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Abstract

This article presents the architecture, design and validation of a microservice orchestration approach, that improves the flexibility
of heterogeneous microservice-based platforms. Improving user experience and interaction, for time-critical applications are
aspects that were primary objectives for the design of the architecture. Each microservice can provide its own embedded user
interface component, also decentralizing it and, in consequence, improving the loosely coupled approach to the architecture.
Obtained results are promising, with high throughput and low response times. Also, a key finding was the introduction of
benchmarking as a new step in the development lifecycle of performance-critical software components, with an example of how
it can be applied within an Agile methodology. Further research is proposed to improve the results and raise the final technology
readiness level of the system. Obtained results already make the approach a candidate and viable alternative to classical service
composers.
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Abstract

This article presents the architecture, design and validation of a microservice orches-
tration approach, that improves the flexibility of heterogeneous microservice-based
platforms. Improving user experience and interaction, for time-critical applications
are aspects that were primary objectives for the design of the architecture. Each
microservice can provide its own embedded user interface component, also decen-
tralizing it and, in consequence, improving the loosely coupled approach to the
architecture. Obtained results are promising, with high throughput and low response
times. Also, a key finding was the introduction of benchmarking as a new step
in the development lifecycle of performance-critical software components, with an
example of how it can be applied within an Agile methodology. Further research
is proposed to improve the results and raise the final technology readiness level
of the system. Obtained results already make the approach a candidate and viable
alternative to classical service composers.
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1 INTRODUCTION

The field of Computer Science and Engineering has undergone significant evolution over the past few decades. The pace
of technological advancement is rapid, with innovations and revolutionary systems being launched regularly, as competing
creatives vie to be the first to release a specific technology. However, this competitive landscape can sometimes lead teams to
cut corners on best practices, especially in terms of cybersecurity. As a result, cybersecurity testing and validation have become
critical issues as the number of vulnerabilities has increased.

Moreover, the introduction of Microservices has further opened up the way for application components to function indepen-
dently, leading to an increase in vulnerabilities1. Microservices are an approach to software development that involves breaking
large monolithic applications into smaller modules that can operate independently and be integrated into multiple platforms.
While Microservices offer many benefits, such as modularity and scalability, they also present new challenges in terms of secu-
rity, as these services need to communicate and share data with each other while maintaining the confidentiality and integrity of
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the data2. Thus, ensuring the security and reliability of Microservices is becoming increasingly important in modern software
engineering.

In the past couple of decades, microservices have also emerged as a popular alternative to large monolithic systems or
inflexible platforms, that also require Rapid Development3,4,5,1. Microservices are an improved version of Service Oriented
Architectures (SOA) and offer several advantages over monolithic applications, such as optimized resource allocation, flexi-
bility, and the ability to integrate Serverless Components6,7,1 and various communication approaches. However, effective and
robust communication among microservices requires standardized definitions of several aspects. Typically, service composers
or consumers are used to integrating these services, which can result in large codebases and UI components.

The use of Microservices in software development necessitates careful consideration of Service Composition8, Service Dis-
covery9, and Service Interoperability10, all of which require the use of robust framework components. However, Service
Composers (SC) can quickly become unwieldy, as they must integrate multiple low-level functionalities and also accommo-
date intuitive user interface and interaction. System State11 is also crucial, as SC’s must understand workflows and their current
state, as well as support simple functionalities like logging, exception handling and email sending. Ultimately, these platform
components may themselves become large, monolithic components, introducing limitations into the system, and becoming dif-
ficult to modify, extend, or update. As a result, further research is needed to develop more efficient and scalable approaches to
service composition in microservice architectures, with the potential use of high-performance message-based communication.

The integration of message-based communication in an SC has the potential to address both the issue of platform security
as well as platform efficiency. To address this aspect, a proposed standardization framework for asynchronous messaging12

has been discussed and implemented13,14,15. This platform has been implemented within the Horizon 2020 BIECO Project1,
a cutting-edge initiative aimed at addressing the challenges of almost real-time communication and high throughput. Unlike
traditional approaches that rely on monolithic components, the proposed framework leverages orchestration and light UI com-
ponents to achieve efficient communication in a hybrid distributed system (both local and remote). This approach helps to
reduce the complexity associated with traditional SC’s, which can be cumbersome to maintain and scale. By utilizing a modu-
lar architecture that is centred on asynchronous messaging, the proposed framework offers a scalable and robust solution that
can adapt to changing user requirements and evolving security threats. Overall, this article provides a compelling argument for
adopting a standardized approach to asynchronous messaging in security assessment platforms and demonstrates the potential
of the proposed framework to drive innovation and progress in this field.

The remainder of the article is structured as follows: Section 2 structures some of the questions that the work is trying to
answer to. Section 3 presents some of the related work that the current platform is based on. Section 4 presents an overview of
principles that provide base for our work. Section 5 presents some of the most important details of implementation Section 6
presents some relevant results. Section 7 shows parts of the key findings relevant to the research community. Section 8 presents
conclusions related to the current article.

2 RESEARCH QUESTIONS

During our initial investigation into potential solutions to meet the requirements of the entire BIECO system, we determined
that a microservice-based approach would be the most suitable. Due to the inherent complexity and diversity of the individual
microservices, certain issues arose, prompting us to formulate a series of research questions:

• RQ1: What are the current issues in the usage of heterogeneous microservices, in the context of Loose-Coupling
Architectures?

• RQ2: How can different communication modes like REST API, JMS, and MQTT be used to improve the integration of
heterogeneous services and enable more complex interactions between them?

• RQ3: What are the challenges and limitations in designing a decentralized user interface component, and how can they
be overcome to create a seamless user experience?

• RQ4: How can asynchronous stateful microservices be integrated and how can they be leveraged to enable more complex
interactions between services and the platform?

1https://www.bieco.org

https://www.bieco.org
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• RQ5: How can System Consistency be assured across all services?

• RQ6: What are the best practices for designing and implementing a platform that supports improved Loose-Coupling,
heterogeneous types of services, and complex user interface components?

• RQ7: How can the platform be designed to support scalability and ensure that it can handle increasing demands from
users and services?

3 RELATED WORK

Software Service Orchestrators are an important part of distributed system design. Centralized orchestration, while having some
disadvantages, does introduce a level of abstraction, possible automatization and security that the Internet itself lacks. Zaalouk et
al.16 present an orchestrator architecture for Software Defined Networking (SDN) that can respond to software attacks, raising
the security of the resulting network. Another similar approach is presented by Jaeger17 in a configurable Security Orchestrator
approach that can be dynamically configured, thus paving the way to other approaches, like the one presented in this paper.

Distributed Microservices Communication can also be addressed in the context of Fog Computing18. Orchestrators also
play a key role in this kind of system, enabling Service Composition, that provide a holistic approach to delivering functionality
to the end-users. Brito et al.19, Davoli et al.20 and Borsatti et al.21 have proposed architectures that address some key aspects
like awareness, security, compositing, either defining a service component that implements all functionalities, or defining a
service layer with different components for each functionality.

Multimodal microservices The architecture of multimodal microservices offers a solution to integrate various services
developed in different programming languages or technologies. However, this approach comes with its own set of challenges
and limitations. The primary concern is inter-service communication, which is usually achieved through RESTful HTTP calls or
Advanced Message Queuing Protocol (AMQP). While these solutions can be effective, they can also introduce communication
latency, testing challenges, and issues with exception handling. Additionally, IoT or Edge devices may use non-web-friendly
protocols such as Bluetooth, ZigBee, or LoRa, making communication more difficult.

In a survey conducted by Gurudat et al.22, RabbitMQ was found to be more stable and suitable for a large number of users
involved in network communication, making it a preferred option over RESTful HTTP calls or AMQP clients. In embedded
systems and IoT or Edge devices, communication between these devices often requires overlay networks, tunneling, or dynamic
networking architectures, as mentioned by G. Bartolomeo23. Lightweight service composition that uses a service proxy can
also enable interaction between a web service and an embedded service, as proposed by Wang et al.24.

Energy-consumption When it comes to scaling various services or allocating (or even relocating the use of) resources, we
can definitely also talk about optimized energy consumption, optimal allocation of CPU, bandwidth, or other relevant system
resources. In an IoT / Edge Computing environment, all these aspects are relevant and demand utmost consideration both from
a research as well as design and implementation points of view. We’ve seen energy-aware self-adaptation in service-oriented
architectures proposition in the work of Frederico et al. 25 and other performance-aware energy-efficient cloud orchestration
techniques in Rossi et al. 26 where we see how scale-out applications and setting corresponding sleep state to hosts can minimize
the energy consumption.

Transactions Although we take advantage of the decoupling features of microservices, there are also times, when if one
or more services fail to accomplish a given task, we must revert to previous actions on the upstream services, as such, as the
need for handling with transactions may be required in cases like this, and we saw how it can be accomplished through a saga
pattern which integrates a quote cache system, this enables various transactions to rollback the changes if they are failed on
the cache level, and only the successful transaction will be committed to the database, this technique has been an experiment
by Daraghmi et al. 27 similar work related to saga pattern has been also used in the work of Martin et al. 28 for a reactive
microservices environment.

Edge-centric IoT architecture poses several challenges due to limited resources and processing power compared to the
potentially unlimited capabilities of the cloud for processing Big Data from various IoT devices. Additionally, physical devices
requiring real-time responses and handling sensitive data can further complicate the situation. According to a survey by Kewei
et al.29, only a few solutions have been proposed to address these challenges. The survey suggests that a lightweight secure
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communication solutions with flexible protocol usage could be researched further to cope with the edge-centric IoT archi-
tecture. In other words, the study recommends exploring a Distributed Multimodal Microservices framework to meet this
need.

Privacy In an analysis of privacy-preserving constraints in microservices architecture, Vistbakka et al. 30 proposes a light-
weight formalization of privacy constraint so that microservices share data on an organization level, and it could also define a
subset of data, that could be accessed to another organization through a defined policy. Another popular mechanism for privacy
assurance is the well-known Role-Based Access Control (RBAC).

Authorisation and Authentication Depending on the device/protocol used, it may be capable of multi-factor authentifica-
tion, biometrics, or using a simple way as using a username/password method, despite the method used, end-to-end security
must be achieved, and ideas on how this could be achieved in the past were by verification object in Pang et al. 31 or by cer-
tificates, as mentioned by Dai et al. 32, and blockchain solutions proposed by Zhu et al. in 33,34. As far as BIECO, the platform
itself should impose the way microservices authenticate within the platform, so as not to introduce unnecessary complexity
levels, that would in the end reduce performance.

Orchestrating IoT devices and services is a challenge on its own, as the IoT ecosystem has several hard limitations that cannot
be pushed. Wen et al.35 discuss these limitations and issues, proposing a Fog Orchestrator that aims to address them, while also
proposing future research trends for this specific area.

Scalability, Interoperability, and Reliability are terms frequently discussed when it comes to orchestrating microservices.
The need for an efficient way to handle these aspects, especially in the context of IoT and edge computing applications is
discussed by Shi et al.36 in their paper on the challenges of Edge Computing. To address these problems Jamborsalamati et al.37

proposed an Autonomous Resource Allocation system with a hierarchical architecture, and also local and global communication
layers based on MQTT and HTTP TCP/IP protocols for cloud interactions. Another Publish-Subscribe architecture is also
proposed by Saif et al.38 who proposed an HTTP/3 (H3) solution that exploits the wide-ranging improvements made over H2
and takes better advantage of QUIC transport than an MQTT mapping would.

To reduce development costs and also provide a centralized solution for security systems based on Service Oriented Archi-
tecture (SOA), Goutam et al.39 proposed an architectural framework called Orchestrator Model for System Security (OSS)
which is based on three components: Services, Security Services and an Orchestrator.

4 ARCHITECTURAL CHOICES AND COMMUNICATION PRINCIPLES IN HYBRID
MICROSERVICES-BASED ARCHITECTURE OF BIECO

The BIECO architecture (see Figure 1 ) includes two main connected service types: local and remote. The integration of various
types of Services within one system is an essential aspect that enables flexibility in the platform’s functionality. By integrating
multiple types of Services, the system is not limited to available Services for one specific type of connection. Additionally,
several types of connection protocols are available (e.g.: REST, Java JMS, MQTT), making it crucial to design the system
to allow management across many protocols. This type of design further enhances the system’s flexibility and opens up new
possibilities for the platform’s future development.

Moreover, the integration of local and remote Services is critical in enabling the platform to operate in diverse environments
and accommodate future integration of Services. For instance, when dealing with remote Services, the system must address
several challenges like network latency, low bandwidth, and other connectivity issues40. In contrast, local Services offer higher
speed and reliability but may lack in keeping information, models and versions up to date (it becomes the responsibility of the
user to keep the software components up to date). The platform’s ability to integrate both types of Services allows the system
to leverage the advantages of each type and compensate for the other’s shortcomings. This flexibility also allows for future
expansions and updates to the platform’s functionality, enabling it to adapt to changing requirements.

In addition to its location-based design, the BIECO platform’s ability to manage multiple connection protocols is a critical
aspect that increases its adaptability. By integrating several types of protocols, the platform can provide reliable connectivity
and communication between the different Services within the system, even when faced with varying network conditions. This
type of adaptability is essential, especially in scenarios where the platform needs to operate in diverse environments, with
varying degrees of connectivity and network speeds.

When developing the BIECO Service Communication System, multiple considerations were taken into account41 including
the types of Services and communication modes. The system accommodates both synchronous and asynchronous Services,
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FIGURE 1 High Level BIECO Orchestrator Architecture14

also supporting stateful and stateless ones. Additionally, Events and Data types that flow through the system were abstracted
into standardized Messages13,42 to provide maximum flexibility for various requirements. The design also focused on platform
performance, scalability, flexibility, and extensibility, resulting in different abstractions, formalizations, and standardizations.

Regarding the medium of choice and communication standards, REST APIs, ActiveMQ, and Mosquitto (MQTT) were consid-
ered. To mitigate component failures, a Heartbeat mechanism is used to poll the system state, and a Quick Response mechanism
is designed to halt the system in case of component failure. For critical components, this fail-safe mechanism can be used to
protect real hardware or systems. Furthermore, data integrity, safety, and security were also considered. To ensure message
validity, a complex message validation pipeline was designed and implemented as discussed in detail in15.

The integration of local and remote Services within the BIECO platform, along with the management of multiple connection
protocols, is an example of how flexibility and adaptability can be achieved in a system. This design philosophy allows the
platform to operate seamlessly in a variety of environments, thereby catering to the diverse requirements of end-users. With
the rapidly evolving landscape of modern technologies and services, the ability to adapt to new functionality and capabilities is
paramount. The BIECO platform’s flexible architecture can enable it to easily integrate new services seamlessly, reducing the
development time and complexity involved in upgrading the platform. Moreover, the platform can be easily scaled up or down,
depending on the specific use-case and requirements, making it an ideal choice for both small-scale and large-scale applications.

The flexible architecture of the BIECO platform provides a level of future-proofing, ensuring that the platform remains
relevant and functional in the long run. By design, the platform is capable of accommodating new services and technologies,
thereby future-proofing it against potential obsolescence. Furthermore, the platform’s adaptability and flexibility also translate
into cost savings and faster turnaround times. Since the platform can be quickly adapted to new services and technologies, the
need for additional resources or time-consuming redesigns will be significantly reduced. As a result, the platform can be easily
maintained and upgraded, resulting in a cost-effective and efficient solution for a variety of applications.

5 PLATFORM IMPLEMENTATION DETAILS

The architecture for the BIECO Orchestrator has been presented in depth in14. This platform is designed to execute asyn-
chronously in order to achieve near-realtime responsiveness and be non-blocking for the microservices. This is especially
important given one of the Execution Methodologies (EM) utilized for the System Under Test (SUT), as described by Calabro
et al. and Daoudagh et al.43,44. This EM requires real-time live data, which must be analyzed in the context of a Predictive
Simulation implemented through a Digital Twin, as also mentioned by Cioroaica et al.45.
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An asynchronous platform is a system that allows for the execution of tasks without the need for continuous interaction (with
the user or with the services) or instant responses (like in the case of classical REST APIs). Instead, the system can process
requests in the background while users continue with other activities. Asynchronous platforms typically rely on messaging
protocols to communicate between components and can be designed to handle high-throughput scenarios where processing
large amounts of data is critical. One key advantage of asynchronous platforms is their ability to handle unpredictability and
variability in the workload, as they can queue up tasks and execute them as resources become available. This makes them ideal
for distributed systems that require robustness, fault tolerance, and scalability, like the case of the BIECO platform.

The Services that are executed within the BIECO platform use a custom lifecycle that was thoroughly described in14. Each
Service is considered a state machine that can and should manage its own status. Polling the Service’s status is done via a
Heartbeat mechanism, managed by the Orchestrator. There are two intervals of polling, one for the case when the system is idle,
with an interval of 30s, and another one when the system is in execution, with an interval of 10s. The Heartbeat mechanism’s
role is to assess the state of each executing Service, in order to assess if a Project can be executed or to be able to deploy safety
and security mechanisms if needed.

Within their execution lifecycle, BIECO Services can request interaction with the user, so the messaging system provides a
mechanism for displaying a custom UI to the user, which will require some input. The platform itself will wait for the user to
finish the interaction and continue with normal execution. This kind of interaction provides a higher level of flexibility, greatly
improving the interaction possibilities between the user and the platform components.

In order to meet platform requirements, the entire design, implementation, and software stack of the BIECO Orchestrator
were carefully chosen and optimized to minimize overhead and maximize efficiency. Various acceleration techniques, such
as In-Memory Cache Management and ontological modelling of platform behaviour, were used in conjunction with low-level
code optimizations like benchmarking data-structure choices and optimizing algorithms used throughout the platform. These
techniques combined greatly enhance the resulting codebase, making it as efficient and responsive as possible.

FIGURE 2 Deployment Architecture for the BIECO Distributed Platform

Another architectural choice was the deployment of software components as close as possible to the SUT (see Figure 2 ).
In this regard, Docker2 has become a popular technology in software engineering and is widely used in the deployment and
delivery of microservices. It allows for the creation and management of containers that are isolated from each other and from
the host system, making it easier to package and distribute applications. In the context of the BIECO project, Docker is being
used as a containerization platform to package and deploy the various microservices and other components of the system.
This includes the BIECO Orchestrator, BIECO UI, containerized storage and database access and file transfer between local
Services./ This approach allows for greater flexibility and agility in managing the deployment and configuration of the platform,
as each component can be packaged, configured and deployed independently, and can be easily scaled up or down as needed.
Docker also provides a consistent and reproducible environment for running the system, ensuring that all components run in the

2https://www.docker.com/
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same way across different machines and environments. Docker also allows for easier maintenance and updates of the system,
as each container can be updated independently without affecting the rest of the system.

Furthermore, Docker is also used in the development process of the BIECO platform, as it enables developers to create a
consistent environment across different machines and operating systems. This allows for more efficient testing and deployment
of the platform, ultimately leading to a more stable and reliable system for users, that can use the platform in its entirety, or
only use the components they require, without the need to install all the available Services. Accessing the BIECO platform is
done via the BIECO UI, implemented as a web service so as to not limit installation of BIECO only to GUI-enabled operating
systems. Internal web servers are used to expose UI components to the user via browsers installed on any machine within the
Local Area Network (LAN). This ensures low latency, as internet connectivity will usually slow down the response times of
any Service.

The use of Docker also helps to improve the security and reliability of the platform. By isolating each component within its
own container, the risk of contamination or interference between different components is minimized. In addition, the use of
container images ensures that each component is deployed in a consistent and repeatable way, reducing the risk of configuration
errors or other issues that could impact the functioning of the platform. Docker also provides built-in security features, such as
isolation between containers and secure communication between components, which can help to mitigate the risk of security
breaches and data leaks. Overall, the use of Docker in the BIECO project helps to provide a more flexible, reliable, and secure
platform for conducting security assessments.

FIGURE 3 Toolchain of BIECO Services (example of Methodology)14,13

In summary, the BIECO Orchestrator has been designed with a focus on high-performance and near-realtime response, in
order to support the Execution Methodologies (see Figure 3 ) utilized for the System Under Test. With careful consideration of
the software stack and optimization techniques used, the resulting codebase is able to provide the required flexibility, efficiency
and responsiveness for this demanding application.

5.1 Testing the platform from a Cybersecurity perspective
Although the advantages of microservices are well-known, there are also complex challenges that arise from microservices
orchestration and asynchronous communication. These challenges include potential human errors, security concerns at every
layer of the application, and the need for specific security procedures for each component. For example, developers must
consider security measures for the application layer, such as authentication and authorization, as well as for the communi-
cation layer, such as message encryption and network security protocols. Failure to address these challenges could lead to
vulnerabilities and pose serious risks to overall system security.

In the article by Mateus-Coelho et al.40, the topic of Microservice Security is discussed from different points of view, all of
them regarding the system as a logical upscale of a monolith. Communication in this case is done directly from one microservice
to another, lacking the capabilities that a flexible Loose-Coupling would introduce. The article describes security threats and
measures that could be taken into consideration, all with the aim of building a defense system around microservices themselves,
as well as the system as a whole. Although not all were applicable in our case, we have introduced some of the measures
suggested, and also many others that fit the case of BIECO better.

The cybersecurity design and execution methodology employed for the BIECO platform’s primary components involve the
following actions from our side:
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• Despite the fact that the platform will be shielded by the network firewall, it is not dependent on it and treats the internal
LAN as an open Internet environment. This approach is also consistent with the fact that certain ports can potentially be
opened to allow external microservices to access the BIECO platform;

• We made sure that the software libraries offer support and mitigation for the most common software vulnerabilities (like
XSS, SQL injection, and others);

• We designed an atypical lightweight but secure Authentication system, that enables fast Service authentication, but is
based on behaviour, so that the security of the platform itself will not be compromised if an outside attacker would
somehow gain access to the authentication tokens;

• We used both internal and external tools to analyze the source-code and library versions for known and potential
vulnerabilities (e.g.: by using public CVE/CVSS databases, but also tools like SonarQube, Snyk);

• We used established and maintained libraries for common operations like authentication, JSON encoding and others;

• We used containerization strategies to separate the components of the BIECO platform from the rest of the local operating
system, in order to abide by internal company rules and protect the local environment from potential security flaws within
the BIECO platform;

• In order to protect against Denial-of-Service (DoS) attacks, we have developed a system that only accepts requests
related to the currently executing project. By enforcing compliance with platform requirements during service testing,
any request that falls outside the project context is flagged as potentially malicious and can be blocked without impacting
system performance. In order to protect against Denial-of-Service (DoS) attacks, we have implemented the system only
to accept requests related to the currently executing project. By enforcing compliance with platform requirements during
Service testing, any request that falls outside the project context is flagged as potentially malicious and can be blocked
without impacting system performance.

• In order to safeguard the system from potential data leaks and ensure Data Security, encryption was employed. Network
traffic was captured using tools such as Wireshark or Nmap, and the data was analyzed to ensure that no sensitive
information could be read.

• We incorporated Secure Development 46,47,48 practices, such as secure coding, code reviews, and regular security testing,
to ensure the practice of secure development.

The BIECO platform, as a whole, is designed to work within the end user’s premises. This implies a strict security policy
that companies usually set up for themselves. BIECO abides by these rules, making sure not to open security problems in the
end user’s intranet.

6 RESULTS

The BIECO platform in its entirety has a resulting TRL of 6 and has been used to demonstrate three diverse use-cases. All
use-cases share a distributed nature, one being in the automotive industry (secure remote software updates), one in the energy
industry (reading heterogeneous energy sensing devices) and one in fin-tech (a machine learning platform for transactions).

Every use-case had the following limitations:

• Source code is regarded as secret and cannot leave the premises of the company. No person outside the company can
view this source-code;

• Interaction with the SUT should be as simple as possible to implement, also generated Events and Data should be agnostic
to receivers;

• Using the BIECO Platform should be agnostic to the implementation details of the use-case.

These limitations were addressed on two levels:
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1. At the Platform level: deployment within the Docker environment resulted in installing the platform at the user’s premises,
so no source-code has to leave the company. This also resulted in greatly improving the platform’s response time;

2. At the Service level: Services define a broker-based abstract messaging system, fully integrated with the BIECO
Orchestrator, that involved a very small code that needed to be integrated inside the system (called a Probe44).

By these two simple choices, the BIECO system is able to be fully agnostic to any implementation details (like the used
programming language, software stack, architectural design, and other aspects). Execution within the testing environment has
yielded the following results:

TABLE 1 Execution statistics for BIECO Platform components

BIECO Component

(Service name)

Average
Response Time

(ms)

Messages
Throughput

(msgs/s)

Mean Time
To Discovery

(s)

Exception
Fail-safe

Triggering
(ms)

BIECO Orchestrator 11.3 1323 30 / 10 10
BIECO UI 121.6 532 N/A 70

An important metric regarding the use of Services is Mean Time to Discovery (MTTD), defined as the average time it takes
to discover a problem in the microservice. This metric, within BIECO, defines how fast the Orchestrator discovers changes
in Service states or potential problems. In the case of BIECO, this metric is actually hard-coded, and implemented within the
Heartbeat mechanism. As previously stated (see Section 5), there are two situations, when the platform is idle (MTTD of 30s)
and when the platform is executing a Project (MTTD of 10s). The UI will only assess the connection to the Orchestrator at 30s
intervals. Also, a WebSocket connection is open whenever a Project is opened, which provides continuous assessment for the
state of the Orchestrator.

The experimental setup used to obtain the results involved a powerful Ryzen 5 4600H processor with a generous amount
of 64 GB of RAM and a Windows 10 operating system. The Docker environment was installed with WSL2, and to optimize
its performance it had access to 4 out of 6 internal cores of the physical processor. The system’s RAM usage was carefully
monitored during the experiments and was found to be around 8GB when the system was idle, while in full load, it reached an
average of 20GB. The platform services (the UI and Orchestrator) were using an average of 100-400 MB, depending on the
throughput of Messages. The processor usage was also monitored and found to be under 1% when idle (despite the constant
Heartbeat assessment), and between 25% to 80% when the platform was under full load. This variation depended on the
complexity of the Services that were being executed, especially those that included ML engines with large models, requiring
more processing power. Overall, this experimental setup provided a solid foundation for obtaining the results presented in this
study, showcasing the platform’s performance under realistic conditions.

The results are in line with the central idea of BIECO and all its requirements. While still needing deeper analysis and further
testing, they indicate a successful implementation of the BIECO Service Communication System and its associated Services,
the current TRL level brings it close to being a viable solution for real-world scenarios. This provides a solid foundation for the
continued development of the platform and its integration with external systems, leading to increased efficiency, adaptability,
and scalability. As the platform evolves and additional features are added, ongoing testing and refinement will be necessary to
ensure its continued success and reliability, with the aim of raising the TRL to a required 9, in order to be market-ready.

7 KEY FINDINGS

Through intense work, benchmarking and testing various components and code snippets, BIECO has undergone a strict spiral
of implementation, rather novel and adapted to this kind of project (focused on cybersecurity and performance). It has become
a flexible and adaptable platform that enables the integration of local and remote Services, allowing it to operate in diverse
environments and adapt to changing requirements, due to its intrinsic flexibility. The platform’s design takes into consideration
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different types of services and communication modes, as well as events and data types that will flow through the system, and uses
different abstractions, formalizations, and standardizations to maintain performance, scalability, flexibility, and extensibility.
BIECO’s asynchronous architecture is designed to provide near-real-time responses, which is important for runtime assessment
of the System Under Test and for the analysis of real-time live data.

Docker is used as a containerization technology to manage different dependencies and ensure that the platform runs con-
sistently across different environments. BIECO leverages Docker’s features, like Docker Volumes, Docker Networks,
and Docker Applications, to provide a smooth and transparent experience to the user. Docker enables BIECO to be a
portable high-performance and highly-flexible solution that is hardware and operating system agnostic.

The results of performance testing show that the platform can handle multiple services running simultaneously, with low
latency and high throughput, while keeping resource consumption at reasonable levels, by today’s hardware standards. The
BIECO platform has been developed as part of the BIECO research project, in the fields of cybersecurity, cyber-physical
systems, Industry 4.0. BIECO has been tested in various and diverse use cases, including automotive, machine learning cloud
applications and data-collection/data-fusion. The platform is still evolving, with ongoing research and development focused on
improving its capabilities, adding new functionalities, and enhancing its usability and user experience.

7.1 Benchmarking as an Important Step in Software Development Cycle
While working on the BIECO platform and researching ways of optimizing the platform performance, we found out that
Benchmarking was a very important step in the implementation cycle of any software component that is focused on performance
and security. The role of benchmarking is two-fold:

1. Understanding and optimizing critical software components and pieces of code (functions, libraries), so that the
component will use the least resources while offering the maximum throughput of information;

2. Testing the component from a security perspective, to understand the impact of various validation patterns and methods
over performance.

FIGURE 4 Depiction of steps and placement for the Benchmarking step within the BEAM Methodology

The results that we obtained by formalizing benchmarking as a step in the development lifecycle, were at least interesting.
Contrary to some “Best Practices" and “Code Writing Patterns/Guidelines", we had to merge some functionalities that tradi-
tionally were performed by different classes, into a single class (e.g.: Validating entities and validating inputs). This required
a new level of creativity in order to preserve code maintainability and also a low Technical Debt, without compromising
on performance. This was an iterative process, as the requirements for the platform itself were sometimes changing. An Agile
methodology was used as a base, with an iteration of 4 weeks, and had the following steps (see also Figure 4 ):

• Analysis of requirements within the already implemented codebase;

• Researching possible solutions that would address these requirements (at least three of them);
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• Testing (benchmarking) the possible solutions and observing various parameters, like: memory usage, computational
effort, possible vulnerabilities introduced, possibility to abstract and extend the functionalities, and possibility to merge
with existing classes;

• Implementation of the chosen solution;

• Testing and small-scale validation of the resulting codebase.

Rather than being a Greedy approach, where the chosen solution was never revisited (if the requirements do not change),
we treated everything within a backtracking approach: at each iteration, the modified or affected modules were benchmarked
again, so as to ensure the optimal performance of the platform. We have formalized this development lifecycle methodology
within the team with the proposed name of Benchmarking Agile Methodology (BEAM).

7.2 Lessons Learned
The advantages and disadvantages of this approach were presented in14. However, there are some lessons (more abstract,
not-so-technical ideas) that we learned from this project that are important enough to be mentioned:

• Services are encouraged to develop their own interaction UI’s. A decentralized UI simplified development for both the UI
Integrator, as well as the Service development. Simple mechanisms for facilitating interaction can be enough to generate
a complex, intuitive UI with a good User Experience. This reduced the development time for the platform with at least
30%, by not needing to define and implement special situations and validations;

• A flexible starting architecture, that solves most of the requirements from the initial steps of the lifecycle, is of utmost
importance. This will offer the most flexibility while also assuring that Technical Debt is kept as low as possible.
This offered the maximum amount of flexibility later on when requirements changed drastically;

• Innovation must be done while also leveraging current advancements. Testing multiple solutions is very important, while
also being open to newer, not yet established solutions. The easiest-to-implement solution might not be the best. By
using Docker virtual environment as opposed to a real environment (or a centralized one), we were able to solve multiple
problems at once, like network delays, the availability of source code to internal services, parallelisation of Services (to
be able to run more Projects in parallel).

• Innovation should not be only in the technical areas. Small changes within the work style can have huge benefits. By
integrating the benchmarking step within the lifecycle, we were able to maximize both security as well as performance
in only one step.

Using the REST HTTP standard for requests has the benefit of being easily adaptable and is also readily available in all
major programming languages. Standard errors, caching, proxies and payloads can have formats such as JSON, XML or other.
HTTP also supports Asynchronous Communication, an important characteristic that is needed by many of the Services used in
the BIECO Project.

8 CONCLUSIONS

We have divided this section into two parts, one for adressing the RQ’s that were presented in Section 2, and one for the final
conclusions regarding the presented work

8.1 Addressing the Research Questions
8.1.1 RQ1. Current Issues:
As presented in Sections 1 and 3, the issues include communication heterogeneity and microservice heterogeneity (local/remote,
stateful/stateless), which may lead to complex execution login on the orchestration part and also lack of flexibility for the
platform.
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8.1.2 RQ2. Communication Modes Integration:
As presented in Section 5, abstraction is the key for integrating virtually any communication mode. Asynchronous communi-
cation relies on atomic units of data, abstracted as Messages and implemented in a unified way in all communication modes.
With small adaptations, this abstraction is applied to all microservice and communication types.

8.1.3 RQ3. Decentralized User-Interface:
A poorly designed UI may not attract users, while an overly complex one may require extensive development time and also a
significant amount of runtime resources. As stated in Section 5, we implemented a flexible UI, with two modes of integration
for each Service: either through required inputs that get rendered within the UI, but also by providing a mechanism that will
display the Service standalone UI, at demand. This allowed for a much simpler implementation with much more flexibility.

8.1.4 RQ4. Integrating Asynchronous Stateful Microservices:
Stateful microservices have the benefit of not requiring a live connection to wait for Service finalization. This introduces a
level of complexity in the execution logic but optimizes the required connections, as well as the resources consumed by the
orchestration service. The design of a high-throughput and secure system requires the implementation of certain abstractions
and conventions, as discussed in Sections 4 and 5, which are dependent on the types (and potential types) of communication
modes used.

8.1.5 RQ5. System Consistency:
Researching related work, but also from our own work within BIECO, System Consistency is achieved when the orchestration
service has a correct and updated overview of all the current states of microservices. This is achieved, in part, as presented in
Section 5, with the Heartbeat mechanism, and with well-established microservice states.

8.1.6 RQ6. Best Practices:
These best practices include benchmarking (Section 7.1) for assuring system performance, abstractions (Section 4) for assuring
consistency and scalability, conventions (Section 5) for assuring a solid and valid base for the platform to be built upon.

8.1.7 RQ7. Scalability:
We found that optimizations and benchmarking are very important aspects of development from the scalability aspect. This
will result in a well-performing platform even on low-end hardware. Dynamic scalability is obtained by using containerization
approaches, as presented in Section 7.1.

8.2 Final thoughts
The article discusses a novel approach to heterogeneous microservices orchestration. The resulting system provides support for
local and remote services, REST API, JAVA JMS (through ActiveMQ) and MQTT (through Mosquitto) data connections. The
heterogeneity is designed into the platform itself by abstracting the communication and data streams with the Message entity.
By using the Docker containerization solution, the system is fully scalable. Also, by dockerizing each component separately,
the system can be distributed to several interconnected machines, with the only limitation being the availability of a TCP
connection.

When comparing our platform to other approaches such as Zaalouk et al.16, Jaeger17, and others (as discussed in Section 3),
significant differences can be observed. These differences include:

• Strong focus on service heterogeneity and acceptance of more generic connection types (like REST in an asynchronous
context);

• Abstracting communication across connection types, via the Message entity, that can be safely implemented in any
communication mode;

• Improved Loose-Coupling, allowing services to function both independently or as part of the platform;

• Heterogeneous types of services (local and remote) and communication modes (REST API, JMS, MQTT);

• Ability to design complex non-standardised user interface components for all services, which can be effortlessly
integrated;
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• Integration of service states, enabling more complex interactions between services themselves and with the platform.

The presented BIECO platform underwent testing both in a controlled laboratory environment consisting of 10 microservices,
as well as validation with three use-cases (automotive, energy, and fin-tech, as presented in Section 6). During the testing phase,
the interaction comprised a 5-step methodology, with 1 to 5 services operating in parallel at each step. The system functioned
correctly during testing, making it a strong candidate for further validation and demonstration in more challenging environments
that are closer to the final deployment environment. Validating with the use-cases involved one or two methodologies per use-
case, with at least 5 Services per methodology. More complex methodologies involved the use of 10 Services, both local and
remote. Services were executed both in parallel, with the correct exchange of Data and Events, as well as part of a sequential
toolchain. This validation step provided a more accurate assessment of the platform’s overall performance, reliability, and
suitability for deployment in real-world scenarios.

During the testing of the Methodology Driven Orchestration Service, some limitations were identified. One issue was
observed when Services emitted Events at inappropriate times, leading to confusion for the Orchestration Service. Addition-
ally, the system encountered difficulties when managing a sudden surge of data, such as when multiple Services emitted a large
number of messages with large payloads simultaneously. This resulted in network overload and memory constraints on the vir-
tual machine. Both these issues were mitigated in validation by improving the Methodology Execution Engine, the Message
Invalidation Engine, and by using more processors for the Orchestrator virtual machine. Also, a transaction-based Methodol-
ogy Execution Engine will be researched, for solving potential temporary issues with communication. This would further raise
the TRL of the resulting platform, improving the scaling capabilities.

Current as well as future research and development efforts are focusing on optimizing system responses and improving
behavioural modifications in the case of invalid messages from Services, to increase system resilience and expand the range
of problems it can address. Other aspects of improvement that will be addressed include the detection of malicious access
attempts using machine-learning approaches, designing a more complex module for non-standard APIs (like public APIs), and
integrating Distributed Learning Services (based on Federated Learning).
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