introduces a certain degree of

conservativeness since Pg,rated may not always be reached when ωg deviates too far from the linearization point 32.

3.2 Static Blade and Rotor Moments in Power and Energy Terms

In a previous work 27, individual pitching for mitigating side-side tower excitation within the same CEMPC framework was developed. Therein, the

inclusion of IPC into the framework is made possible by virtue of lateral blade force transformation to power and energy variables. In the current

paper, a similar idea of enabling IPC for blade loads reduction is adopted in the framework. It is realized by rewriting Ft,i in the new variables,

followed by its substitutions into the blade momentMop,i and, afterward, rotor momentsMtilt andMyaw .

To this end, the following relation between power and torque coefficients Cp = λiCq is considered, with λi =
√

2Kg/JhssR/Gvi being the

tip-speed ratio expressed in the new variables. The individual aerodynamic power equation (6) now becomes

Pr,i(t) =
1

6
ρAvi(t)

2︸ ︷︷ ︸
Fdyn,i(t)

(√
2Kg(t)/Jhss

/
G

)
RCq

(√
2Kg(t)/Jhss/G, βi(t), vi(t)

)
,

which containsFdyn,i from (13) as indicated. The above realization paves theway forFdyn,i to be rewritten in terms of power and energy as follows

Fdyn,i(t) =
Pr,i(t)(√

2Kg(t)/Jhss

/
G
)
R

1

Cq

(√
2Kg(t)/Jhss/G, βi(t), vi(t)

) .
By application of the above definition of Fdyn,i into (12), the individual blade thrust force can be readily recast into

Ft,i(t) =
Pr,i(t)(√

2Kg(t)/Jhss

/
G
)
R
Ct/q

(√
2Kg(t)/Jhss/G, βi(t), vi(t)

)
, (25)

with Ct/q as the shorthand notation for Ct/Cq. Note that the inverse square-root of the kinetic energy 1/
√
Kg contained in (25) is nonconvex

in Kg . In addition, the coefficient Ct/q is nonlinear in the variables Kg , βi, and vi, with βi being one of the nominal variables. To tackle these

additional complexities in rendering Ft,i convex in its variables, several assumptions are thus needed.
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Assumption 1. It is assumed that Kg varies slowly over time, such that in the implementation of CEMPC-IPC later on in Section 4, it can be

considered constant based on the current turbine measurements for the computations of Ft,i.

Assumption 2. The calculation of Ct/q takes constantKg as indicated in Assumption 1, βi of the previous CEMPC-IPC solution, and constant vi

based on the current wind speed information. This effectively leaves Pr,i as the only decision variable for determining Ft,i.

The ensuing OoP blade root bending moment in power and energy terms is obtained straightforwardly by substitution of (25) into (11) that

results in

Mop,i(Pr,i(t)) = sc
Pr,i(t)(√

2K̃g(t)/Jhss

/
G

)Ct/q

(√
2K̃g(t)/Jhss/G, β̃i(t), ṽi(t)

)
R , (26)

where the quantities in which Assumptions 1-2 hold are indicated by tilde ( ·̃ ) notations. The following and the last step in the static blade forces

and moments derivation in power and energy terms is the application of forward Coleman transformation to (26). However, note that the use of

trigonometric functions cos (ψi) and sin (ψi), with ψi =
∫

(
√

2Kg/Jhss/G) dt + 2π(i − 1)/3, in (14)-(15) indicate additional nonconvexities in

Kg , for which the following additional assumption is required.

Assumption 3. The azimuthψi is taken from themeasurements, which is also forward-propagated for the entire prediction horizon of the CEMPC-

IPC given the measurements of ωr.

Taking Assumption 3 into account, rotor tilt and yaw moments previously defined in (14)-(15) are now rewritten as

Mtilt(t) =
2

3

3∑
i=1

Mop,i(Pr,i(t)) cos(ψ̃i(t)) , (27)

and

Myaw(t) =
2

3

3∑
i=1

Mop,i(Pr,i(t)) sin(ψ̃i(t)) , (28)

with ψ̃ denoting the measured/forward-propagated azimuth position.

4 CONVEX ECONOMIC MODEL PREDICTIVE CONTROL SETUP

An OCP is at the heart of every model predictive controller design, including the CEMPC-IPC proposed in this work. Comprising the system

dynamics, constraints, and objective functions, it is solved to optimize the prediction of a system’s behavior up to a finite time horizon in the future.

The product of such optimization is an optimal input trajectory, the first element of which is applied to the system. The measured response due

to the application of the optimal input is thus taken by CEMPC-IPC to restart the optimization so as to produce the subsequent optimal input

trajectory with a one-step-ahead roll in the horizon.

In Section 4.1, the OCP formulation for the proposed CEMPC-IPC is discussed, in which several economic objective functions are presented and

incorporated with the transformed wind turbine dynamics and constraints derived previously in Section 3. Moreover, as not all quantities needed
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FIGURE 2 CEMPC-IPC implementation setup. A blade-effective wind speed (BEWS) and moment biases estimator via unscented Kalman filtering
(UKF) are included for providing unknown information to the controller.

to begin the optimization routine are available from the measurements, state estimators need to be integrated, which are explained in Section 4.2.

Figure 2 illustrates the diagram showing the interconnection of these subsystems.

4.1 Optimal Control Problem Formulation

As a subclass of EMPC, CEMPC inherits its feature in the sense that a system’s economic performance, manifested in concave objective functions,

is maximized instead of targeting the system to reach steady state references, as done in TMPC. In the previous works 24,27, power production

maximization, reduction of overspeeding duration, and minimization of excessive actuation aspects of the wind turbine economic performance

have been addressed, which are also taken into consideration here. Moreover, as an extension of these works, this study now accounts for the

blade loads alleviation aspect, thereby extending the structural loads mitigation capability of the framework. Thus, for the purpose of realizing

CEMPC-IPC, the following economic objective functional concave in the new variables (18) is proposed

JOCP(t) = w1Pg(t) + w2

3∑
i=1

P̌av,i(vi(t),Kg(t))− w3Kg,slack(t)2 − w4

3∑
i=1

Ṗr,i(t)
2 − w5Ṗg(t)2 − w6Mtilt(t)

2 − w7Myaw(t)2 , (29)

where wl, l ∈ {1, . . . , 7}, is the corresponding weight of each term. The interpretation of each objective is explained below.

The first term of (29) refers to the main objective of the power control, that is to achieve maximum generated power. To push the upper-

bound of the operable Pr,i (as shown in (22)) higher such that the maximum available power in the wind can be extracted, the second term

is included. The third term corresponds to the overspeeding penalization for reducing the duration in which Kg excurses from its rated value

Kg,rated = (Jhss/2)ω2
g,rated by enforcement of the following constraints

Kg(t) ≤ Kg,rated +Kg,slack(t) , with Kg,slack(t) ≥ 0 , (30)
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where Kg,slack is a slack variable, which is realized by collective pitching to prevent Pr,i from transferring more power to the drivetrain than the

generator is able to cope with. To prevent aggressive actuators activities of βi and Tg , penalties on the rate-of-change (ROC) of the aerodynamic

power Ṗr,i and generated power Ṗg are incorporated in the respective fourth and fifth terms. The sixth and seventh terms play a central role in the

blade loads mitigation aspect of CEMPC-IPC as these represent the objectives to minimize the asymmetric loadings over the rotor area reflected

inMtilt andMyaw .

Having the linear dynamics, convex constraints, and concave objective functions formulated, the convex OCP of the proposed CEMPC-IPC for

blade loads mitigation can now be formalized as the following equation

max
Ut

Np−1∑
k=0

JOCP(k) , (31a)

s.t. xt(k + 1) = Adxt(k) + Bdut(k) , (31b)

xt(0) = xt,0 , (31c)

(20), (23), (24), (30) , (31d)

with k andNp being the discrete time notation and prediction horizon of the controller. The notationsAd andBd in (31b) designate the respective

discrete state and input matrices of the transformed wind turbine dynamics (19)—by which the turbine state is predicted, discretized using the

Tustin or trapezoidal method 33 under the sampling time Ts. To initialize the prediction, the internal state of the controller xt(0) is taken from the

measurement xt,0, in (31c), after which the optimization adhering to the convex constraints (31d) is conducted.

At each time step, the OCP (31) outputs a globally optimal input trajectory

U∗t = [u∗t (0)>, . . . ,u∗t (Np − 1)>]> ,

where

u∗>t = [P ∗r,1, P
∗
r,2, P

∗
r,3, P

∗
g ]> ,

is applied to the wind turbine, in which ut is a shorthand notation of ut(0) with the asterisk symbol (∗) indicating the optimal inputs. One may

directly notice that ut is not directly usable for wind turbine control, therefore its equivalence in terms of the original variables

u∗> = [β∗1 , β
∗
2 , β
∗
3 , T
∗
g ]> ,

must be retrieved by the following reverse transformations

β∗i = Ψ(K∗g , P
∗
r,i, v̂i) , (32)

T ∗g =
P ∗g

ηg

(√
2K∗g/Jhss

) , (33)

where Ψ denotes the pitch look-up table 24 andK∗g , with a slight abuse of notation, the prediction of the stateKg at k = 1.
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4.2 Estimator Designs

With regards to supplying the proposed controller with important but unknown and unmeasurable information, two estimators are designed.

Firstly, the BEWS vi, needed for constructing the aerodynamic power constraints (23), is not typically known from the measurements. However,

load-sensing technologies are available from the literature, in which the BEWS estimate v̂i can be acquired from blade loads measurements 34,28.

In Section 4.2.1, the Coleman BEWS estimator design for such a purpose is described 28. Secondly, discrepancies between the measured OoP

blade root bending moments and that of the internal CEMPC-IPC model might deteriorate the performance of the blade loads mitigation in that

low-frequent biases in the rotor tilt and yaw moments may appear and need to be compensated. Therefore, these unknown biases need to be

estimated in which an unscented Kalman filtering approach is adopted and discussed in Section 4.2.2.

4.2.1 Coleman Blade-Effective Wind Speed Estimator

To estimate vi, a recently developed load-sensing method, namely the Coleman BEWS estimator, is employed 28 and briefly summarized hereunder.

This estimation framework relies on the minimization of the error between the measuredMop,i and its estimate M̂op,i (with the hat symbol ˆ( · )

indicating estimated values)

εi(t) = Mop,i(t)− M̂op,i(t) , (34)

in which

M̂op,i(t) =
1

2
ρARCm(ωr(t), βi(t), v̂i(t), ψi(t))v̂

2
i , (35)

withCm as the azimuth-dependent cone coefficient table. Similar toCp andCt, the values ofCm are collected from simulations using steady wind

after the steady state is reached.

In this estimation scheme, εi is transformed into the fixed frame by a forward Coleman transformation, including the collective component

εcol = 1/3
∑3
i=1 εi, aside from the projection in the cosine and sine directions εtilt = 2/3

∑3
i=1 εi cos (ψi) and εyaw = 2/3

∑3
i=1 εi sin (ψi),

respectively. The next step is to map these errors into the collective, tilt, and yaw components of the wind speed, v̂col, v̂tilt, and v̂yaw , respectively,

by means of integration as follows

v̂col(t) = Kcol

t∫
0

εcol(τ) dτ , (36a)

v̂tilt(t) = Ktilt

t∫
0

εtilt(τ) dτ , (36b)

v̂yaw(t) = Kyaw

t∫
0

εyaw(τ) dτ , (36c)

where the constants Kcol and Ktilt = Kyaw are the corresponding integrator gains.

Following (36), a reverse Coleman transformation is utilized in order to project v̂col, v̂tilt, and v̂yaw back into the rotating domain v̂i as follows

v̂i(t) = v̂col(t) + v̂tilt(t) cos (ψi(t)) + v̂yaw(t) sin (ψi(t)) . (37)
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By feeding the above wind speed estimate (along with the measurements of ωr, βi, and ψi) into (35), M̂op,i is obtained and a feedback intercon-

nection is created. Subsequently, due to the integrations in (36), the moment estimation errors are minimized, implying that v̂i has been estimated.

The interested reader is referred to the work of Liu et al. 28 for more elaborated explanations and derivations on the BEWS estimator.

4.2.2 Biases Estimation by Unscented Kalman Filtering

The utilization of the static modeling method as used in this study, in which aerodynamic coefficient tables are relied upon, may become one

source of mismatches between the internal CEMPC-IPC model and the actual system. In addition, Assumptions 1-3 introduced earlier, as well as

the differences between moment calculations in (11) and (35), may contribute further to these mismatches.

For the purpose of blade loads alleviation by the proposed method, the accuracy in the computations ofMtilt andMyaw within the controller’s

internal model is of high importance. As the goal of the CEMPC-IPC is to mitigate blade loads, which is reflected predominantly as the 0P com-

ponents in the rotor moments, it must be ensured that minimum static biases are exhibited with respect to the actual measurements,Mtilt,m and

Myaw,m. Therefore, (27)-(28) need to be revised by including the corresponding biasesMtilt,b andMyaw,b as follows

Mtilt,m(t) = Mtilt(t) +Mtilt,b(t) , (38a)

Myaw,m(t) = Myaw(t) +Myaw,b(t) , (38b)

with the information about these unknown biases to be provided by a state estimator. To this end, a recursive estimation routine by unscented

Kalman filtering (UKF) 35 is considered, where the following random-walk model for estimating the unknown parameters is augmented to the

original system dynamics (1)

Mtilt,b(k + 1) = Mtilt,b(k) + qtilt,b(k) , (39a)

Myaw,b(k + 1) = Myaw,b(k) + qyaw,b(k) , (39b)

with qtilt,b and qyaw,b being the process noises of the biases.

The nonlinear state and output equations internal of the UKF are defined as follows
xukf(k + 1) = fukf(xukf(k),uukf(k)) + qukf(k)

yukf(k) = hukf(xukf(k),uukf(k)) + rukf(k)

, (40)
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with

xukf(k) = [ωg(k),Mtilt,b(k),Myaw,b(k)]> ,

uukf(k) = [β1(k), β2(k), β3(k), v̂1(k), v̂2(k), v̂3(k), Tg(k), ψ1(k), ψ2(k), ψ3(k)]> ,

yukf(k) = [ωg(k),Mtilt,m(k),Myaw,m(k)]> ,

qukf(k) = [qωg (k), qtilt,b(k), qyaw,b(k)]> ,

rukf(k) = [rωg (k), rtilt,m(k), ryaw,m(k)]> ,

being the respective augmented state, input, output, process noise, and measurement noise vectors. Here, the noise terms are assumed to be

zero-mean Gaussian random variables with covariances

Qukf = diag(σ2(qωg ), σ2(qtilt,b), σ2(qyaw,b)) , (41a)

Rukf = diag(σ2(rωg ), σ2(rtilt,m), σ2(ryaw,m)) , (41b)

where σ represents the standard deviation of the indicated signal.

UKF is able to estimate unknown parameters of a nonlinear system with high accuracy by propagating directly the statistical properties of the

state estimates through nonlinear equations, such as considered in (40). This is done by, firstly, creating a deterministic, finite set of state samples,

known as the ‘sigma points,’ which parameterize the state estimates’ mean x̄ukf and covariance Pukf = diag(σ2(ωg), σ2(Mtilt,b), σ2(Myaw,b)).

These points are then propagated through the state transition function fukf by means of the ‘unscented transformation’ (UT) during the ‘time

update’ stage. Subsequently, the a priori state estimates and their corresponding covariance matrix can be computed, taking into account Qukf in

the latter. The next stage is the ‘measurement update,’ in which the same sigma points are propagated through the output equation hukf by UT

in order for the estimates and covariance matrix of the output ŷukf to be computed. Similar to the time update, Rukf is catered for in the output

covariance calculation. Then, having the state and output estimates, their cross-covariance can be computed, which is essential in updating the a

posteriori xukf and Pukf , which accounts for the residual yukf − ŷukf . The above estimation routine is repeated and after the residual converges

to zero, the moment biases M̂tilt,b and M̂yaw,b are obtained. The reader interested in the more detailed procedure of UKF is referred to the

literature 35.

5 SIMULATION RESULTS AND DISCUSSIONS

In this section, the main results of the proposed CEMPC-IPC design are exhibited in the aero-servo-elastic mid-fidelity wind turbine simulation

environment NREL FAST v8.16 29. As a representation of modern onshore wind turbines, the NREL-5 MW 36 reference turbine is chosen in this
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TABLE 1 NREL 5-MW key specifications.

Description Notation Value Unit

Rated generator power Pg,rated 5 MW
Cut-in wind speed vin 4 m/s
Rated wind speed vrated 11.4 m/s
Cut-out wind speed vout 25 m/s
Rotor radius R 63 m
Rotor area A 12,468.98 m2

Hub height - 90 m
Optimal tip-speed ratio λ? 7 -
Max. power coefficient C?p 0.458 -
Generator efficiency ηg 0.944 -

Description Notation Value Unit

Gearbox ratio G 97 -
Generator inertia Jg 534.116 kg/m2

Rotor inertia Jr 35,776,753 kg/m2

HSS equivalent inertia Jhss 4,336.512 kg/m2

Rated generator speed ωg,rated 1,173.7 rpm
Max. generator speed ωg,max 1.3 ωg,rated rpm
Rated generator torque Tg,rated 43,093.55 Nm
Min. pitch angle βmin 0 ◦

Max. pitch angle βmax 25 ◦

Max./min. pitch rate β̇max = −β̇min 8 ◦/s

work, the main specifications of which are listed in Table 1‡. Nine degrees-of-freedom (DOFs) are activated in FAST, including the generator DOF,

drivetrain rotational-flexibility DOF, two fore-aft tower bending mode DOFs, two side-side tower bending mode DOFs, two flapwise blade bending

mode DOFs, and the first edgewise blade bending mode DOF.

The CEMPC-IPC optimization is implemented using YALMIP modeling interface 38, in which MOSEK 39 is incorporated as the numerical solver.

For all of the simulations done for this section, the prediction horizon ofNp = 100 steps are considered with Ts = 0.2 s step size, such that 20 s of

horizon length is obtained. For obtaining the required information on the BEWS and rotor moment biases, the Coleman estimator and UKF briefly

explained in Section 4 are tuned appropriately. The values of the Coleman BEWS estimator’s integrator gains are set such that v̂i can be obtained

fast enough while maintaining a stable response as follows

Kcol = 8.5 · 10−7 (Ns)−1, Ktilt = 10−6 (Ns)−1, Kyaw = 10−6 (Ns)−1 .

The tuning parameters of the UKF, being the individual process and measurement noise covariances within the matrices Qukf and Rukf , are

selected below

σ2(qωg ) = 10−2 (rad/s)2, σ2(qtilt,b) = 10−2 (Nm)2, σ2(qyaw,b) = 10−2 (Nm)2 ,

σ2(rωg ) = 10−3 (rad/s)2, σ2(rtilt,m) = 10 (Nm)2, σ2(ryaw,m) = 10 (Nm)2 ,

such that the estimate signals M̂tilt,b and M̂yaw,b contain only slow-frequent components.

A number of deterministic and stochastic wind conditions are taken into consideration for studying the behavior and performance of the pro-

posed controller, as well as comparison with the baseline controller. In Section 5.1, the former wind condition is chosen as a steady, stepped wind

speed case to showcase the performance and differences of the CEMPC-IPC with respect to a basic CEMPC without any blade loads mitiga-

tion aspects. Then in Section 5.2, several turbulent wind conditions representing those of real-world scenarios are considered, in which its load

reduction performance, as well as blade pitching activities, are assessed with respect to a baseline conventional IPC.

‡The NREL-5 MWwind turbine used here is based on that included within FASTTool software package 37, thus some parameters differ from the original
version released by NREL.
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TABLE 2 CEMPC-IPC weight configurations for step wind case. Bold numbers indicate varied weights.

Configuration w1 w2 w3 w4 w5 w6 w7

1 (Basic CEMPC) 100 50 10 50 50 0 0
2 100 50 10 50 50 100 100
3 100 50 10 100 50 10 10
4 100 50 10 25 50 10 10

5.1 Step Wind

For the stepped wind case studied in this section, hub height wind speeds ranging between v = 14 − 20 m/s, with 2 m/s increment every 60 s,

is employed, totaling in a simulation duration of 300 s. The first few seconds of the simulation data commonly contain computational transients

of FAST and, hence, the actual simulation duration is prolonged by one minute such that these effects can be later removed during evaluation.

To induce periodic Mop,i at the 1P frequency, which lies about ωr,rated = ωg,rated/G = 12.1 rpm or 0.2 Hz, wind shear power law 1 with 0.2

exponent value and tower shadow effect are taken into account in the FAST’s setting. This periodic signal is reflected predominantly as static rotor

moments in the tilt and yaw directions in the non-rotating frame, as indicated previously. Below-rated condition is disregarded from this simulation

as operations in this region to avoid unnecessary acceleration in pitch motors wear and tear.

Several weight configurations, listed in Table 2, are considered to understand the behavior of the CEMPC-IPC under different prioritizations of

economic objectives. Not all weights are relevant for load reduction, namely w1 −w3 and w5, thus their values are fixed, whereas w4, w6, and w7

are subject to changes later on in Section 5.1.1-5.1.2. For all configurations, w1 = 100, w2 = 50, w3 = 10, and w5 = 50 are set. The weight w1

is set to enforce the production of Pg = Pg,rated during the operation at above-rated. The P̌av,i maximization weight w2 is chosen to push the

upper bound of (23), thereby expanding the range within which the decision variable Pr,i may find its optimal value. As for w3, the chosen value

is sufficient to regulate Kg whenever the generator excurses to kinetic energies higher than Kg,rated by lowering Pr (see (5)), which is realized

by increasing the collective pitch component of the blades. Under these weights for power control and speed regulation, comparisons between

the proposed CEMPC-IPC and a basic CEMPC, as well as demonstrations of CEMPC-IPC behaviors under different w4, w6, and w7 tuning are

conducted in the subsequent subsections.

5.1.1 CEMPC-IPC and Basic CEMPC Comparison

In this subsection, the behavior of the proposed controller without and with load reduction is compared. The former resembles that of the original

CEMPC 24, with the exception that neither local storage nor grid power delivery is considered for the sake of simplicity, which is obtained by a slight

modification of the latter. Themainmodification is in the replacement of the vi into rotor-effective wind speed (REWS) estimate v̂RE =
∑3
i=1 v̂i/3.

This is required to enforce equal Pr,i for all blades, which, after variable conversion into βi by the reverse pitch LUT Ψ in (32), results in collective

pitching. No penalties onMtilt andMyaw are imposed in the CEMPC setting, i.e., w6 = w7 = 0, to prevent individual pitching of this controller

despite the use of v̂RE, since it is still possible to induce modest individual pitch activities as done for side-side tower damping 27. As for the



A. K. PAMOSOSURYO et al 19

FIGURE 3 Step wind case time-marching simulation results of basic CEMPC under Configuration 1 and CEMPC-IPC under Configuration 2.

CEMPC-IPC, v̂i is re-utilized and the load mitigation weights for penalizingMtilt andMyaw are set tow6 = w7 = 100 so that Pr,i can now actively

steer these moments closer to 0 Nm. For both CEMPC and CEMPC-IPC, listed as Configuration 1 and Configuration 2 in Table 2, respectively, a

fixed penalty on Ṗr,i, i.e., w4 = 50 is selected. Figure 3 depicts the time-marching results of both the basic CEMPC (black lines) and CEMPC-IPC

(red lines) under these configurations, with all blade-effective quantities only shown for the first blade, for the sake of clarity.

As shown in the figure, the basic CEMPC under Configuration 1 does not perform any individual pitching, as β1 acts collectively with β2 and

β3 only for speed regulation due to zero weights on w6 and w7, as well as the utilization of vRE. Also depicted is Pr,1 of the basic CEMPC, which

appears to maintain its value of about 1.65-1.8 MW as a realization of an active overspeeding penalty. Under this benchmark configuration, the

first OoP blade root bending moment Mop,1 experiences severe 1P loading in the rotating reference frame due to the wind shear and tower

shadow effects, which, as the wind becomes faster, becomes more significant. Considerable deviation of the static components ofMtilt andMyaw

from 0 Nm are thus observed in the fixed frame as a consequence of this 1P load in the rotating frame. In comparison to CEMPC-IPC under

Configuration 2, improvements in terms of fatigue load reduction are evident from the measurements ofMop,1, where fewer 1P oscillations are

experienced. Consequently,Mtilt andMyaw exhibit much less static loading compared to the previous configuration.
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FIGURE 4 Step wind case time-marching simulation results of CEMPC-IPC under Configuration 3 and Configuration 4.

5.1.2 CEMPC-IPC Behavior under Different Aerodynamic Power Rate Penalties

Another aspect worth paying attention to is the CEMPC-IPC load reduction behavior under different penalties on Ṗr,i, which is considered in

this subsection. In a previous work 27, penalizing Ṗr,i was shown as a way to prevent excessive individual pitching, which consequently results

in less tower load mitigation activity. To study how the penalization of Ṗr,i is affecting the blade loads in the current work, additional step wind

simulations are performed, in which two different weight configurations for CEMPC-IPC are set, i.e., Configuration 3 and Configuration 4. In the

former and latter configurations, respectively, w4 = 100 and w4 = 25 are selected, representing high and low penalties on the Ṗr,i, with the tilt

and yaw moment penalties are set equally to w6 = w7 = 10. Figure 4 depicts the time-marching simulation results for both cases, where for the

sake of clarity, only an excerpt of the measurements at t = 175− 275 s is shown.

In the figure, CEMPC-IPC with Configuration 3 (black lines) clearly shows more active Pr,i than Configuration 4 (red lines). This behavior is

anticipated since w4 is decreased in the latter configuration, which enables Pr,i to vary with higher magnitudes. This results in βi with slightly

smaller oscillations but with reducedMop,i. The reduction in the blade loads is, again, reflected as a reduction in the static components ofMtilt and

Myaw , as evident in the figure. Such an observation might be counterintuitive as one might expect that decreased w4 would give more aggressive

pitching, as was demonstrated in the previous work 27. This is, nevertheless, not the case, which might be caused by the weights on w6 and w7

being perceived heavier by the controller asw4 is lowered, leading to the further allocation of the pitching efforts to mitigate the loads. Regardless,
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TABLE 3 CEMPC-IPC weight configurations for turbulent wind cases. Bold numbers indicate varied weights.

Configuration Turbulence Case w1 w2 w3 w4 w5 w6 w7

1 v0 = 20 m/s, IT = 16% 100 50 10 100 50 50 50
2 v0 = 20 m/s, IT = 8% 100 50 10 50 50 75 75
3 v0 = 16 m/s, IT = {12, 16}% and v0 = 20 m/s, IT = 12% 100 50 10 20 50 90 90
4 v0 = 16 m/s, IT = {4, 8}% and v0 = 20 m/s, IT = 4% 100 50 10 10 50 95 95

having the knowledge of this behavior at hand, trade-off tuning between pitch activities and loadmitigation, being parts of the economic objectives

of CEMPC-IPC, can thus be done appropriately for other conditions, such as the following turbulence cases.

5.2 Turbulent Wind

In this case, several turbulent wind fields generated by NREL TurbSim 40 with the Kaimal turbulence model defined in the IEC 61400-3 standard 41

are employed, includingwind shear and tower shadow as used previously. Twomeanwind speeds at hub height are considered, namely v0 = 16m/s

and v0 = 20 m/s, where, for each mean speed, turbulence levels of IT = {4, 8, 12, 16}% are simulated, making up of eight turbulence cases in

total. For each turbulence case, a 660 s long simulation is run, from which only the last 600 s is evaluated such that FAST computational transients

are not accounted for.

The tuning weights of the CEMPC-IPC in the current performance study are set on a case-per-case basis, taking into account the trade-off

between load reduction and pitch activities according to the observations from the previous wind case. These weights, tuned accordingly for each

wind speed and turbulence condition, are provided in Table 3.

The performance of CEMPC-IPC in the current turbulent scenarios is compared with a baseline conventional Coleman-based IPC 2,4,

operating alongside a standard K-omega-squared controller and gain-scheduled collective pitch control (CPC) for torque control and rota-

tional speed regulation, respectively 42. The conventional IPC employed in this work is a pair of pure integrators with equal gains

KI,tilt = KI,yaw = 2.6604 · 10−9 rad/Nm, for canceling out the static components of rotor momentsMtilt andMyaw , as computed in (14)-(15).

The gains are chosen based on the frequency domain loop-shaping method so as to obtain 0.15 rad/s crossover frequency. The pitch demands

βtilt and βyaw generated by these integrators in the fixed frame, together with the collective pitch signal βcol used in CPC, are reconstructed into

βi, by the following reverse Coleman transformation

βi(t) = βcol(t) + βtilt(t) cos (ψi(t) + ψoff) + βyaw(t) sin (ψi(t) + ψoff) , (42)

with ψoff being an azimuth offset to compensate for the coupling between the tilt and yaw axes. For the considered operating points, ψoff = 17.5◦

is chosen such that the crosscoupling between the tilt and yaw axes are minimized. As the integrator gains needed to reach the aforementioned

crossover frequency, as well as the azimuth offset for decoupling both fixed axes, do not vary too much at the above-rated, a gain-scheduling
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strategy is deemed unnecessary. The reader interested in the detailed implementation of the baseline IPC with azimuth offset inclusion as a

decoupling strategy is referred to the work of Mulders et al 4.

A number of performance indicators are used for assessing the load reduction quality and also blade pitching activities for the baseline controller,

without and with IPC, and the designed CEMPC-IPC as follows

1. Mean standard deviation of OoP blade root bending moments

σMop,123
=

3∑
i=1

σ(Mop,i)/3 ,

2. Standard deviation of the low-speed-shaft (LSS) bending moment in the rotating frame

σMlss
= σ(Mlss) ,

3. Standard deviation of the yaw bearing yaw moment in the fixed frame

σMyb
= σ(Myb) ,

4. Cumulative pitch distance traveled by the blades 43

βtot =
∑
k

3∑
i=1

|∆βi(k)| ,

where ∆βi(k) = βi(k)− βi(k − 1).

Note that since simulation data of only 10 minutes for each turbulence case is considered, therefore standard deviations of load measurements

are preferred to evaluate the damage reduction of different wind turbine components§.

The performance indicators data computed for all of the turbulence cases are collected in Table A1 in Appendix A, where for convenience, their

normalized values are depicted as histograms in Figure 5 and 6 for v0 = 16 m/s and v0 = 20 m/s cases, respectively. For both groups, the standard

deviations of the aforementioned bending moments are normalized with respect to that of the baseline controller without IPC, whereas βtot is

normalized with respect to the CEMPC-IPC’s result.

In Figure 5, some trends in the load reduction performance of the CEMPC-IPC at v0 = 16 m/s can be observed. It is apparent that, generally,

similar performance in the reduction of the σMlss
and σMyb

with respect to the baseline IPC is attained by the CEMPC-IPC for all turbulence

intensities. More interestingly, as the turbulence intensity goes higher, the proposed controller performs better than the baseline IPC in terms of

reduction in σMop,123
, from only 1% lower at IT = 4% to 10% lower at IT = 16%. These improvements may be linked with the increase in the pitch

activities indicated by βtot ranging from 6% to 33% higher than the baseline IPC. In Figure 6, a similar observation is also seen in the turbulence

cases of v0 = 20 m/s, where σMop,123
is 2-6% lower than the baseline IPC with 5-35% increase in βtot. Again, comparable performance in the

reduction of σMlss
and σMyb

is obtained.

§For a more accurate assessment, damage equivalent load may also be employed. however, this requires more simulation data, thus, for simplicity is not
considered in the current work.
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FIGURE 5Normalized bending moments standard deviations of multiple wind turbine components and cumulative pitch travel for turbulence cases
for mean hub-height wind speed v0 = 16 m/s.

FIGURE 6Normalized bending moments standard deviations of multiple wind turbine components and cumulative pitch travel for turbulence cases
for mean hub-height wind speed v0 = 20 m/s.

Excerpts of time series results for both v0 = 16 m/s and v0 = 20 m/s wind speeds are provided, in which the record of v at hub height, β1, β̇1,

Mop,1,Mlss, andMyb measurements are shown. In Figure 7, results from the scenario v0 = 16 m/s under a low-turbulence case of IT = 4% are

depicted. It is shown that both the proposed CEMPC-IPC (red lines) and baseline IPC (black lines) are able to significantly reduce the fatigue loads

Mop,1,Mlss, andMyb experience with respect to those of by the baseline controller (gray lines). Similar pitching activities are seen between both
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FIGURE 7 Excerpt of the time series simulation results of v0 = 16 m/s for IT = 4% for t = 215− 415 s.

IPC controllers, with slightly higher β̇1 for CEMPC-IPC, which shows consistency with βtot evaluation indicated by the histogram in Figure 5. Also

shown are the pitch rate limits β̇max = −β̇min = 8◦/s as straight, dashed gray lines, which are not exceeded by both IPC controllers.

In Figure 8, the power spectral density (PSD) results of β1, Mop,1, Mlss, and Myb from the same turbulence case are presented, which are

obtained based of Welch’s power spectrum estimation method 44. From the figure, a visible reduction in the 1P component of Mop,1 at 0.2 Hz

can be clearly seen for both the CEMPC-IPC and baseline IPC, with the former method also resulting in a reduction at lower frequencies. In the

measurements of the rotatingMlss, the 1P component in the signals can be better observed due to the low-frequent load components of the blades

canceling each other out. Here, the reduction of the 1P loads is more evident, with the low-frequency contents between 0.1-0.2 Hz being further

lowered by the CEMPC-IPC. However, the increase in the spectral densities at frequencies surrounding 0.3 Hz counterbalances the reduction

obtained at the lower frequencies, which may explain why σMlss
of this controller is close to that of the baseline IPC, as shown in Figure 5. The PSD

results of β1 indicate consistency with βtot evaluated previously, in the sense that CEMPC-IPC exercises higher pitching activities with respect to

the baseline IPC, particularly between 1P and 0.65 Hz.

In Figure 9, time domain signals for the case v0 = 20 m/s with IT = 16% are depicted. Here, the CEMPC-IPC again showcases its capability in

reducing the loads experienced byMop,1, as well asMlss andMyb, for instance, at t = 200 − 220 s or t = 300 − 320 s. The pitch system of the

proposed controller also seems to be more active as the turbulence level becomes higher. At times, although not often, β̇i might violate the pitch
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FIGURE 8 Power spectral density results for various wind turbine components of v0 = 16 m/s for IT = 4%.

rate limits as shown between t = 300− 310 s, since the current implementation of the CEMPC-IPC does not take into account explicitly pitch rate

constraints; thus, a room for future improvement.

Figure 10 illustrates the PSDs of the simulation results for the same turbulence case, fromwhich a conclusion similar to that of the previous case’s

PSDs can be drawn. One noticeable difference is in the increase of the spectral content of β1 for frequencies of about 0.1 Hz until approximately

1 Hz, which may perhaps be related to the increase in turbulence intensity. With a higher turbulence level, the overall frequency contents in the

wind increase, which are carried over into the CEMPC-IPC via v̂i. Adjustments in the Coleman BEWS tuning parameters might help in alleviating

higher pitching activities in future work.



26 A. K. PAMOSOSURYO et al

FIGURE 9 Excerpt of the time series simulation results of v0 = 20 m/s for IT = 16% for t = 180− 380 s.

FIGURE 10 Power spectral density results for various wind turbine components of v0 = 20 m/s for IT = 16%.
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6 CONCLUSIONS

In this paper, a novel CEMPC-IPC method has been developed with blade loads alleviation capability, thereby extending the family of CEMPC

controllers for wind turbine applications. The convexity of the proposed controller is made possible by the reformulation of a wind turbine model

in terms of power and energy flow, such that linear dynamics, convex constraints, and concave objective functions (to be maximized), embodied

in an OCP, are obtained. Having such a convex OCP formulated, a globally optimal solution is guaranteed and real-time deployment becomes

possible. The individual pitching capability of this framework is unlocked by the utilization of multiple aerodynamic powers—each representing that

of an individual blade, in contrast to employing a single, rotor-effective quantity. Such individual aerodynamic powers are then used to substitute

nominal turbine variables in the static blade forces and moments formulation. By including moment penalizations as part of the OCP’s economic

objectives, the pitching movement of the individual blades can now be controlled to mitigate wind turbine blade loads. Moreover, the proposed

framework allows for trade-off tuning between different economic objectives with ease. For supplying unknown and unmeasurable information

into the CEMPC-IPC, the load-sensing Coleman BEWS estimator andUKFmoment biases estimator have been incorporated. Numerical simulations

under the mid-fidelity NREL FAST environment have been conducted, both in step wind and turbulent wind cases, in which the performance of the

CEMPC-IPC has been evaluated. Compared with a conventional IPC, the proposed method has been shown to yield similar performance in terms

of mitigating rotating LSS and fixed yaw bearing yaw moments. Better performance with respect to the baseline IPC has been observed in that

reduction of OoP blade root bending moments is obtained, particularly during high turbulence at the expense of more intense pitch actuations.

The load-reducing capability of the proposed CEMPC-IPC thus, in conclusion, has shown the potential to prolong wind turbine lifetime, such that

further economic benefit from its power-generating operations can be gained. Future work may consider pitch rate constraint incorporation within

the framework for better handling of the pitching activities.
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TABLE A1 Baseline controllers and CEMPC-IPC results in moment standard deviations and cumulative pitch travel distance.

v0 (m/s) 16 20
IT (%) 4 8 12 16 4 8 12 16

Mean standard deviation of OoP blade root bending moments (σMop,123
)

Baseline (kNm) 841.420 1061.333 1372.230 1726.434 1078.221 1286.137 1589.222 1994.160
Baseline IPC (kNm) 350.948 685.019 1058.651 1434.220 396.018 753.735 1144.278 1630.281
CEMPC-IPC (kNm) 341.486 632.300 926.773 1264.573 396.053 728.194 1098.685 1514.710

Standard deviation of rotating low-speed shaft (σMlss
)

Baseline (kNm) 1100.345 1278.814 1522.350 1799.263 1474.161 1676.542 1962.194 2310.552
Baseline IPC (kNm) 375.454 622.960 894.843 1176.211 483.679 816.804 1171.619 1546.930
CEMPC-IPC (kNm) 404.949 638.005 890.900 1200.994 501.051 806.703 1141.918 1518.826

Standard deviation of fixed yaw bearing yaw moment (σMyb
)

Baseline (kNm) 384.151 712.070 1052.017 1392.475 478.646 894.101 1317.172 1748.134
Baseline IPC (kNm) 343.325 607.805 887.502 1174.124 438.233 771.345 1121.147 1490.183
CEMPC-IPC (kNm) 359.330 606.845 875.353 1161.360 449.448 769.436 1109.004 1479.080

Cumulative pitch travel distance (βtot)
Baseline (deg) 130.062 264.841 408.633 559.424 149.628 300.342 453.346 614.807
Baseline IPC (deg) 2014.433 2096.757 2240.568 2438.766 2460.793 2544.232 2678.088 2888.781
CEMPC-IPC (deg) 2131.821 2473.935 2983.453 3618.730 2598.891 3034.297 3596.848 4416.405
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